Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Int J Mol Sci ; 24(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37108234

ABSTRACT

Therapeutic oligonucleotides are powerful tools for the inhibition of potential targets involved in cancer. We describe the effect of two Polypurine Reverse Hoogsteen (PPRH) hairpins directed against the ERBB2 gene, which is overexpressed in positive HER-2 breast tumors. The inhibition of their target was analyzed by cell viability and at the mRNA and protein levels. The combination of these specific PPRHs with trastuzumab was also explored in breast cancer cell lines, both in vitro and in vivo. PPRHs designed against two intronic sequences of the ERBB2 gene decreased the viability of SKBR-3 and MDA-MB-453 breast cancer cells. The decrease in cell viability was associated with a reduction in ERBB2 mRNA and protein levels. In combination with trastuzumab, PPRHs showed a synergic effect in vitro and reduced tumor growth in vivo. These results represent the preclinical proof of concept of PPRHs as a therapeutic tool for breast cancer.


Subject(s)
Breast Neoplasms , Genes, erbB-2 , Humans , Female , Trastuzumab/pharmacology , Trastuzumab/genetics , Oncogenes , MCF-7 Cells , RNA, Messenger/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Receptor, ErbB-2/genetics
2.
Int J Mol Sci ; 22(7)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805556

ABSTRACT

Biological therapies, such as recombinant proteins, are nowadays amongst the most promising approaches towards precision medicine. One of the most innovative methodologies currently available aimed at improving the production yield of recombinant proteins with minimization of costs relies on the combination of in silico studies to predict and deepen the understanding of the modified proteins with an experimental approach. The work described herein aims at the design and production of a biomimetic vector containing the single-chain variable domain fragment (scFv) of an anti-HER2 antibody fragment as a targeting motif fused with HIV gp41. Molecular modeling and docking studies were performed to develop the recombinant protein sequence. Subsequently, the DNA plasmid was produced and HEK-293T cells were transfected to evaluate the designed vector. The obtained results demonstrated that the plasmid construction is robust and can be expressed in the selected cell line. The multidisciplinary integrated in silico and experimental strategy adopted for the construction of a recombinant protein which can be used in HER2+-targeted therapy paves the way towards the production of other therapeutic proteins in a more cost-effective way.


Subject(s)
Protein Engineering/methods , Recombinant Proteins/genetics , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Computer Simulation , Genetic Vectors , HEK293 Cells , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , Humans , Molecular Docking Simulation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Trastuzumab/genetics
3.
J Mol Recognit ; 33(2): e2818, 2020 02.
Article in English | MEDLINE | ID: mdl-31693267

ABSTRACT

The aim of the present study was to develop a linear regression model aiding to a quick scan of the most important sites for mutation of an anticancer biologic trastuzumab. The important sites identified on trastuzumab can be used to carry out site-directed mutagenesis to improve the binding affinity of the drug towards its antigen, human epidermal growth factor receptor 2 (HER2). This will lead to low dosage requirement of the drug for treating cancer patients, which in turn help to cut the cost and combat development of resistance. A quantitative structure-activity relationship (QSAR) model was built by multiple linear regressions using genetic algorithm-based feature selection (GA-MLR) method using 48 dependent variables (dissociation constant Kd ) and 226 independent variables (theoretical descriptors generated using a proteometrics approach). The final QSAR model selected in the study was more on the basis of ability to predict accurately independent test data and generalization ability of the model rather than mere statistical significance of the model. With combined analysis of descriptors presented in final QSAR model and most frequent descriptors pooled from all solution models, it was demonstrated that the modeling procedure was able to bring on the factors important for antigen-antibody interactions with an example of HER2-trastuzumab interaction reported in previous experimental studies. This paper will allow the prediction of the most preferable site to mutate for improving the binding affinity of trastuzumab with HER2 and also will be helpful in selecting most preferable amino acids to substitute in the selected site for mutations. This is the novel report on proteometrics approach with autocorrelation formalism for antibody engineering, which can be extended to other antibody-antigen pairs.


Subject(s)
Biosensing Techniques , Neoplasms/genetics , Receptor, ErbB-2/isolation & purification , Trastuzumab/genetics , Binding Sites/genetics , Humans , Mutation/genetics , Neoplasms/pathology , Protein Binding/genetics , Protein Binding/immunology , Proteomics/methods , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics , Receptor, ErbB-2/immunology , Trastuzumab/immunology , Trastuzumab/pharmacology
4.
Mol Ther ; 27(8): 1415-1423, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31160223

ABSTRACT

Antibody-based drugs are a leading class of biologics used to treat a variety of diseases, including cancer. However, wide antibody implementation is hindered by manufacturing challenges and high production cost. Use of in-vitro-transcribed mRNA (IVT-mRNA) for endogenous protein expression has the potential to circumvent many of the shortcomings of antibody production and therapeutic application. Here, we describe the development of an IVT-mRNA system for in vivo delivery of a humanized anti-HER2 (also known as ERBB2) antibody, trastuzumab, and demonstrate its anticancer activity. We engineered the IVT-mRNA sequence to maximize expression, then formulated the IVT-mRNA into lipid-based nanoparticles (LNPs) to protect the mRNA from degradation and enable efficient in vivo delivery. Systemic delivery of the optimized IVT-mRNA loaded into LNPs resulted in antibody serum concentrations of 45 ± 8.6 µg/mL for 14 days after LNP injection. Further studies demonstrated an improved pharmacokinetic profile of the produced protein compared to injection of trastuzumab protein. Finally, treatment of tumor-bearing mice with trastuzumab IVT-mRNA LNPs selectively reduced the volume of HER2-positive tumors and improved animal survival. Taken together, the results of our study demonstrate that using IVT-mRNA LNPs to express full-size therapeutic antibodies in the liver can provide an effective strategy for cancer treatment and offers an alternative to protein administration.


Subject(s)
Antibodies, Monoclonal/genetics , Gene Expression , Gene Transfer Techniques , RNA, Messenger/genetics , Receptor, ErbB-2/antagonists & inhibitors , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Disease Models, Animal , Drug Delivery Systems , Genetic Therapy , Humans , Lipids , Mice , Molecular Targeted Therapy , Nanoparticles , RNA, Messenger/administration & dosage , RNA, Messenger/chemistry , Trastuzumab/administration & dosage , Trastuzumab/genetics , Trastuzumab/pharmacokinetics , Xenograft Model Antitumor Assays
5.
Bioorg Med Chem Lett ; 29(7): 943-947, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30655215

ABSTRACT

Novel neolymphostin-based antibody-drug conjugate (ADC) precursors were synthesized either through amide couplings between both cleavable and non-cleavable linkers and neolymphostin derivatives, or through Cu(I)-catalyzed acetylene-azide click cycloadditon between non-cleavable linkers and neolymphostin acetal derivatives. These precursors were site-specifically conjugated to cysteine mutant trastuzumab-A114C to provide neolymphostin-based ADCs. Preliminary in vitro data indicated that the corresponding ADCs were active against HER2-expressing tumor cell lines, thus providing a proof-of-concept for using neolymphostin as ADC-based anticancer agents.


Subject(s)
Aminoquinolines/pharmacology , Antineoplastic Agents/pharmacology , Immunoconjugates/pharmacology , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Pyrroles/pharmacology , Trastuzumab/pharmacology , Aminoquinolines/chemical synthesis , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Mutation , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Proof of Concept Study , Pyrroles/chemical synthesis , Trastuzumab/genetics
6.
Prep Biochem Biotechnol ; 49(8): 759-766, 2019.
Article in English | MEDLINE | ID: mdl-31032734

ABSTRACT

In recent decades, immunotoxins have attracted significant attention in treatment of a wide range of diseases including cancers due to their natural origins and their role in blocking crucial pathways within the cells. Ribosome inactivating proteins (RIPs) are efficient molecules in blocking protein synthesis through interactions with ribosomal rRNA molecules. cDNA molecule encoding HER2 scFv antibody fragment originated from trastuzumab attached to the mature alpha luffin gene fragment was subcloned into pET28a expression vector and expressed in different E. coli expression hosts. Identity of the expressed recombinant protein was investigated through western blotting and the fusion protein was purified using Ni-NTA affinity chromatography. The biological activity (toxicity) of the protein was investigated on DNA and RNA samples. A 58 kDa protein was expressed in E. coli. The best protein expression level was achieved in 0.2 mM IPTG at 30 °C in TB medium using E. coli BL21 (DE3) host strain. The fusion protein showed RNase and DNA glycosylase activity on tested RNA and DNA samples. DNA glycosylase activity of the recombinant fusion protein showed that alpha luffin part of this protein is active in conjugation to the scFv molecule and the expressed protein can be further studied in targeted biological in vitro assays.


Subject(s)
Cloning, Molecular/methods , Escherichia coli/genetics , Immunotoxins/genetics , Ribosome Inactivating Proteins, Type 1/genetics , Single-Chain Antibodies/genetics , Trastuzumab/genetics , Cell Line , Genetic Vectors/genetics , Humans , Immunotoxins/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Ribosome Inactivating Proteins, Type 1/pharmacology , Single-Chain Antibodies/pharmacology , Trastuzumab/pharmacology
7.
Bioconjug Chem ; 29(2): 473-485, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29425028

ABSTRACT

THIOMAB antibody technology utilizes cysteine residues engineered onto an antibody to allow for site-specific conjugation. The technology has enabled the exploration of different attachment sites on the antibody in combination with small molecules, peptides, or proteins to yield antibody conjugates with unique properties. As reported previously ( Shen , B. Q. , et al. ( 2012 ) Nat. Biotechnol. 30 , 184 - 189 ; Pillow , T. H. , et al. ( 2017 ) Chem. Sci. 8 , 366 - 370 ), the specific location of the site of conjugation on an antibody can impact the stability of the linkage to the engineered cysteine for both thio-succinimide and disulfide bonds. High stability of the linkage is usually desired to maximize the delivery of the cargo to the intended target. In the current study, cysteines were individually substituted into every position of the anti-HER2 antibody (trastuzumab), and the stabilities of drug conjugations at those sites were evaluated. We screened a total of 648 THIOMAB antibody-drug conjugates, each generated from a trastuzamab prepared by sequentially mutating non-cysteine amino acids in the light and heavy chains to cysteine. Each THIOMAB antibody variant was conjugated to either maleimidocaproyl-valine-citrulline-p-aminobenzyloxycarbonyl-monomethyl auristatin E (MC-vc-PAB-MMAE) or pyridyl disulfide monomethyl auristatin E (PDS-MMAE) using a high-throughput, on-bead conjugation and purification method. Greater than 50% of the THIOMAB antibody variants were successfully conjugated to both MMAE derivatives with a drug to antibody ratio (DAR) of >0.5 and <50% aggregation. The relative in vitro plasma stabilities for approximately 750 conjugates were assessed using enzyme-linked immunosorbent assays, and stable sites were confirmed with affinity-capture LC/MS-based detection methods. Highly stable conjugation sites for the two types of MMAE derivatives were identified on both the heavy and light chains. Although the stabilities of maleimide conjugates were shown to be greater than those of the disulfide conjugates, many sites were identified that were stable for both. Furthermore, in vitro stabilities of selected stable sites translated across different cytotoxic payloads and different target antibodies as well as to in vivo stability.


Subject(s)
Antineoplastic Agents, Immunological/chemistry , Cysteine/chemistry , Disulfides/chemistry , Immunoconjugates/chemistry , Maleimides/chemistry , Trastuzumab/chemistry , Animals , Antineoplastic Agents, Immunological/blood , Cysteine/blood , Cysteine/genetics , Disulfides/blood , Drug Stability , High-Throughput Screening Assays , Humans , Immunoconjugates/blood , Maleimides/blood , Models, Molecular , Mutagenesis, Site-Directed , Oligopeptides/blood , Oligopeptides/chemistry , Protein Aggregates , Protein Stability , Rats , Trastuzumab/blood , Trastuzumab/genetics
8.
Protein Expr Purif ; 150: 109-118, 2018 10.
Article in English | MEDLINE | ID: mdl-29857036

ABSTRACT

The Brevibacillus expression system has been successfully employed for the efficient productions of a variety of recombinant proteins, including enzymes, cytokines, antigens and antibody fragments. Here, we succeeded in secretory expression of Trastuzumab Fab antibody fragments using B. choshinensis/BIC (Brevibacillus in vivocloning) expression system. In the fed-batch high-density cell culture, recombinant Trastuzumab Fab with amino-terminal His-tag (His-BcFab) was secreted at high level, 1.25 g/liter, and Fab without His-tag (BcFab) at ∼145 mg/L of culture supernatant. His-BcFab and BcFab were purified to homogeneity using combination of conventional column chromatographies with a yield of 10-13%. This BcFab preparation exhibited native structure and functions evaluated by enzyme-linked immunosorbent assay, surface plasmon resonance, circular dichroism measurements and size exclusion chromatography. To our knowledge, this is the highest production of Fab antibody fragments in gram-positive bacterial expression/secretion systems.


Subject(s)
Brevibacillus/metabolism , Gene Expression , Immunoglobulin Fab Fragments , Trastuzumab , Brevibacillus/genetics , Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Trastuzumab/biosynthesis , Trastuzumab/chemistry , Trastuzumab/genetics , Trastuzumab/isolation & purification
9.
Bull Math Biol ; 80(6): 1615-1629, 2018 06.
Article in English | MEDLINE | ID: mdl-29644518

ABSTRACT

Oncolytic virotherapy is an experimental cancer treatment that uses genetically engineered viruses to target and kill cancer cells. One major limitation of this treatment is that virus particles are rapidly cleared by the immune system, preventing them from arriving at the tumour site. To improve virus survival and infectivity Kim et al. (Biomaterials 32(9):2314-2326, 2011) modified virus particles with the polymer polyethylene glycol (PEG) and the monoclonal antibody herceptin. Whilst PEG modification appeared to improve plasma retention and initial infectivity, it also increased the virus particle arrival time. We derive a mathematical model that describes the interaction between tumour cells and an oncolytic virus. We tune our model to represent the experimental data by Kim et al. (2011) and obtain optimised parameters. Our model provides a platform from which predictions may be made about the response of cancer growth to other treatment protocols beyond those in the experiments. Through model simulations, we find that the treatment protocol affects the outcome dramatically. We quantify the effects of dosage strategy as a function of tumour cell replication and tumour carrying capacity on the outcome of oncolytic virotherapy as a treatment. The relative significance of the modification of the virus and the crucial role it plays in optimising treatment efficacy are explored.


Subject(s)
Models, Biological , Neoplasms/therapy , Oncolytic Virotherapy , Oncolytic Viruses/physiology , Adenoviruses, Human/genetics , Adenoviruses, Human/physiology , Animals , Antineoplastic Agents, Immunological/therapeutic use , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cell Line, Tumor , Clinical Protocols , Computer Simulation , Female , Humans , Mathematical Concepts , Mice , Neoplasms/pathology , Oncolytic Virotherapy/statistics & numerical data , Oncolytic Viruses/genetics , Polyethylene Glycols , Trastuzumab/genetics , Trastuzumab/therapeutic use , Xenograft Model Antitumor Assays
10.
Bioconjug Chem ; 28(8): 2099-2108, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28727448

ABSTRACT

The site-specific chemical conjugation of proteins, following synthesis with an expanded genetic code, promises to advance antibody-based technologies, including antibody drug conjugation and the creation of bispecific Fab dimers. The incorporation of non-natural amino acids into antibodies not only guarantees site specificity but also allows the use of bio-orthogonal chemistry. However, the efficiency of amino acid incorporation fluctuates significantly among different sites, thereby hampering the identification of useful conjugation sites. In this study, we applied the codon reassignment technology to achieve the robust and efficient synthesis of chemically functionalized antibodies containing Nε-(o-azidobenzyloxycarbonyl)-l-lysine (o-Az-Z-Lys) at defined positions. This lysine derivative has a bio-orthogonally reactive group at the end of a long side chain, enabling identification of multiple new positions in Fab-constant domains, allowing chemical conjugation with high efficiency. An X-ray crystallographic study of a Fab variant with o-Az-Z-Lys revealed high-level exposure of the azido group to solvent, with six of the identified positions subsequently used to engineer "Variabodies", a novel antibody format allowing various connections between two Fab molecules. Our findings indicated that some of the created Variabodies exhibited agonistic activity in cultured cells as opposed to the antagonistic nature of antibodies. These results showed that our approach greatly enhanced the availability of antibodies for chemical conjugation and might aid in the development of new therapeutic antibodies.


Subject(s)
Antibodies/chemistry , Antibodies/genetics , Genetic Code , Azides/chemistry , Cell Line, Tumor , Click Chemistry , Codon/genetics , Escherichia coli/genetics , Humans , Lysine/chemistry , Models, Molecular , Protein Multimerization , Protein Structure, Quaternary , Trastuzumab/chemistry , Trastuzumab/genetics
11.
Tumour Biol ; 37(4): 5413-26, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26563369

ABSTRACT

Trastuzumab is a humanized monoclonal antibody against the human epidermal growth factor receptor 2 (HER2) that is overexpressed in about 25 % of breast cancer patients. However, primary and/or acquired resistance to trastuzumab develops in most affected persons. In this study, we explored the functional role of miR-182 inhibition with aiming the sensitization of SKBR3 cells to trastuzumab. Cell viability, apoptosis, colony formation, and migration capacities of SKBR3(S) (sensitive) and SKBR3(R) (resistant) cells were assessed to determine the anti-proliferative effects of PNA-antimiR-182. In addition, the expression levels of miR-182, mRNA of FOXO1, and Bim as well as the protein levels of HER2 and Notch1 signaling factors were evaluated by stem-loop RT-qPCR, RT-qPCR, and Western blot, respectively. The results indicated that miR-182 might play a causal role in the mechanism of trastuzumab. In line with that, PNA-antimiR-182 inhibited synergistically the viability of both the sensitive and resistant cell groups. Furthermore, the inhibitory effect of PNA-anitmiR-182 on migration in SKBR3 cells was more than the induction of apoptosis. In addition, PNA-antimiR-182 reduced the levels of NICD, Hes1, HIF-1α, and p-Akt in both cell groups, while it augmented the intracellular content of FOXO1 and Numb suppressor proteins. In other words, PNA-antimiR-182-mediated upregulation of Numb was associated with downregulation of HIF-1α and Hes1. Consequently, downregulation of miR-182 might find therapeutical value for overcoming trastuzumab resistance. Graphical Abstract The crosstalk between HER2 and Notch1 signaling pathway is mediated by miR-182.


Subject(s)
Breast Neoplasms/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Membrane Proteins/genetics , MicroRNAs/genetics , Nerve Tissue Proteins/genetics , Transcription Factor HES-1/genetics , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis , Membrane Proteins/biosynthesis , MicroRNAs/antagonists & inhibitors , MicroRNAs/biosynthesis , Nerve Tissue Proteins/biosynthesis , RNA, Messenger/biosynthesis , Receptor, ErbB-2/genetics , Transcription Factor HES-1/biosynthesis , Trastuzumab/administration & dosage , Trastuzumab/genetics
12.
MAbs ; 16(1): 2362789, 2024.
Article in English | MEDLINE | ID: mdl-38845069

ABSTRACT

Bispecific antibodies, including bispecific IgG, are emerging as an important new class of antibody therapeutics. As a result, we, as well as others, have developed engineering strategies designed to facilitate the efficient production of bispecific IgG for clinical development. For example, we have extensively used knobs-into-holes (KIH) mutations to facilitate the heterodimerization of antibody heavy chains and more recently Fab mutations to promote cognate heavy/light chain pairing for efficient in vivo assembly of bispecific IgG in single host cells. A panel of related monospecific and bispecific IgG1 antibodies was constructed and assessed for immunogenicity risk by comparison with benchmark antibodies with known low (Avastin and Herceptin) or high (bococizumab and ATR-107) clinical incidence of anti-drug antibodies. Assay methods used include dendritic cell internalization, T cell proliferation, and T cell epitope identification by in silico prediction and MHC-associated peptide proteomics. Data from each method were considered independently and then together for an overall integrated immunogenicity risk assessment. In toto, these data suggest that the KIH mutations and in vitro assembly of half antibodies do not represent a major risk for immunogenicity of bispecific IgG1, nor do the Fab mutations used for efficient in vivo assembly of bispecifics in single host cells. Comparable or slightly higher immunogenicity risk assessment data were obtained for research-grade preparations of trastuzumab and bevacizumab versus Herceptin and Avastin, respectively. These data provide experimental support for the common practice of using research-grade preparations of IgG1 as surrogates for immunogenicity risk assessment of their corresponding pharmaceutical counterparts.


Subject(s)
Antibodies, Bispecific , Immunoglobulin G , Antibodies, Bispecific/immunology , Antibodies, Bispecific/genetics , Humans , Immunoglobulin G/immunology , Immunoglobulin G/genetics , Risk Assessment , Trastuzumab/immunology , Trastuzumab/genetics , Animals , Bevacizumab/immunology , Bevacizumab/genetics , Mutation
13.
Discov Med ; 36(182): 559-570, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38531796

ABSTRACT

BACKGROUND: The epidermal growth factor receptor 2 (HER2) is overexpressed in 30% of breast cancers, and this overexpression is strongly correlated with a poor prognosis. Herceptin is a common treatment for HER2-positive breast cancer; however, cancer cells tend to adapt gradually to the drug, rendering it ineffective. The study revealed an association between the methylation status of the Homeobox C8 (HOXC8) gene and tumor development. Therefore, it is of paramount importance to delve into the interaction between HOXC8 and HER2-positive breast cancer, along with its molecular mechanisms. This exploration holds significant implications for a deeper understanding of the pathophysiological processes underlying HER2-positive breast cancer. METHOD: Tumor tissue and pathological data from patients with HER2-positive breast cancer were systematically collected. Additionally, the human HER2-positive breast cancer cell line, SKBR3, was cultured in vitro to assess both the expression level of HOXC8 and the degree of DNA methylation. The study aimed to explore the relationship between the relative expression of HOXC8 and the clinical characteristics of breast cancer patients. The expression level of HOXC8 and the promoter methylation of HOXC8 were verified by methylation treatment of SKBR3 breast cancer cells. The regulation of HOXC8 was meticulously carried out, leading to the division of the cells into distinct groups. The study further analyzed the expression levels and biological capabilities within each group. Finally, the in vitro and in vivo sensitivity of the cells to Herceptin, a common treatment for HER2-positive breast cancer, was measured to assess the efficacy of the drug. RESULT: In HER2-positive breast cancer cases characterized by poor methylation, there was an up-regulation of HOXC8. Its expression was found to be correlated with key clinical factors such as tumor size, lymph node status, clinical tumor, node, metastasis (cTNM) staging, and Herceptin resistance (p < 0.05). Upon methylation of breast cancer cells, there was a significant decrease in HOXC8 expression (p < 0.05). The study revealed that overexpression of HOXC8 resulted in increased proliferation, cloning, and metastasis of HER2-positive breast cancer cells, along with a reduced apoptosis rate (p < 0.05). Conversely, interference with HOXC8 expression reversed this scenario (p < 0.05). A Herceptin-resistant substrain, POOL2, was established using SKBR3 cells. Animal studies demonstrated that overexpressing HOXC8 accelerated tumor development and enhanced POOL2 cells' resistance to Herceptin (p < 0.05). However, following interference with HOXC8, POOL2 cells exhibited increased responsiveness to Herceptin, leading to a gradual reduction in tumor size (p < 0.05). CONCLUSIONS: In HER2-positive breast cancer, the expression of HOXC8 is elevated in a manner dependent on DNA methylation, and this elevated expression is closely linked to the pathology of the patient. Interfering with HOXC8 expression demonstrates the potential to partially inhibit the development and spread of breast cancer, as well as to alleviate resistance to Herceptin.


Subject(s)
Breast Neoplasms , Animals , Humans , Female , Trastuzumab/genetics , Trastuzumab/metabolism , Trastuzumab/pharmacology , Breast Neoplasms/pathology , DNA Methylation , Receptor, ErbB-2/metabolism , Cell Line, Tumor , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/therapeutic use
14.
Lung Cancer ; 186: 107385, 2023 12.
Article in English | MEDLINE | ID: mdl-37813015

ABSTRACT

HER2 mutations, which account for 2-4% of non-small cell lung cancer (NSCLC), are distinct molecular alterations identified via next generation sequencing (NGS). Previously, treatment outcomes in HER2-mutant metastatic NSCLC were dismal, showing limited clinical benefit with platinum-based chemotherapy with or without immunotherapy. In contrast to HER2-altered breast and gastric cancer, HER2-mutant NSCLC does not benefit from HER2 targeting agents such as trastuzumab or TDM1. HER2 mutations are also inherently different from HER2 overexpression and amplification. Currently, trastuzumab deruxtecan, a HER2 targeting antibody drug conjugate (ADC) is the first and only approved treatment option for patients with HER2-mutant metastatic NSCLC after failure with standard treatment. In this review, we summarized the biology of HER2 and detection of HER2 overexpression, amplification and mutations, as well as general landscape of landmark and ongoing clinical trials encompassing from chemotherapy to targeted agents, including tyrosine kinase inhibitors (TKIs), ADCs and investigational agents.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Receptor, ErbB-2/genetics , Trastuzumab/genetics , Trastuzumab/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Mutation
15.
JCO Precis Oncol ; 6: e2200278, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36240473

ABSTRACT

PURPOSE: HER2-altered non-small-cell lung cancer (NSCLC) represents a diverse subgroup, including mutations, amplifications, and overexpression. However, HER2 exon 20 insertion mutations are emerging as a distinct molecular subtype with expanding therapeutic options. We describe the molecular epidemiology and genomic features of HER2-altered NSCLC in an Asian tertiary cancer center. METHODS: We identified patients with HER2-mutated NSCLC in our institutional database, collating clinicopathological features and treatment outcomes. The genomic landscape of human epidermal growth factor receptor 2 (HER2)-mutated NSCLC was further evaluated using whole-exome sequencing (WES) data from combined local and publicly available data sets. HER2 amplification and overexpression as selection biomarkers in NSCLC were further interrogated using HER2 immunohistochemistry and correlations with WES and RNA sequencing data. RESULTS: Among 1,252 patients with consecutive lung adenocarcinoma undergoing routine next-generation sequencing, the prevalence of HER2 mutations was 3.1%-exon 20 insertion mutations comprised 2.7%. We examined the clinicopathological features in 55 patients with HER2-mutated NSCLC comprising 40 exon 20 insertion and 15 nonexon 20 insertion mutations. The most common exon 20 insertion mutation was HER2Y772_A775dup in 30 (75%), followed by HER2G776delinsVC in five patients (13%). There were limited responses to HER2-directed therapies apart from trastuzumab-deruxtecan, and no responses were seen with immunotherapy monotherapy. Evaluating the genomics features of HER2 exon 20 insertion mutations using WES data revealed low tumor mutational burden (TMB), low incidence of cancer driver comutations, and a predominance of aging mutational signature-similar to EGFR-mutated tumors. In contrast, uncommon (or nonexon 20 insertion) HER2-mutated tumors resembled EGFR wild-type tumors with higher TMB, higher frequency of cancer driver comutations, and greater presence of smoking and APOBEC mutational signature. Finally, in evaluating HER2 immunohistochemistry in all lung adenocarcinoma, there was significant discordance comparing different scoring systems and poor correlation with HER2 RNA expression and HER2 amplification. CONCLUSION: The incidence of HER2 mutations is 3.1% in East Asian nonsquamous NSCLC. HER2 exon 20 insertion-mutated tumors appear genomically distinct from uncommon (nonexon 20 insertion) HER2 mutations, the latter demonstrating higher TMB, co-occurring drivers, and predominant nonaging mutational signature. The therapeutic implications of the genomic and clinical features of HER2-mutated NSCLC warrant further investigation.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adenocarcinoma of Lung/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Exons/genetics , Genomics , Humans , Immunohistochemistry , Lung Neoplasms/genetics , Mutagenesis, Insertional/genetics , RNA/therapeutic use , Receptor, ErbB-2/genetics , Trastuzumab/genetics
16.
Exp Mol Med ; 54(11): 1850-1861, 2022 11.
Article in English | MEDLINE | ID: mdl-36319752

ABSTRACT

The pH-selective interaction between the immunoglobulin G (IgG) fragment crystallizable region (Fc region) and the neonatal Fc receptor (FcRn) is critical for prolonging the circulating half-lives of IgG molecules through intracellular trafficking and recycling. By using directed evolution, we successfully identified Fc mutations that improve the pH-dependent binding of human FcRn and prolong the serum persistence of a model IgG antibody and an Fc-fusion protein. Strikingly, trastuzumab-PFc29 and aflibercept-PFc29, a model therapeutic IgG antibody and an Fc-fusion protein, respectively, when combined with our engineered Fc (Q311R/M428L), both exhibited significantly higher serum half-lives in human FcRn transgenic mice than their counterparts with wild-type Fc. Moreover, in a cynomolgus monkey model, trastuzumab-PFc29 displayed a superior pharmacokinetic profile to that of both trastuzumab-YTE and trastuzumab-LS, which contain the well-validated serum half-life extension Fcs YTE (M252Y/S254T/T256E) and LS (M428L/N434S), respectively. Furthermore, the introduction of two identified mutations of PFc29 (Q311R/M428L) into the model antibodies enhanced both complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity activity, which are triggered by the association between IgG Fc and Fc binding ligands and are critical for clearing cancer cells. In addition, the effector functions could be turned off by combining the two mutations of PFc29 with effector function-silencing mutations, but the antibodies maintained their excellent pH-dependent human FcRn binding profile. We expect our Fc variants to be an excellent tool for enhancing the pharmacokinetic profiles and potencies of various therapeutic antibodies and Fc-fusion proteins.


Subject(s)
Histocompatibility Antigens Class I , Immunoglobulin G , Mice , Animals , Humans , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Macaca fascicularis/metabolism , Half-Life , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/metabolism , Mice, Transgenic , Mutation , Trastuzumab/therapeutic use , Trastuzumab/genetics
17.
PLoS One ; 17(5): e0267027, 2022.
Article in English | MEDLINE | ID: mdl-35503762

ABSTRACT

ErbB3 (HER3), a member of the HER family, is overexpressed in various cancers and plays an important role in cell proliferation and survival. Certain HER3 mutations have also been identified as oncogenic drivers, making them potential therapeutic targets. In the current study, antitumor activity of patritumab deruxtecan (HER3-DXd), a HER3 directed antibody drug conjugate, was evaluated in tumor models with clinically reported HER3 mutations. MDA-MB-231, a HER3-negative human triple-negative breast cancer cell line, was transduced with lentiviral vectors encoding HER3 wild type (HER3WT), one of 11 HER3 mutations, or HER3 empty vector (HER3EV), in the presence/absence of HER2 overexpression. Targeted delivery of HER3-DXd was assessed using cell-surface binding, lysosomal trafficking, and cell-growth inhibition assays. HER3-DXd bound to the surface of HER3WT and mutant cells in a similar, concentration-dependent manner but not to HER3EV. HER3-DXd was translocated to the lysosome, where time- and concentration-dependent signals were observed in the HER3 mutant and HER3WT cells. HER3-DXd inhibited the growth of HER3WT and HER3 mutant cells. HER3-DXd activity was observed in the presence and absence of HER2 overexpression. These data suggest that HER3-DXd may have activity against tumors expressing wild type HER3 or clinically observed HER3 mutations, supporting further clinical evaluation.


Subject(s)
Breast Neoplasms , Immunoconjugates , Triple Negative Breast Neoplasms , Antibodies, Monoclonal, Humanized , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Camptothecin/analogs & derivatives , Cell Line, Tumor , Female , Humans , Immunoconjugates/therapeutic use , Mutation , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/metabolism , Trastuzumab/genetics , Trastuzumab/pharmacology , Triple Negative Breast Neoplasms/drug therapy
18.
Nat Biomed Eng ; 5(6): 600-612, 2021 06.
Article in English | MEDLINE | ID: mdl-33859386

ABSTRACT

The optimization of therapeutic antibodies is time-intensive and resource-demanding, largely because of the low-throughput screening of full-length antibodies (approximately 1 × 103 variants) expressed in mammalian cells, which typically results in few optimized leads. Here we show that optimized antibody variants can be identified by predicting antigen specificity via deep learning from a massively diverse space of antibody sequences. To produce data for training deep neural networks, we deep-sequenced libraries of the therapeutic antibody trastuzumab (about 1 × 104 variants), expressed in a mammalian cell line through site-directed mutagenesis via CRISPR-Cas9-mediated homology-directed repair, and screened the libraries for specificity to human epidermal growth factor receptor 2 (HER2). We then used the trained neural networks to screen a computational library of approximately 1 × 108 trastuzumab variants and predict the HER2-specific subset (approximately 1 × 106 variants), which can then be filtered for viscosity, clearance, solubility and immunogenicity to generate thousands of highly optimized lead candidates. Recombinant expression and experimental testing of 30 randomly selected variants from the unfiltered library showed that all 30 retained specificity for HER2. Deep learning may facilitate antibody engineering and optimization.


Subject(s)
Antigens/chemistry , Deep Learning , Protein Engineering/methods , Receptor, ErbB-2/chemistry , Trastuzumab/chemistry , Amino Acid Sequence , Animals , Antibody Affinity , Antibody Specificity , Antigens/genetics , Antigens/immunology , CRISPR-Cas Systems , Humans , Hybridomas/chemistry , Hybridomas/immunology , Mutagenesis, Site-Directed , Protein Binding , Receptor, ErbB-2/genetics , Receptor, ErbB-2/immunology , Recombinational DNA Repair , Sequence Analysis, Protein , Trastuzumab/genetics , Trastuzumab/immunology
19.
J Immunol Methods ; 494: 113052, 2021 07.
Article in English | MEDLINE | ID: mdl-33838171

ABSTRACT

Antibody phage display technology plays an important role in the development of monoclonal antibodies, humanization, and affinity evolution of antibodies. Thus far, antibody phage display mainly focuses on the display of antibody variable region or antigen-binding fragments. In this study, we constructed a new phage display system that can display full-length IgG antibodies on M13 phage. The phage display vector contains open reading frames (ORFs) encoding full-length the heavy and light chains of the antibody. NcoI/XhoI restriction enzyme sites were used to clone the variable region of the heavy chain into the heavy chain ORF, and SalI/NotI sites were used to clone the light chain variable region. SnaBI and SbfI restriction enzyme sites were designed between the cloning sites of heavy and light chains, respectively, to increase the cloning efficiency. The full-length antibodies of nivolumab against programmed death factor 1, trastuzumab against human epidermal growth factor 2, diL2K against the cluster of differentiation 3 epsilon, and adalimumab against tumor necrosis factor- alpha were displayed on phage with the vector. Phage-displayed antibodies showed their original antigen-binding activity. An amber codon shifted the vector to express IgG in non-suppressed Escherichia coli. The heavy and light chains of the E. coli-expressed antibodies could be detected through western blotting, and the antigen-binding activity was confirmed using an enzyme-linked immunosorbent assay. Biopanning was carried out with a model phage display antibody library, and the results showed that the novel phage system could be used for antibody library construction and highly efficient antibody screening. The reported system is the first full-length antibody phage display system.


Subject(s)
Bacteriophage M13/genetics , Escherichia coli/genetics , Genetic Vectors/genetics , Immunoglobulin G/genetics , Adalimumab/genetics , CD3 Complex/antagonists & inhibitors , Cell Surface Display Techniques , Cloning, Molecular , Humans , Hybridomas , Mass Screening , Nivolumab/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Trastuzumab/genetics , Tumor Necrosis Factor-alpha/antagonists & inhibitors
20.
Sci Rep ; 11(1): 4037, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33597560

ABSTRACT

The treatment of patients with ERBB2 (HER2)-positive breast cancer with anti-ERBB2 therapy is based on the detection of ERBB2 gene amplification or protein overexpression. Machine learning (ML) algorithms can predict the amplification of ERBB2 based on tumor morphological features, but it is not known whether ML-derived features can predict survival and efficacy of anti-ERBB2 treatment. In this study, we trained a deep learning model with digital images of hematoxylin-eosin (H&E)-stained formalin-fixed primary breast tumor tissue sections, weakly supervised by ERBB2 gene amplification status. The gene amplification was determined by chromogenic in situ hybridization (CISH). The training data comprised digitized tissue microarray (TMA) samples from 1,047 patients. The correlation between the deep learning-predicted ERBB2 status, which we call H&E-ERBB2 score, and distant disease-free survival (DDFS) was investigated on a fully independent test set, which included whole-slide tumor images from 712 patients with trastuzumab treatment status available. The area under the receiver operating characteristic curve (AUC) in predicting gene amplification in the test sets was 0.70 (95% CI, 0.63-0.77) on 354 TMA samples and 0.67 (95% CI, 0.62-0.71) on 712 whole-slide images. Among patients with ERBB2-positive cancer treated with trastuzumab, those with a higher than the median morphology-based H&E-ERBB2 score derived from machine learning had more favorable DDFS than those with a lower score (hazard ratio [HR] 0.37; 95% CI, 0.15-0.93; P = 0.034). A high H&E-ERBB2 score was associated with unfavorable survival in patients with ERBB2-negative cancer as determined by CISH. ERBB2-associated morphology correlated with the efficacy of adjuvant anti-ERBB2 treatment and can contribute to treatment-predictive information in breast cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Receptor, ErbB-2/genetics , Adult , Biomarkers, Pharmacological/blood , Breast Neoplasms/classification , Cohort Studies , Deep Learning , Disease-Free Survival , Female , Finland/epidemiology , Gene Amplification , Humans , In Situ Hybridization/methods , Middle Aged , Prognosis , Proportional Hazards Models , ROC Curve , Receptor, ErbB-2/analysis , Trastuzumab/genetics , Trastuzumab/therapeutic use , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL