Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Biochem Biophys Res Commun ; 508(3): 857-863, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30528737

ABSTRACT

It has been well established that HMG-CoA reductase inhibitors (statins) cause adverse side effects in skeletal muscle ranging from mild to fatal myotoxicity upon dose, drug interaction, and exercise. However, the underlying mechanisms by which statins induce myotoxicity have not been fully addressed. Recent reports showed that statins induce endoplasmic reticulum (ER) stress and cell death in immune cells and myoblasts in vitro. Therefore, the goal of study is to investigate the molecular mechanism by which statins induce skeletal muscle cell death and myopathy via the regulation of ER stress. Biochemical data showed that TUDCA, an ER stress inhibitor, inhibited atorvastatin- and simvastatin-induced protein cleavages of PARP-1 and caspase-3, respectively. Actually, statin treatment activated marker proteins of unfolded protein responses (UPR) including ATF6, CHOP, and spliced XBP1 and these responses were inhibited by TUDCA. In addition, statin treatment induced mRNA levels of UPR marker genes, suggesting that statins activate ER stress in a transcriptional regulation. The physiological relevance of ER stress in statin-induced myopathy was demonstrated in a mouse model of myopathy, in which instillation of simvastatin and atorvastatin led to myopathy. Notably, the reduction of muscular endurance in response to statin instillation was significantly improved in TUDCA treating group compared to vehicle control group. Moreover, CHOP deficiency mice showed restoration of statin-induced reduction of muscular endurance, suggesting that statin induces myopathy via ER stress and in a CHOP-dependent manner. Taken together, these findings indicate that statins specifically induce myopathy in an ER stress-dependent manner, suggesting the therapeutic potential of ER stress regulation in preventing adverse effects of statin.


Subject(s)
Endoplasmic Reticulum Stress , Hydroxymethylglutaryl-CoA Reductase Inhibitors/toxicity , Muscle Fibers, Skeletal/drug effects , Transcription Factor CHOP/physiology , Animals , Apoptosis , Cell Line , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System , Male , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/enzymology , Myoblasts, Skeletal/cytology , Taurochenodeoxycholic Acid/pharmacology , Transcription Factor CHOP/genetics
2.
Proc Natl Acad Sci U S A ; 113(32): 9015-20, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27450084

ABSTRACT

Cytosolic and organelle-based heat-shock protein (HSP) chaperones ensure proper folding and function of nascent and injured polypeptides to support cell growth. Under conditions of cellular stress, including oncogenic transformation, proteostasis components maintain homeostasis and prevent apoptosis. Although this cancer-relevant function has provided a rationale for therapeutically targeting proteostasis regulators (e.g., HSP90), cancer-subtype dependencies upon particular proteostasis components are relatively undefined. Here, we show that human rhabdomyosarcoma (RMS) cells, but not several other cancer cell types, depend upon heat-shock protein 70 kDA (HSP70) for survival. HSP70-targeted therapy (but not chemotherapeutic agents) promoted apoptosis in RMS cells by triggering an unfolded protein response (UPR) that induced PRKR-like endoplasmic reticulum kinase (PERK)-eukaryotic translation initiation factor α (eIF2α)-CEBP homologous protein (CHOP) signaling and CHOP-mediated cell death. Intriguingly, inhibition of only cytosolic HSP70 induced the UPR, suggesting that the essential activity of HSP70 in RMS cells lies at the endoplasmic reticulum-cytosol interface. We also found that increased CHOP mRNA in clinical specimens was a biomarker for poor outcomes in chemotherapy-treated RMS patients. The data suggest that, like human epidermal growth factor receptor 2 (HER2) amplification in breast cancer, increased CHOP in RMS is a biomarker of decreased response to chemotherapy but enhanced response to targeted therapy. Our findings identify the cytosolic HSP70-UPR axis as an unexpected regulator of RMS pathogenesis, revealing HSP70-targeted therapy as a promising strategy to engage CHOP-mediated apoptosis and improve RMS treatment. Our study highlights the utility of dissecting cancer subtype-specific dependencies on proteostasis networks to uncover unanticipated cancer vulnerabilities.


Subject(s)
HSP70 Heat-Shock Proteins/physiology , Rhabdomyosarcoma/etiology , Apoptosis , Cell Line, Tumor , Cell Survival , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Humans , PAX3 Transcription Factor/physiology , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/pathology , Transcription Factor CHOP/physiology , Unfolded Protein Response
3.
Br J Cancer ; 119(12): 1538-1551, 2018 12.
Article in English | MEDLINE | ID: mdl-30385822

ABSTRACT

BACKGROUND: Although NGLY1 is known as a pivotal enzyme that catalyses the deglycosylation of denatured glycoproteins, information regarding the responses of human cancer and normal cells to NGLY1 suppression is limited. METHODS: We examined how NGLY1 expression affects viability, tumour growth, and responses to therapeutic agents in melanoma cells and an animal model. Molecular mechanisms contributing to NGLY1 suppression-induced anticancer responses were revealed by systems biology and chemical biology studies. Using computational and medicinal chemistry-assisted approaches, we established novel NGLY1-inhibitory small molecules. RESULTS: Compared with normal cells, NGLY1 was upregulated in melanoma cell lines and patient tumours. NGLY1 knockdown caused melanoma cell death and tumour growth retardation. Targeting NGLY1 induced pleiotropic responses, predominantly stress signalling-associated apoptosis and cytokine surges, which synergise with the anti-melanoma activity of chemotherapy and targeted therapy agents. Pharmacological and molecular biology tools that inactivate NGLY1 elicited highly similar responses in melanoma cells. Unlike normal cells, melanoma cells presented distinct responses and high vulnerability to NGLY1 suppression. CONCLUSION: Our work demonstrated the significance of NGLY1 in melanoma cells, provided mechanistic insights into how NGLY1 inactivation leads to eradication of melanoma with limited impact on normal cells, and suggested that targeting NGLY1 represents a novel anti-melanoma strategy.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis , Interferon-gamma/physiology , Melanoma/drug therapy , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/antagonists & inhibitors , Activating Transcription Factor 4/physiology , Animals , Cells, Cultured , Cytokines/analysis , Gene Expression Profiling , Humans , Interferon-gamma/genetics , Melanoma/pathology , Mice , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/physiology , Pluripotent Stem Cells/physiology , Proteasome Endopeptidase Complex/physiology , Signal Transduction/physiology , Transcription Factor CHOP/physiology
4.
Am J Respir Cell Mol Biol ; 57(2): 193-203, 2017 08.
Article in English | MEDLINE | ID: mdl-28363030

ABSTRACT

Ventilator-induced lung injury (VILI) is a severe complication of mechanical ventilation that can lead to acute respiratory distress syndrome. VILI is characterized by damage to the epithelial barrier with subsequent pulmonary edema and profound hypoxia. Available lung-protective ventilator strategies offer only a modest benefit in preventing VILI because they cannot impede alveolar overdistension and concomitant epithelial barrier dysfunction in the inflamed lung regions. There are currently no effective biochemical therapies to mitigate injury to the alveolar epithelium. We hypothesize that alveolar stretch activates the integrated stress response (ISR) pathway and that the chemical inhibition of this pathway mitigates alveolar barrier disruption during stretch and mechanical ventilation. Using our established rat primary type I-like alveolar epithelial cell monolayer stretch model and in vivo rat mechanical ventilation that mimics the alveolar overdistension seen in acute respiratory distress syndrome, we studied epithelial responses to mechanical stress. Our studies revealed that the ISR signaling pathway is a key modulator of epithelial permeability. We show that prolonged epithelial stretch and injurious mechanical ventilation activate the ISR, leading to increased alveolar permeability, cell death, and proinflammatory signaling. Chemical inhibition of protein kinase RNA-like endoplasmic reticulum kinase, an upstream regulator of the pathway, resulted in decreased injury signaling and improved barrier function after prolonged cyclic stretch and injurious mechanical ventilation. Our results provide new evidence that therapeutic targeting of the ISR can mitigate VILI.


Subject(s)
Alveolar Epithelial Cells/pathology , Stress, Physiological/physiology , Ventilator-Induced Lung Injury/physiopathology , Activating Transcription Factor 4/antagonists & inhibitors , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/physiology , Adenine/analogs & derivatives , Adenine/pharmacology , Adenine/therapeutic use , Alveolar Epithelial Cells/metabolism , Animals , Cell Death , Cell Membrane Permeability , Cells, Cultured , Cytokines/metabolism , Drug Evaluation, Preclinical , Enzyme Activation , Gene Expression Regulation , Indoles/pharmacology , Indoles/therapeutic use , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Pulmonary Edema/drug therapy , Pulmonary Edema/etiology , RNA Interference , Rats , Rats, Sprague-Dawley , Signal Transduction , Stress, Mechanical , Transcription Factor CHOP/antagonists & inhibitors , Transcription Factor CHOP/genetics , Transcription Factor CHOP/physiology , Unfolded Protein Response , eIF-2 Kinase/antagonists & inhibitors , eIF-2 Kinase/genetics , eIF-2 Kinase/physiology
5.
Hepatology ; 63(5): 1592-607, 2016 May.
Article in English | MEDLINE | ID: mdl-26892811

ABSTRACT

UNLABELLED: Chronic hepatitis B virus (HBV) infection remains the most common risk factor for hepatocellular carcinoma (HCC). Efficient suppression of HBV viremia and necroinflammation as a result of nucleos(t)ide analogue treatment is able to reduce HCC incidence; nevertheless, hepatocarcinogenesis can occur in the absence of active hepatitis, correlating with high HBV surface antigen (HBsAg) levels. Nuclear factor κB (NF-κB) is a central player in chronic inflammation and HCC development. However, in the absence of severe chronic inflammation, the role of NF-κB signaling in HCC development remains elusive. As a model of hepatocarcinogenesis driven by accumulation of HBV envelope polypeptides, HBsAg transgenic mice, which show no HBV-specific immune response, were crossed to animals with hepatocyte-specific inhibition of canonical NF-κB signaling. We detected prolonged, severe endoplasmic reticulum stress already at 20 weeks of age in NF-κB-deficient hepatocytes of HBsAg-expressing mice. The unfolded protein response regulator binding immunoglobulin protein/78-kDa glucose-regulated protein was down-regulated, activating transcription factor 6, and eIF2α were activated with subsequent overexpression of CCAAT/enhancer binding protein homologous protein. Notably, immune cell infiltrates and liver transaminases were unchanged. However, as a result of this increased cellular stress, insufficient hepatocyte proliferation due to G1 /S-phase cell cycle arrest with overexpression of p27 and emergence of ductular reactions was detected. This culminated in increased DNA damage already at 20 weeks of age and finally led to 100% HCC incidence due to NF-κB inhibition. CONCLUSION: The role of canonical NF-κB signaling in HCC development depends on the mode of liver damage; in the case of HBsAg-driven hepatocarcinogenesis, NF-κB in hepatocytes acts as a critical tumor suppressor by augmenting the endoplasmic reticulum stress response.


Subject(s)
Carcinoma, Hepatocellular/prevention & control , Hepatitis B Surface Antigens/physiology , Hepatocytes/metabolism , Liver Neoplasms/prevention & control , NF-kappa B/physiology , Signal Transduction/physiology , Tumor Suppressor Proteins/physiology , Unfolded Protein Response , Animals , Cell Cycle Checkpoints , Hepatitis B, Chronic/complications , Humans , Liver Regeneration , Mice , Mice, Inbred C57BL , Transcription Factor CHOP/physiology
6.
Br J Neurosurg ; 31(6): 648-652, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28513228

ABSTRACT

BACKGROUND AND AIMS: The signaling protein C/EBP homologous protein (CHOP) and corresponding growth-arrest-and-DNA-damage-inducible gene 153 (GADD153) is associated with endoplasmic reticulum stress (ERS), which can lead to apoptosis. Our study aims to elucidate the role of CHOP/GADD153 in unstable atherosclerotic (AS) plaque formation isolated from confounding factors such as diabetes mellitus, primary hyperlipidemia, autoimmune deficiencies/abnormalities, essential hypertension, chronic heart failure, chronic kidney disease, and smoking. MATERIAL AND METHODS: We collected carotid artery tissue samples from patients aged 50-80 years-old who received carotid endarterectomies (CEA) at our institution. We obtained fresh AS plaque samples during CEA and preserved the specimens immediately in the operating room with liquid nitrogen. Samples were categorized as stable or unstable AS plaques according to a six-stage histologic classification. CHOP/GADD153 expression was then examined with immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). RESULTS: A total of 32 patients met our inclusion and exclusion criteria, with 24 (75.0%) classified as unstable lesions. The mean optical density ratio normalized to GAPDH for CHOP/GADD153 in stable and unstable groups was 0.357 ± 0.025 and 0.490 ± 0.027, respectively (p < .05). Positive immunostaining of CHOP/GADD153 was found in macrophages and smooth muscle cells of unstable AS plaques with a mean integrated optical density of 0.63 ± 0.03, compared to 0.17 ± 0.05 in the stable group (p < .05). CONCLUSIONS: In conclusion, we were able to show significant elevation of CHOP/GADD153 in unstable plaques independent of other confounding factors that induce ERS.


Subject(s)
Carotid Artery Diseases/etiology , Endoplasmic Reticulum Stress/physiology , Plaque, Atherosclerotic/etiology , Transcription Factor CHOP/metabolism , Aged , Aged, 80 and over , Apoptosis/physiology , Cells, Cultured , Endarterectomy, Carotid , Female , Humans , Male , Middle Aged , RNA, Messenger/metabolism , Transcription Factor CHOP/physiology
7.
Sheng Li Xue Bao ; 69(6): 767-774, 2017 Dec 25.
Article in Zh | MEDLINE | ID: mdl-29270592

ABSTRACT

The purpose of this study was to investigate whether activating transcription factor 6 (ATF6), a sensor to endoplasmic reticulum stress (ERS), would mediate advanced glycated albumin (AGE-alb)-induced macrophage apoptosis and to elucidate the possible molecular mechanisms. RAW264.7 macrophages were cultured in vitro and treated with AGE-alb (2, 4 and 6 g/L), normal control albumin or tunicamycin (TM, 4 mg/L) for 24 h. ATF6 small interfering RNA (siRNA) was transfected to RAW264.7 cells by Lipofectamine 2000. Cell viability and apoptosis were determined by MTT method and Annexin V-FITC/propidium iodide apoptosis detection kit, respectively. The activities of lactate dehydrogenase (LDH) in medium and caspase-3 in cells were measured by corresponding detection kits. ATF6 nuclear translocation was detected by Western blot and immunofluorescence cytochemistry. Protein and mRNA levels of C/EBP homologous protein (CHOP, a key-signaling component of ERS-induced apoptosis) were detected by Western blot and real-time fluorescence quantitative PCR, respectively. The results showed that similar to TM, AGE-alb increased the expression of CHOP at both the protein and mRNA levels in a concentration dependent manner. ATF6, as a factor that positively regulates CHOP expression, was activated by AGE-alb in a concentration dependent manner. siRNA-mediated knockdown of ATF6 significantly inhibited AGE-alb-induced macrophage injury, as indicated by the increased cell viability and the decreased LDH release, apoptosis and caspase-3 activation. Additionally, ATF6 siRNA attenuated AGE-alb-induced CHOP upregulation at both the protein and mRNA levels. These results suggest that ATF6 and its downstream molecule CHOP are involved in AGE-alb-induced macrophage apoptosis.


Subject(s)
Activating Transcription Factor 6/physiology , Apoptosis/drug effects , Macrophages/drug effects , Serum Albumin/pharmacology , Transcription Factor CHOP/physiology , Animals , Cells, Cultured , Endoplasmic Reticulum Stress/drug effects , Glycation End Products, Advanced , Macrophages/physiology , Mice , Signal Transduction/physiology , Glycated Serum Albumin
8.
Acta Pol Pharm ; 74(1): 277-287, 2017 Jan.
Article in English | MEDLINE | ID: mdl-29474782

ABSTRACT

Nicotine, the principal alkaloid in tobacco, induces a cellular damage on heart and cardiomyocyte culture. We investigate the protective role of green tea extract (GTE) against nicotine. Male albino rats were treated by injecting nicotine (1 mg/kg b.w. for 2 months) subcutaneously and thereby supplementing GTE 2% orally to them. The levels of plasma lipids, cardiac MDA (malondialdehyde) and catalase activity Mitogen-activated proteins kinases MAPKs were measured. The expression levels of (ERK 1/2, extracellular signal - regulated kinase 1/2 and P38 MAP kinase), endoplasmic reticulum stress (ERS)-related protein (GRP78 glucose regulated protein-78, HSP70 heat shock protein-70, CHOP C/EBP homologous protein), AIF (apoptosis-inducing factor) and VDAC (voltage-dependant anion channel) were evaluated by Western blot. In the in vitro study, the cardiomyocytes were exposed to nicotine (10 µM) and major GTE polyphenol epigallocatechin gallate EGCG (50 µM). Data showed that nicotine induced a significant increase on MDA levels, LDH (lactate dehy- drogenase) and aminotransferase activity compared with control. The heart sections of nicotine exposed-rats showed severe degenerative changes. Nicotine increased the expression of P38, but not ERK 1/2, ER stress-related proteins and AIF with no changes of VDAC. Concomitant GTE treatment significantly normalized and/or improved,the levels of MDA, enzymatic activity and histological injuries. The proteins expression was attenuated by GTE co-administration without any changes for VDAC. ERK 1/2 expression enhanced in GTE- treated groups. Exposure of cardiac cells to nicotine induced the expression of ERS markers and p38; the ERK 1/2 was highly expressed only in the presence of EGCG. It was suggested that green tea beverage can protect against nicotine toxicity by attenuating oxidative stress, endoplasmic reticulum stress and apoptosis. Otherwise, our results have showed that ERK1/2 and p38 are survival signaling pathways activated by GTE and EGCG.


Subject(s)
Cardiotoxicity/drug therapy , Catechin/analogs & derivatives , Nicotine/toxicity , Plant Extracts/pharmacology , Tea , Animals , Catechin/pharmacology , Endoplasmic Reticulum Stress/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Lipid Peroxidation/drug effects , Male , Oxidative Stress/drug effects , Rats , Transcription Factor CHOP/physiology
9.
J Contemp Dent Pract ; 17(7): 513-4, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27595714

ABSTRACT

The endoplasmic reticulum (ER) is an organelle, which performs several cellular functions and is thus an important site for maintaining cellular homeostasis. Sometimes pathways within the ER are disturbed, especially those regulating the protein folding, gene expression, cellular metabolism, and calcium signaling, and is called an "ER stress."(1) The accumulation of unfolded, misfolded, or damaged proteins can irreparably damage cellular functions and can pose a severe threat to the existence of the cell. Under such circumstances, ER functions become overwhelmed triggering the homeostatic "ER stress response" or "unfolded protein response" (UPR).(2).


Subject(s)
Endoplasmic Reticulum Stress/physiology , Mouth Neoplasms/metabolism , Mouth Neoplasms/physiopathology , Animals , Apoptosis/physiology , Calcium Signaling/physiology , Cell Proliferation/physiology , Cell Survival/physiology , Gene Expression/physiology , Humans , Protein Folding , Receptors, G-Protein-Coupled/physiology , Transcription Factor CHOP/physiology
10.
Zhongguo Dang Dai Er Ke Za Zhi ; 18(9): 867-873, 2016 Sep.
Article in Zh | MEDLINE | ID: mdl-27655546

ABSTRACT

OBJECTIVE: To study the association between endoplasmic reticulum stress (ERS) pathway mediated by inositol-requiring kinase 1 (IRE1) and the apoptosis of type II alveolar epithelial cells (AECIIs) exposed to hyperoxia. METHODS: The primarily cultured AECIIs from preterm rats were devided into an air group and a hyperoxia group. The model of hyperoxia-induced cell injury was established. The cells were harvested at 24, 48, and 72 hours after hyperoxia exposure. An inverted phase-contrast microscope was used to observe morphological changes of the cells. Annexin V/PI double staining flow cytometry was performed to measure cell apoptosis. RT-PCR and Western blot were used to measure the mRNA and protein expression of glucose-regulated protein 78 (GRP78), IRE1, X-box binding protein-1 (XBP-1), and C/EBP homologous protein (CHOP). An immunofluorescence assay was performed to measure the expression of CHOP. RESULTS: Over the time of hyperoxia exposure, the hyperoxia group showed irregular spreading and vacuolization of AECIIs. Compared with the air group, the hyperoxia group showed a significantly increased apoptosis rate of AECIIs and significantly increased mRNA and protein expression of GRP78, IRE1, XBP1, and CHOP compared at all time points (P<0.05). The hyperoxia group had significantly greater fluorescence intensity of CHOP than the air group at all time points. In the hyperoxia group, the protein expression of CHOP was positively correlated with the apoptosis rate of AECIIs and the protein expression of IRE1 and XBP1 (r=0.97, 0.85, and 0.88 respectively; P<0.05). CONCLUSIONS: Hyperoxia induces apoptosis of AECIIs possibly through activating the IRE1-XBP1-CHOP pathway.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress/physiology , Endoribonucleases/physiology , Hyperoxia/pathology , Multienzyme Complexes/physiology , Protein Serine-Threonine Kinases/physiology , Pulmonary Alveoli/pathology , Animals , Cells, Cultured , Epithelial Cells/physiology , Female , Hyperoxia/metabolism , Rats , Rats, Sprague-Dawley , Transcription Factor CHOP/physiology , X-Box Binding Protein 1/physiology
11.
J Biol Chem ; 289(34): 23629-40, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25023286

ABSTRACT

Although it is known that the unfolded protein response (UPR) plays a significant role in the process of plasma cell differentiation, the contribution of the individual sensors of the UPR to this process remains unclear. In this study we examine the death signals and compensatory survival signals activated during B cell activation and the first stages of plasma cell differentiation. During in vitro differentiation of both primary murine B cells and the Bcl1 cell line, we demonstrate that in addition to activation of the physiological UPR, changes in the expression of several Bcl-2 proteins occur, which are consistent with a lowering of the apoptotic threshold of the cell. Specifically, we observed decreased expression of Bcl-2 and Mcl-1 and increased expression of the proapoptotic protein Bim. However, these changes were countered by Bcl-xL induction, which is necessary to protect differentiating cells both from ER stress-induced death by tunicamycin and from the death signals inherent in differentiation. Consistent with differentiating cells becoming dependent on Bcl-xL for survival, the addition of ABT-737 resulted in apoptosis in differentiating cells through the inhibition of sequestration of Bim. Confirming this result, differentiation in the context of RNAi-mediated Bcl-xL knockdown also induced apoptosis. This cell death is C/EBP homologous protein (CHOP)-dependent, connecting these events to the UPR. Thus plasma cell differentiation proceeds through a Bcl-xL-dependent intermediate.


Subject(s)
Apoptosis/physiology , Cell Differentiation/physiology , Plasma Cells/cytology , Transcription Factor CHOP/physiology , bcl-X Protein/physiology , Animals , Base Sequence , Biphenyl Compounds/pharmacology , Cell Differentiation/drug effects , Cell Line , DNA Primers , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Gene Silencing , Interleukin-5/pharmacology , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Nitrophenols/pharmacology , Piperazines/pharmacology , Sulfonamides/pharmacology , Unfolded Protein Response , bcl-X Protein/genetics
12.
Biochim Biophys Acta ; 1840(6): 1808-16, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24530428

ABSTRACT

BACKGROUND: Chalcogen-based redox modulators over the years have attracted considerable attention as anti-cancer agents. New selenium- and tellurium-containing compounds with a polar head group and aryl-groups of various lengths have recently been reported as biologically active in several organisms. In the present study, we used the most active of the tellurium compound DP41, and its selenium counterpart DP31 to investigate their effects on the human cancer cell line HCT116. METHODS: Cells were treated with DP41 or DP31 and the formation of superoxide radicals was determined using dihydroethidium. Cell cycle analysis and apoptosis was determined by cytofluorimetry. Proteins involved in ER signaling and apoptosis were determined by Western blot analysis and fluorescence microscopy. RESULTS: With 50µM of DP41, we observed an increase in O2(-) formation. There was, however, no such increase in O2(-) after treatment with the corresponding selenium compound under the same conditions. In the case of DP41, the production of O2(-) radicals was followed by an up-regulation of Nrf2, HO-1, phospho-eIF2α and ATF4. CHOP was also induced and cells entered apoptosis. Unlike the cancer cells, normal retinal epithelial ARPE-19 cells did not produce elevated levels of O2(-) radicals nor did they induce the ER signaling pathway or apoptosis. CONCLUSIONS: The tellurium-containing compound DP41, in contrast to the corresponding selenium compound, induces O2(-) radical formation and oxidative and ER stress responses, including CHOP activation and finally apoptosis. GENERAL SIGNIFICANCE: These results indicate that DP41 is a redox modulating agent with promising anti-cancer potentials.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Tellurium/pharmacology , Cell Cycle Checkpoints/drug effects , Endoplasmic Reticulum Stress , HCT116 Cells , Heme Oxygenase-1/metabolism , Humans , NF-E2-Related Factor 2/metabolism , Superoxides/metabolism , Transcription Factor CHOP/analysis , Transcription Factor CHOP/physiology
13.
Inflamm Res ; 64(1): 1-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25286903

ABSTRACT

OBJECTIVE: The objective of the review is to examine the crossroads of autophagy, inflammation, and apoptosis signaling pathways and their participation in liver fibrosis. INTRODUCTION: Endoplasmic reticulum (ER) stress was emerged as a common feature relevant to the pathogenesis of diseases associated with organ fibrosis. However, the functional consequences of these alterations on ER stress and the possible involvement in liver fibrosis were currently largely unexplored. Here, we will survey the recent literature in the field and discuss recent insights focusing on some cellular models expressing mutant proteins involved in liver fibrosis. METHODS: A computer-based online search with PubMed, Scopus and Web of Science databases was performed for articles published, concerning ER stress, adaptation, inflammation and apoptosis with relevance to liver fibrosis. RESULTS AND CONCLUSIONS: Progression of liver fibrosis requires sustained inflammation leading to hepatocytes apoptosis through ER stress, whereas associated with activation of hepatic stellate cells (HSCs) into a fibrogenic and proliferative cell type. Faced with persistent and massive ER stress, HSCs adaptation starts to fail and apoptosis occurs in reversal of liver fibrosis, possibly mediated through calcium perturbations, unfolded protein response, and the pro-apoptotic transcription factor CHOP. Although limited in scope, current studies underscored that ER stress is tightly linked to adaptation, inflammation and apoptosis, and recent evidences suggested that these processes are related to the pathogenesis of liver fibrosis and its recovery.


Subject(s)
Apoptosis/physiology , Autophagy/physiology , Endoplasmic Reticulum Stress/physiology , Inflammation/physiopathology , Liver Cirrhosis/physiopathology , Signal Transduction/physiology , Animals , Calcium Signaling/physiology , Disease Progression , Hepatic Stellate Cells/pathology , Hepatic Stellate Cells/physiology , Hepatocytes/pathology , Hepatocytes/physiology , Humans , Inflammation/pathology , Transcription Factor CHOP/physiology , Unfolded Protein Response/physiology
14.
J Surg Res ; 195(2): 588-95, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25772147

ABSTRACT

BACKGROUND: Endoplasmic reticulum (ER) stress and autophagy each play important roles in hepatocyte cell injury. We hypothesized that gene expression of C/EBP-homologous protein (CHOP) and the BH3 proteins Bcl2-interacting mediator of cell death (BIM) and BH3-interacting domain death agonist (BID) are involved in a complex interplay that regulates ER stress-induced autophagy and cell death. MATERIALS AND METHODS: Hepatocytes were cultured from lean Zucker rats. Confluent hepatocytes were incubated with single or combined small interfering RNA for CHOP, BIM, and/or BID for 24 h providing gene inhibition. Incubation with tunicamycin (TM) for another 24 h stimulated ER stress. Quantitative real-time polymerase chain reaction determined the expression levels of CHOP, BIM, and BID. Immunostaining with microtubule-associated protein 1 light chain 3 measured autophagy activity. Trypan blue exclusion determined the cell viability. RESULTS: TM treatment increased the messenger RNA levels of CHOP and BIM but decreased the messenger RNA levels of BID. TM increased autophagy and decreased cell viability. Individual inhibition of CHOP, BIM, or BID protected against autophagy and cell death. However, simultaneous treatment with any combination of CHOP, BIM, and BID small interfering RNAs reduced autophagy activity but increased cell death independent of ER stress induction. CONCLUSIONS: Autophagy in hepatocytes results from acute ER stress and involves interplay, at the gene expression level, of CHOP, BIM, and BID. Inhibition of any one of these individual genes during acute ER stress is protective against cell death. Conversely, inhibition of any two of the three genes results in increased nonautophagic cell death independent of ER stress induction. This study suggests interplay between CHOP, BIM, and BID expression that can be leveraged for protection against ER stress-related cell death. However, disruption of the CHOP/BH3 gene expression homeostasis is detrimental to cell survival independent of other cellular stress.


Subject(s)
Apoptosis Regulatory Proteins/physiology , Autophagy/physiology , BH3 Interacting Domain Death Agonist Protein/physiology , Hepatocytes/physiology , Membrane Proteins/physiology , Proto-Oncogene Proteins/physiology , Transcription Factor CHOP/physiology , Animals , Apoptosis Regulatory Proteins/genetics , BH3 Interacting Domain Death Agonist Protein/genetics , Bcl-2-Like Protein 11 , Cells, Cultured , Endoplasmic Reticulum Stress , Gene Expression Regulation , Male , Membrane Proteins/genetics , Proto-Oncogene Proteins/genetics , RNA, Small Interfering/genetics , Rats , Rats, Zucker , Transcription Factor CHOP/genetics
15.
Osteoarthritis Cartilage ; 22(7): 1007-17, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24795271

ABSTRACT

OBJECTIVE: When endoplasmic reticulum (ER) stress, i.e., the excessive accumulation of unfolded proteins in ER, endangers homeostasis, apoptosis is induced by C/EBP homologous protein (Chop). In osteoarthritis (OA) cartilage, Chop expression and apoptosis increase as degeneration progresses. We investigated the role of Chop in murine chondrocyte apoptosis and in the progression of cartilage degeneration. METHOD: We induced experimental OA in Chop-knockout (Chop(-/-)) mice by medial collateral ligament transection and meniscectomy and compared cartilage degeneration, apoptosis, and ER stress in Chop(-/-)- and wild-type (Chop(+/+)) mice. In our in vitro experiments we treated murine Chop(-/-) chondrocytes with the ER stress inducer tunicamycin (TM) and evaluated apoptosis, ER stress, and chondrocyte function. RESULTS: In vivo, the degree of ER stress was similar in Chop(-/-)- and Chop(+/+) mice. However, in Chop(-/-) mice apoptosis and cartilage degeneration were lower by 26.4% and 42.4% at 4 weeks, by 26.8% and 44.9% at 8 weeks, and by 26.9% and 32.3% at 12 weeks after surgery than Chop(+/+) mice, respectively. In vitro, the degree of ER stress induction by TM was similar in Chop(-/-)- and Chop(+/+) chondrocytes. On the other hand, apoptosis was 55.3% lower and the suppression of collagen type II and aggrecan mRNA was 21.0% and 23.3% less, and the increase of matrix metalloproteinase-13 mRNA was 20.0% less in Chop(-/-)- than Chop(+/+) chondrocytes. CONCLUSION: Our results indicate that Chop plays a direct role in chondrocyte apoptosis and that Chop-mediated apoptosis contributes to the progression of cartilage degeneration in mice.


Subject(s)
Apoptosis/physiology , Cartilage Diseases/pathology , Cartilage Diseases/physiopathology , Cartilage, Articular/pathology , Chondrocytes/pathology , Endoplasmic Reticulum Stress/physiology , Transcription Factor CHOP/physiology , Aggrecans/metabolism , Animals , Cartilage, Articular/physiopathology , Cells, Cultured , Chondrocytes/drug effects , Chondrocytes/metabolism , Collagen Type II/metabolism , Disease Models, Animal , Disease Progression , Endoplasmic Reticulum Stress/drug effects , Homeostasis/physiology , In Vitro Techniques , Matrix Metalloproteinase 13/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcription Factor CHOP/deficiency , Transcription Factor CHOP/genetics , Tunicamycin/pharmacology
16.
J Pathol ; 231(4): 532-42, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23749468

ABSTRACT

The liver is the central regulator of iron metabolism and accordingly, chronic liver diseases often lead to systemic iron overload due to diminished expression of the iron-regulatory hormone hepcidin. To study the largely unknown regulation of iron metabolism in the context of hepatic disease, we used two established models of chronic liver injury, ie repeated carbon tetrachloride (CCl(4)) or thioacetamide (TAA) injections. To determine the impact of CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CHOP) on hepcidin production, the effect of a single TAA injection was determined in wild-type and CHOP knockout mice. Furthermore, CHOP and hepcidin expression was assessed in control subjects and patients with alcoholic liver disease. Both chronic injury models developed a distinct iron overload in macrophages. TAA-, but not CCl(4) - injected mice displayed additional iron accumulation in hepatocytes, resulting in a significant hepatic and systemic iron overload which was due to suppressed hepcidin levels. C/EBPα signalling, a known hepcidin inducer, was markedly inhibited in TAA mice, due to lower C/EBPα levels and overexpression of CHOP, a C/EBPα inhibitor. A single TAA injection resulted in a long-lasting (> 6 days) suppression of hepcidin levels and CHOP knockouts (compared to wild-types) displayed significantly attenuated hepcidin down-regulation in response to acute TAA administration. CHOP mRNA levels increased 5-fold in alcoholic liver disease patients versus controls (p < 0.005) and negatively correlated with hepcidin expression. Our results establish CHOP as an important regulator of hepatic hepcidin expression in chronic liver disease. The differences in iron metabolism between the two widely used fibrosis models likely reflect the differential regulation of hepcidin expression in human liver disease.


Subject(s)
Hepcidins/biosynthesis , Iron Overload/etiology , Liver Cirrhosis, Experimental/complications , Liver Diseases, Alcoholic/complications , Transcription Factor CHOP/physiology , Animals , CCAAT-Enhancer-Binding Protein-alpha/biosynthesis , CCAAT-Enhancer-Binding Protein-alpha/genetics , Carbon Tetrachloride , Female , Gene Expression Regulation/drug effects , Gene Knockout Techniques , Hepcidins/genetics , Humans , Iron/metabolism , Iron Overload/metabolism , Liver/metabolism , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/metabolism , Liver Diseases, Alcoholic/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/genetics , Signal Transduction/drug effects , Thioacetamide , Transcription Factor CHOP/biosynthesis , Transcription Factor CHOP/deficiency , Transcription Factor CHOP/genetics
17.
Brain ; 136(Pt 2): 577-92, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23361066

ABSTRACT

Hippocampal sclerosis is a frequent pathological finding in patients with temporal lobe epilepsy and can be caused by prolonged single or repeated brief seizures. Both DNA damage and endoplasmic reticulum stress have been implicated as underlying molecular mechanisms in seizure-induced brain injury. The CCAAT/enhancer-binding protein homologous protein (CHOP) is a transcriptional regulator induced downstream of DNA damage and endoplasmic reticulum stress, which can promote or inhibit apoptosis according to context. Recent work has proposed inhibition of CHOP as a suitable neuroprotective strategy. Here, we show that transcript and protein levels of CHOP increase in surviving subfields of the hippocampus after prolonged seizures (status epilepticus) in mouse models. CHOP was also elevated in the hippocampus from epileptic mice and patients with pharmacoresistant epilepsy. The hippocampus of CHOP-deficient mice was much more vulnerable to damage in mouse models of status epilepticus. Moreover, compared with wild-type animals, CHOP-deficient mice subject to status epilepticus developed more spontaneous seizures, displayed protracted hippocampal neurodegeneration and a deficit in a hippocampus-dependent object-place recognition task. The absence of CHOP was associated with a supra-maximal induction of p53 after status epilepticus, and inhibition of p53 abolished the cell death-promoting consequences of CHOP deficiency. The protective effect of CHOP could be partly explained by activating transcription of murine double minute 2 that targets p53 for degradation. These data demonstrate that CHOP is required for neuronal survival after seizures and caution against inhibition of CHOP as a neuroprotective strategy where excitotoxicity is an underlying pathomechanism.


Subject(s)
Neurons/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Seizures/metabolism , Transcription Factor CHOP/physiology , Tumor Suppressor Protein p53/metabolism , Animals , Cell Survival/physiology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/pathology , Proto-Oncogene Proteins c-mdm2/physiology , Seizures/genetics , Seizures/pathology , Tumor Suppressor Protein p53/physiology
18.
Acta Biochim Biophys Sin (Shanghai) ; 46(8): 629-40, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25016584

ABSTRACT

Endoplasmic reticulum stress (ER stress) is triggered due to a loss of homeostasis in the ER, resulting in accumulation of misfolded proteins in the ER lumen. ER stress activates a series of adaptive mechanisms known as the unfolded protein response. Perturbation of the ER is a powerful inducer of the transcription factor C/EBP homologous protein (CHOP). Although it has been proved that excessive or adverse stress to the ER triggers apoptosis, the specific mechanisms underlying these processes induced by CHOP remain unclear. By now, CHOP-induced apoptosis in ER stress has been implicated in numerous human diseases, such as neurodegenerative diseases, diabetes, ischemic diseases, tumor, and so on. In this review, we summarized the current understanding of the roles of CHOP in the development of several diseases from the laboratory to the clinic.


Subject(s)
Apoptosis/physiology , Endoplasmic Reticulum/metabolism , Stress, Physiological , Transcription Factor CHOP/physiology , Gene Expression Profiling , Humans , Transcription Factor CHOP/genetics , Transcription, Genetic
19.
Am J Pathol ; 180(2): 727-37, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22154935

ABSTRACT

Cartilage oligomeric matrix protein (COMP), a secreted glycoprotein synthesized by chondrocytes, regulates proliferation and type II collagen assembly. Mutations in the COMP gene cause pseudoachondroplasia and multiple epiphyseal dysplasia. Previously, we have shown that expression of D469del-COMP in transgenic mice causes intracellular retention of D469del-COMP, thereby recapitulating pseudoachondroplasia chondrocyte pathology. This inducible transgenic D469del-COMP mouse is the only in vivo model to replicate the critical cellular and clinical features of pseudoachondroplasia. Here, we report developmental studies of D469del-COMP-induced chondrocyte pathology from the prenatal period to adolescence. D469del-COMP retention was limited prenatally and did not negatively affect the growth plate until 3 weeks after birth. Results of immunostaining, transcriptome analysis, and qRT-PCR suggest a molecular model in which D469del-COMP triggers apoptosis during the first postnatal week. By 3 weeks (when most chondrocytes are retaining D469del-COMP), inflammation, oxidative stress, and DNA damage contribute to chondrocyte cell death by necroptosis. Importantly, by crossing the D469del-COMP mouse onto a Chop null background (Ddit3 null), thereby eliminating Chop, the unfolded protein response was disrupted, thus alleviating both D469del-COMP intracellular retention and premature chondrocyte cell death. Chop therefore plays a significant role in processes that mediate D469del-COMP retention. Taken together, these results suggest that there may be an optimal window before the induction of significant D469del-COMP retention during which endoplasmic reticulum stress could be targeted.


Subject(s)
Achondroplasia/physiopathology , Chondrocytes/metabolism , Extracellular Matrix Proteins/metabolism , Glycoproteins/metabolism , Growth Plate/pathology , Transcription Factor CHOP/physiology , Achondroplasia/embryology , Animals , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Bone Development/physiology , Cartilage, Articular/embryology , Cartilage, Articular/growth & development , Cartilage, Articular/metabolism , Growth Plate/embryology , Growth Plate/growth & development , Hindlimb/embryology , Hindlimb/growth & development , Hindlimb/metabolism , Matrilin Proteins , Mice , Mice, Inbred C57BL , Mice, Transgenic , Tibia/embryology , Tibia/growth & development , Tibia/metabolism , Up-Regulation
20.
Biochim Biophys Acta ; 1813(10): 1803-13, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21741997

ABSTRACT

Breast cancer is a leading cause of morbidity in women worldwide. neutrophil gelatinase-associated lipocalin (NGAL), a useful biomarker of ER negative (ER(-)) breast cancer, promotes local tumor invasion and lymph node metastasis. We first identified the distinctive expression of NGAL in two breast cancer cell lines MCF7 and MDA-MB-231 cells, and then confirmed NGAL as a critical inducer of metastasis. Finally, the transcriptional factor CCAAT enhancer-binding proteins ζ (C/EBP ζ) was overexpressed in MDA-MB-231 cells. Consistent with the effect of NGAL knockdown, C/EBP ζ overexpression caused the significant changes that could prevent cell metastasis. C/EBP ζ overexpression induced a strong decrease in NGAL and matrix metalloproteinases (MMPs) expressions as determined by quantitative real time PCR and Western blotting. To identify the potential role of C/EBP ζ on regulating of NGAL in breast cancer, we established the dual-luciferase reporter assay for NGAL in MDA-MB-231 cells cotransfected with C/EBP ζ. Promoter reporter assays determined that C/EBP ζ directly repressed the human NGAL gene promoter activity by inhibiting the NGAL transcription. Taken together, this work identified that the C/EBP ζ overexpression downregulated NGAL to inhibit migration and invasion of breast cancer, which could be used as a novel strategy for breast cancer therapy.


Subject(s)
Acute-Phase Proteins/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma/genetics , Carcinoma/pathology , Lipocalins/genetics , Proto-Oncogene Proteins/genetics , Transcription Factor CHOP/physiology , Acute-Phase Proteins/metabolism , Breast Neoplasms/metabolism , Carcinoma/metabolism , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , HeLa Cells , Humans , Jurkat Cells , K562 Cells , Lipocalin-2 , Lipocalins/metabolism , Neoplasm Metastasis , Proto-Oncogene Proteins/metabolism , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , Transfection , Tumor Cells, Cultured , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL