Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.114
Filter
1.
Cell ; 164(4): 632-43, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26871629

ABSTRACT

Memories formed early in life are particularly stable and influential, representing privileged experiences that shape enduring behaviors. We show that exposing newly hatched C. elegans to pathogenic bacteria results in persistent aversion to those bacterial odors, whereas adult exposure generates only transient aversive memory. Long-lasting imprinted aversion has a critical period in the first larval stage and is specific to the experienced pathogen. Distinct groups of neurons are required during formation (AIB, RIM) and retrieval (AIY, RIA) of the imprinted memory. RIM synthesizes the neuromodulator tyramine, which is required in the L1 stage for learning. AIY memory retrieval neurons sense tyramine via the SER-2 receptor, which is essential for imprinted, but not for adult-learned, aversion. Odor responses in several neurons, most notably RIA, are altered in imprinted animals. These findings provide insight into neuronal substrates of different forms of memory, and lay a foundation for further understanding of early learning.


Subject(s)
Caenorhabditis elegans/physiology , Neural Pathways , Neurons/metabolism , Animals , Bacteria/chemistry , Behavior, Animal , Caenorhabditis elegans/growth & development , Imprinting, Psychological , Larva/physiology , Memory , Receptors, Biogenic Amine/metabolism , Smell , Tyramine/metabolism
2.
EMBO J ; 43(16): 3466-3493, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38965418

ABSTRACT

The gut microbiota and their metabolites are closely linked to obesity-related diseases, such as type 2 diabetes, but their causal relationship and underlying mechanisms remain largely elusive. Here, we found that dysbiosis-induced tyramine (TA) suppresses high-fat diet (HFD)-mediated insulin resistance in both Drosophila and mice. In Drosophila, HFD increases cytosolic Ca2+ signaling in enterocytes, which, in turn, suppresses intestinal lipid levels. 16 S rRNA sequencing and metabolomics revealed that HFD leads to increased prevalence of tyrosine decarboxylase (Tdc)-expressing bacteria and resulting tyramine production. Tyramine acts on the tyramine receptor, TyrR1, to promote cytosolic Ca2+ signaling and activation of the CRTC-CREB complex to transcriptionally suppress dietary lipid digestion and lipogenesis in enterocytes, while promoting mitochondrial biogenesis. Furthermore, the tyramine-induced cytosolic Ca2+ signaling is sufficient to suppress HFD-induced obesity and insulin resistance in Drosophila. In mice, tyramine intake also improves glucose tolerance and insulin sensitivity under HFD. These results indicate that dysbiosis-induced tyramine suppresses insulin resistance in both flies and mice under HFD, suggesting a potential therapeutic strategy for related metabolic disorders, such as diabetes.


Subject(s)
Calcium Signaling , Diet, High-Fat , Gastrointestinal Microbiome , Insulin Resistance , Tyramine , Animals , Tyramine/metabolism , Tyramine/pharmacology , Gastrointestinal Microbiome/drug effects , Diet, High-Fat/adverse effects , Mice , Calcium Signaling/drug effects , Obesity/metabolism , Obesity/microbiology , Obesity/etiology , Male , Drosophila/metabolism , Dysbiosis/metabolism , Dysbiosis/microbiology , Mice, Inbred C57BL , Drosophila melanogaster/microbiology , Drosophila melanogaster/metabolism , Enterocytes/metabolism , Enterocytes/drug effects
3.
Nature ; 583(7816): 415-420, 2020 07.
Article in English | MEDLINE | ID: mdl-32555456

ABSTRACT

Animals coexist in commensal, pathogenic or mutualistic relationships with complex communities of diverse organisms, including microorganisms1. Some bacteria produce bioactive neurotransmitters that have previously been proposed to modulate nervous system activity and behaviours of their hosts2,3. However, the mechanistic basis of this microbiota-brain signalling and its physiological relevance are largely unknown. Here we show that in Caenorhabditis elegans, the neuromodulator tyramine produced by commensal Providencia bacteria, which colonize the gut, bypasses the requirement for host tyramine biosynthesis and manipulates a host sensory decision. Bacterially produced tyramine is probably converted to octopamine by the host tyramine ß-hydroxylase enzyme. Octopamine, in turn, targets the OCTR-1 octopamine receptor on ASH nociceptive neurons to modulate an aversive olfactory response. We identify the genes that are required for tyramine biosynthesis in Providencia, and show that these genes are necessary for the modulation of host behaviour. We further find that C. elegans colonized by Providencia preferentially select these bacteria in food choice assays, and that this selection bias requires bacterially produced tyramine and host octopamine signalling. Our results demonstrate that a neurotransmitter produced by gut bacteria mimics the functions of the cognate host molecule to override host control of a sensory decision, and thereby promotes fitness of both the host and the microorganism.


Subject(s)
Caenorhabditis elegans/microbiology , Caenorhabditis elegans/physiology , Feeding Behavior/physiology , Intestines/microbiology , Neurotransmitter Agents/metabolism , Providencia/metabolism , Smell/physiology , Animals , Avoidance Learning/drug effects , Caenorhabditis elegans/drug effects , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Gastrointestinal Microbiome/physiology , Metabolomics , Mutation , Octanols/pharmacology , Octopamine/biosynthesis , Octopamine/metabolism , Providencia/enzymology , Providencia/physiology , Receptors, Biogenic Amine/metabolism , Receptors, G-Protein-Coupled/metabolism , Sensory Receptor Cells/metabolism , Smell/drug effects , Tyramine/biosynthesis , Tyramine/metabolism , Tyrosine Decarboxylase/deficiency , Tyrosine Decarboxylase/genetics
4.
Nature ; 573(7772): 135-138, 2019 09.
Article in English | MEDLINE | ID: mdl-31462774

ABSTRACT

An animal's stress response requires different adaptive strategies depending on the nature and duration of the stressor. Whereas acute stressors, such as predation, induce a rapid and energy-demanding fight-or-flight response, long-term environmental stressors induce the gradual and long-lasting activation of highly conserved cytoprotective processes1-3. In animals across the evolutionary spectrum, continued activation of the fight-or-flight response weakens the animal's resistance to environmental challenges4,5. However, the molecular and cellular mechanisms that regulate the trade-off between the flight response and long-term stressors are poorly understood. Here we show that repeated induction of the flight response in Caenorhabditis elegans shortens lifespan and inhibits conserved cytoprotective mechanisms. The flight response activates neurons that release tyramine, an invertebrate analogue of adrenaline and noradrenaline. Tyramine stimulates the insulin-IGF-1 signalling (IIS) pathway and precludes the induction of stress response genes by activating an adrenergic-like receptor in the intestine. By contrast, long-term environmental stressors, such as heat or oxidative stress, reduce tyramine release and thereby allow the induction of cytoprotective genes. These findings demonstrate that a neural stress hormone supplies a state-dependent neural switch between acute flight and long-term environmental stress responses and provides mechanistic insights into how the flight response impairs cellular defence systems and accelerates ageing.


Subject(s)
Caenorhabditis elegans/cytology , Caenorhabditis elegans/physiology , Cytoprotection , Insulin/metabolism , Tyramine/metabolism , Active Transport, Cell Nucleus , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Cell Nucleus/metabolism , Forkhead Transcription Factors/metabolism , Insulin-Like Growth Factor I/metabolism , Intestinal Mucosa/metabolism , Longevity , Neurons/metabolism , Receptors, Adrenergic/metabolism , Receptors, Catecholamine/metabolism , Signal Transduction , Stress, Psychological
5.
PLoS Biol ; 19(5): e3001228, 2021 05.
Article in English | MEDLINE | ID: mdl-33970909

ABSTRACT

The biogenic amine octopamine (OA) and its precursor tyramine (TA) are involved in controlling a plethora of different physiological and behavioral processes. The tyramine-ß-hydroxylase (tßh) gene encodes the enzyme catalyzing the last synthesis step from TA to OA. Here, we report differential dominance (from recessive to overdominant) of the putative null tßhnM18 allele in 2 behavioral measures in Buridan's paradigm (walking speed and stripe deviation) and in proboscis extension (sugar sensitivity) in the fruit fly Drosophila melanogaster. The behavioral analysis of transgenic tßh expression experiments in mutant and wild-type flies as well as of OA and TA receptor mutants revealed a complex interaction of both aminergic systems. Our analysis suggests that the different neuronal networks responsible for the 3 phenotypes show differential sensitivity to tßh gene expression levels. The evidence suggests that this sensitivity is brought about by a TA/OA opponent system modulating the involved neuronal circuits. This conclusion has important implications for standard transgenic techniques commonly used in functional genetics.


Subject(s)
Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Alleles , Animals , Animals, Genetically Modified/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Genotype , Male , Mutation/genetics , Octopamine/genetics , Octopamine/metabolism , Phenotype , Receptors, Biogenic Amine/genetics , Receptors, Biogenic Amine/metabolism , Tyramine/metabolism
6.
Annu Rev Genet ; 49: 413-38, 2015.
Article in English | MEDLINE | ID: mdl-26473379

ABSTRACT

The compact nervous system of Caenorhabditis elegans and its genetic tractability are features that make this organism highly suitable for investigating energy balance in an animal system. Here, we focus on molecular components and organizational principles emerging from the investigation of pathways that largely originate in the nervous system and regulate feeding behavior but also peripheral fat regulation through neuroendocrine signaling. We provide an overview of studies aimed at understanding how C. elegans integrate internal and external cues in feeding behavior. We highlight some of the similarities and differences in energy balance between C. elegans and mammals. We also provide our perspective on unresolved issues, both conceptual and technical, that we believe have hampered critical evaluation of findings relevant to fat regulation in C. elegans.


Subject(s)
Adipose Tissue/physiology , Caenorhabditis elegans/physiology , Feeding Behavior/physiology , Nervous System Physiological Phenomena , Animals , Caenorhabditis elegans/microbiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Energy Metabolism , Feedback, Physiological , Neurosecretory Systems/physiology , Octopamine/metabolism , Serotonin/metabolism , Signal Transduction , Tyramine/metabolism
7.
New Phytol ; 234(4): 1411-1429, 2022 05.
Article in English | MEDLINE | ID: mdl-35152435

ABSTRACT

Tomato varieties resistant to the bacterial wilt pathogen Ralstonia solanacearum have the ability to restrict bacterial movement in the plant. Inducible vascular cell wall reinforcements seem to play a key role in confining R. solanacearum into the xylem vasculature of resistant tomato. However, the type of compounds involved in such vascular physico-chemical barriers remain understudied, while being a key component of resistance. Here we use a combination of histological and live-imaging techniques, together with spectroscopy and gene expression analysis to understand the nature of R. solanacearum-induced formation of vascular coatings in resistant tomato. We describe that resistant tomato specifically responds to infection by assembling a vascular structural barrier formed by a ligno-suberin coating and tyramine-derived hydroxycinnamic acid amides. Further, we show that overexpressing genes of the ligno-suberin pathway in a commercial susceptible variety of tomato restricts R. solanacearum movement inside the plant and slows disease progression, enhancing resistance to the pathogen. We propose that the induced barrier in resistant plants does not only restrict the movement of the pathogen, but may also prevent cell wall degradation by the pathogen and confer anti-microbial properties, effectively contributing to resistance.


Subject(s)
Ralstonia solanacearum , Solanum lycopersicum , Amides/metabolism , Coumaric Acids/metabolism , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Tyramine/metabolism , Virulence
8.
Nature ; 539(7629): 428-432, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27828941

ABSTRACT

Astrocytes associate with synapses throughout the brain and express receptors for neurotransmitters that can increase intracellular calcium (Ca2+). Astrocytic Ca2+ signalling has been proposed to modulate neural circuit activity, but the pathways that regulate these events are poorly defined and in vivo evidence linking changes in astrocyte Ca2+ levels to alterations in neurotransmission or behaviour is limited. Here we show that Drosophila astrocytes exhibit activity-regulated Ca2+ signalling in vivo. Tyramine and octopamine released from neurons expressing tyrosine decarboxylase 2 (Tdc2) signal directly to astrocytes to stimulate Ca2+ increases through the octopamine/tyramine receptor (Oct-TyrR) and the transient receptor potential (TRP) channel Water witch (Wtrw), and astrocytes in turn modulate downstream dopaminergic neurons. Application of tyramine or octopamine to live preparations silenced dopaminergic neurons and this inhibition required astrocytic Oct-TyrR and Wtrw. Increasing astrocyte Ca2+ signalling was sufficient to silence dopaminergic neuron activity, which was mediated by astrocyte endocytic function and adenosine receptors. Selective disruption of Oct-TyrR or Wtrw expression in astrocytes blocked astrocytic Ca2+ signalling and profoundly altered olfactory-driven chemotaxis and touch-induced startle responses. Our work identifies Oct-TyrR and Wtrw as key components of the astrocytic Ca2+ signalling machinery, provides direct evidence that octopamine- and tyramine-based neuromodulation can be mediated by astrocytes, and demonstrates that astrocytes are essential for multiple sensory-driven behaviours in Drosophila.


Subject(s)
Astrocytes/metabolism , Calcium Signaling , Calcium/metabolism , Drosophila melanogaster/physiology , Neural Pathways , Neurons/metabolism , Neurotransmitter Agents/metabolism , Synaptic Transmission , Animals , Astrocytes/cytology , Chemotaxis , Dopaminergic Neurons/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Endocytosis , Octopamine/metabolism , Receptors, Biogenic Amine/metabolism , Receptors, Purinergic P1/metabolism , Reflex, Startle , Smell , Touch , Transient Receptor Potential Channels/metabolism , Tyramine/metabolism , Tyrosine Decarboxylase/metabolism
9.
Appl Microbiol Biotechnol ; 106(12): 4445-4458, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35763068

ABSTRACT

Aromatic L-amino acid decarboxylases (AADCs) catalyze the conversion of aromatic L-amino acids into aromatic monoamines that play diverse physiological and biosynthetic roles in living organisms. For example, dopamine and serotonin serve as major neurotransmitters in animals, whereas tryptamine and tyramine are essential building blocks for synthesizing a myriad of secondary metabolites in plants. In contrast to the vital biological roles of AADCs in higher organisms, microbial AADCs are found in rather a limited range of microorganisms. For example, lactic acid bacteria are known to employ AADCs to achieve intracellular pH homeostasis and engender accumulation of tyramine, causing a toxic effect in fermented foods. Owing to the crucial pharmaceutical implications of aromatic monoamines and their derivatives, synthetic applications of AADCs have attracted growing attention. Besides, recent studies have uncovered that AADCs of human gut microbes influence host physiology and are involved in drug availability of Parkinson's disease medication. These findings bring the bacterial AADCs into a new arena of extensive research for biomedical applications. Here, we review catalytic features of AADCs and present microbial applications and challenges for biotechnological exploitation of AADCs. KEY POINTS: • Aromatic monoamines and their derivatives are increasingly important in the drug industry. • Aromatic L-amino acid decarboxylases are the only enzyme for synthesizing aromatic monoamines. • Microbial applications of aromatic L-amino acid decarboxylases have drawn growing attention.


Subject(s)
Aromatic-L-Amino-Acid Decarboxylases , Carboxy-Lyases , Amino Acids, Aromatic , Animals , Aromatic-L-Amino-Acid Decarboxylases/chemistry , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Serotonin/metabolism , Tyramine/metabolism
10.
Proc Natl Acad Sci U S A ; 116(9): 3805-3810, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808766

ABSTRACT

Adrenergic signaling profoundly modulates animal behavior. For example, the invertebrate counterpart of norepinephrine, octopamine, and its biological precursor and functional antagonist, tyramine, adjust motor behavior to different nutritional states. In Drosophila larvae, food deprivation increases locomotor speed via octopamine-mediated structural plasticity of neuromuscular synapses, whereas tyramine reduces locomotor speed, but the underlying cellular and molecular mechanisms remain unknown. We show that tyramine is released into the CNS to reduce motoneuron intrinsic excitability and responses to excitatory cholinergic input, both by tyraminehonoka receptor activation and by downstream decrease of L-type calcium current. This central effect of tyramine on motoneurons is required for the adaptive reduction of locomotor activity after feeding. Similarly, peripheral octopamine action on motoneurons has been reported to be required for increasing locomotion upon starvation. We further show that the level of tyramine-ß-hydroxylase (TBH), the enzyme that converts tyramine into octopamine in aminergic neurons, is increased by food deprivation, thus selecting between antagonistic amine actions on motoneurons. Therefore, octopamine and tyramine provide global but distinctly different mechanisms to regulate motoneuron excitability and behavioral plasticity, and their antagonistic actions are balanced within a dynamic range by nutritional effects on TBH.


Subject(s)
Mixed Function Oxygenases/genetics , Motor Neurons/metabolism , Octopamine/genetics , Receptors, Biogenic Amine/genetics , Tyramine/metabolism , Animals , Behavior, Animal/physiology , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/physiology , Food Deprivation/physiology , Larva/metabolism , Larva/physiology , Locomotion/genetics , Locomotion/physiology , Mixed Function Oxygenases/metabolism , Motor Neurons/physiology , Nutritional Status/genetics , Nutritional Status/physiology , Octopamine/metabolism , Receptors, Biogenic Amine/metabolism , Synapses/metabolism , Synapses/physiology
11.
Chembiochem ; 22(8): 1400-1404, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33368926

ABSTRACT

Recent advances in peroxidase-mediated biotin tyramide (BT) signal amplification technology have resulted in high-resolution and subcellular compartment-specific mapping of protein and RNA localization. Horseradish peroxidase (HRP) in the presence of H2 O2 is known to activate phenolic compounds for phenoxy radical reaction with nucleic acids, where biotinylation by BT is a practical example. BT reactivity with RNA and DNA is not understood in detail. We report that BT phenoxy radicals react in a sequence-independent manner with guanosine bases in RNA. In contrast, DNA reactivity with BT cannot be detected by our methods under the same conditions. Remarkably, we show that fluorescein conjugates DNA rapidly and selectively reacts with BT phenoxy radicals, allowing convenient and practical biotinylation of DNA on fluorescein with retention of fluorescence.


Subject(s)
Nucleic Acids/metabolism , Phenols/metabolism , Biotin/analogs & derivatives , Biotin/chemistry , Biotin/metabolism , Biotinylation , DNA/chemistry , DNA/metabolism , Molecular Structure , Nucleic Acids/chemistry , Phenols/chemistry , Tyramine/analogs & derivatives , Tyramine/chemistry , Tyramine/metabolism
12.
Chem Res Toxicol ; 34(5): 1348-1354, 2021 05 17.
Article in English | MEDLINE | ID: mdl-33913699

ABSTRACT

Linezolid, the principal oxazolidinone antibiotic for therapy of Gram-positive infections, is limited by its myelosuppression and monoamine oxidase (MAO) inhibition, with the latter manifested as serotonergic neurotoxicity. The oral oxazolidinone contezolid and its injectable prodrug contezolid acefosamil are developed to overcome the above limitations. Serotonergic profiles for contezolid in vitro and for orally administered contezolid acefosamil in rodents are reported. Contezolid exhibited 2- and 148-fold reduction over linezolid reversible inhibition of MAO-A and MAO-B human enzyme isoforms. In the mouse head-twitch model, contezolid acefosamil was devoid of neurotoxicity at supratherapeutic oral doses of 40, 80, and 120 mg/kg. In the rat tyramine challenge model, no significant increase in arterial blood pressure was observed for contezolid acefosamil up to 120 mg/kg oral dosing. In these tests, the comparator linezolid has elicited serotonergic responses. Thus, contezolid and contezolid acefosamil exhibited an attenuated propensity to induce MAO-related serotonergic neurotoxicity. The data support a continued clinical evaluation of these agents, with potential to expand oxazolidinone therapies to patient populations on concurrent selective serotonin reuptake inhibitor medications or where MAO inhibitors are contraindicated.


Subject(s)
Anti-Bacterial Agents/pharmacology , Blood Pressure/drug effects , Monoamine Oxidase Inhibitors/pharmacology , Neurotoxicity Syndromes/drug therapy , Oxazolidinones/pharmacology , Pyridones/pharmacology , Administration, Oral , Animals , Anti-Bacterial Agents/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Male , Mice , Molecular Structure , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/administration & dosage , Oxazolidinones/administration & dosage , Pyridones/administration & dosage , Rats , Rats, Sprague-Dawley , Tyramine/metabolism
13.
Food Microbiol ; 98: 103762, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33875200

ABSTRACT

Harmful levels of biogenic amines (BAs) are frequently identified in sufu. The microorganisms and mechanisms responsible for BA production in sufu, however, are not well documented. In this study, sufu samples were randomly obtained from various regions of China. Putrescine, tyramine, and histamine were quantitated as the most abundant BAs. According to the metagenome sequencing, the abundances and diversities of genes encoding the critical enzymes in BA production were acquired. The results showed that genes encoding arginine-, ornithine-, tryptophan-, and histidine decarboxylases were the predominant amino acid decarboxylase genes. Furthermore, 34 metagenome-assembled genomes (MAGs) were generated, of which 23 encoded at least one gene involved in BA production. Genetic analysis of MAGs indicated genera affiliated with Enterococcus, Lactobacillus-related, and Lactococcus were the major histamine-synthesizing bacteria, and tyrosine may be utilized by Bacillus, Chryseobacterium, Kurthia, Lysinibacillus, Macrococcus, and Streptococcus to product tyramine. The critical species involved in two putrescine-producing pathways were also explored. In the ornithine decarboxylase pathway, Lactobacillus-related and Veillonella were predicted to be the main performers, whereas Sphingobacterium and unclassified Flavobacteriaceae were the dominant executors in the agmatine deiminase pathway. The present study not only explained the BAs formation mechanism in sufu but also identified specific bacteria used to control BAs in fermented soybean products.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Biogenic Amines/metabolism , Soy Foods/microbiology , Bacteria/classification , Bacteria/isolation & purification , Biogenic Amines/analysis , China , Fermentation , Histamine/analysis , Histamine/metabolism , Metagenome , Metagenomics , Putrescine/analysis , Putrescine/metabolism , Soy Foods/analysis , Glycine max/metabolism , Glycine max/microbiology , Tyramine/analysis , Tyramine/metabolism
14.
Food Microbiol ; 99: 103813, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34119100

ABSTRACT

Tyramine is one of the most toxic biogenic amines and it is produced commonly by lactic acid bacteria in fermented food products. In present study, we investigated the influence of selected nisin-producing Lactococcus lactis subsp. lactis strains and their cell-free supernatants (CFSs) on tyramine production by four Lactobacillus and two Lactiplantibacillus strains isolated from cheese and beer. Firstly, we examined the antimicrobial effect of the CFSs from twelve Lactococcus strains against tested tyramine producers by agar-well diffusion assay. Six Lactococcus strains whose CFSs showed the highest antimicrobial effect on tyramine producers were further studied. Secondly, we investigated the influence of the selected six Lactococcus strains and their respective CFSs on tyramine production by tested Lactobacillus and Lactiplantibacillus strains in MRS broth supplemented with 2 g.L-1 of l-tyrosine. Tyramine production was monitored by HPLC-UV. The tyramine formation of all tested Lactobacillus and Lactiplantibacillus strains was not detected in the presence of Lc. lactis subsp. lactis CCDM 71 and CCDM 702, and their CFSs. Moreover, the remainder of the investigated Lactococcus strains (CCDM 670, CCDM 686, CCDM 689 and CCDM 731) and their CFSs decreased tyramine production significantly (P < 0.05) - even suppressing it completely in some cases - in four of the six tested tyramine producing strains.


Subject(s)
Anti-Bacterial Agents/pharmacology , Beer/microbiology , Cheese/microbiology , Culture Media/pharmacology , Lactobacillaceae/drug effects , Lactobacillus/drug effects , Lactococcus lactis/chemistry , Tyramine/pharmacology , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/metabolism , Chromatography, High Pressure Liquid , Culture Media/chemistry , Culture Media/metabolism , Lactobacillaceae/growth & development , Lactobacillaceae/isolation & purification , Lactobacillus/growth & development , Lactobacillus/isolation & purification , Lactococcus lactis/metabolism , Tyramine/analysis , Tyramine/metabolism
15.
Ecotoxicol Environ Saf ; 217: 112239, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33892344

ABSTRACT

Neurotransmission related signals are involved in the control of response to toxicants. We here focused on the tyramine and the glutamate related signals to determine their roles in regulating nanoplastic toxicity in Caenorhabditis elegans. In the range of µg/L, exposure to nanopolystyrene (100 nm) increased the expression of tdc-1 encoding a tyrosine decarboxylase required for synthesis of tyramine, and decreased the expression of eat-4 encoding a glutamate transporter. Both TDC-1 and EAT-4 could act in the neurons to regulate the nanopolystyrene toxicity. Meanwhile, neuronal RNAi knockdown of tdc-1 induced a susceptibility to nanopolystyrene toxicity, and neuronal RNAi knockdown of eat-4 induced a resistance to nanopolystyrene toxicity. In the neurons, TYRA-2 functioned as the corresponding receptor of tyramine and acted upstream of MPK-1 signaling to regulate the nanopolystyrene toxicity. Moreover, during the control of nanopolystyrene toxicity, GLR-4 and GLR-8 were identified as the corresponding glutamate receptors, and acted upstream of JNK-1 signaling and DBL-1 signaling, respectively. Our results demonstrated the crucial roles of tyramine and glutamate related signals in regulating the toxicity of nanoplastics in organisms.


Subject(s)
Caenorhabditis elegans/physiology , Microplastics/toxicity , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Glutamic Acid/metabolism , Intestines , Neurons/metabolism , Polystyrenes/toxicity , RNA Interference , Receptors, Biogenic Amine/metabolism , Signal Transduction , Tyramine/metabolism
16.
Int J Mol Sci ; 22(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33920848

ABSTRACT

The forward (kon) and reverse (koff) rate constants of drug-target interactions have important implications for therapeutic efficacy. Hence, time-resolved assays capable of measuring these binding rate constants may be informative to drug discovery efforts. Here, we used an ion channel activation assay to estimate the kons and koffs of four dopamine D2 receptor (D2R) agonists; dopamine (DA), p-tyramine, (R)- and (S)-5-OH-dipropylaminotetralin (DPAT). We further probed the role of the conserved serine S1935.42 by mutagenesis, taking advantage of the preferential interaction of (S)-, but not (R)-5-OH-DPAT with this residue. Results suggested similar koffs for the two 5-OH-DPAT enantiomers at wild-type (WT) D2R, both being slower than the koffs of DA and p-tyramine. Conversely, the kon of (S)-5-OH-DPAT was estimated to be higher than that of (R)-5-OH-DPAT, in agreement with the higher potency of the (S)-enantiomer. Furthermore, S1935.42A mutation lowered the kon of (S)-5-OH-DPAT and reduced the potency difference between the two 5-OH-DPAT enantiomers. Kinetic Kds derived from the koff and kon estimates correlated well with EC50 values for all four compounds across four orders of magnitude, strengthening the notion that our assay captured meaningful information about binding kinetics. The approach presented here may thus prove valuable for characterizing D2R agonist candidate drugs.


Subject(s)
Dopamine Agonists/metabolism , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/metabolism , Serine/metabolism , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Animals , Conserved Sequence , Dopamine/metabolism , Dopamine Agonists/chemistry , Humans , Kinetics , Mutant Proteins/metabolism , Mutation/genetics , Phenethylamines/pharmacology , Protein Binding , Structure-Activity Relationship , Tyramine/metabolism , Xenopus laevis
17.
Int J Mol Sci ; 23(1)2021 Dec 25.
Article in English | MEDLINE | ID: mdl-35008636

ABSTRACT

The identification and characterization of ligand-receptor binding sites are important for drug development. Trace amine-associated receptors (TAARs, members of the class A GPCR family) can interact with different biogenic amines and their metabolites, but the structural basis for their recognition by the TAARs is not well understood. In this work, we have revealed for the first time a group of conserved motifs (fingerprints) characterizing TAARs and studied the docking of aromatic (ß-phenylethylamine, tyramine) and aliphatic (putrescine and cadaverine) ligands, including gamma-aminobutyric acid, with human TAAR1 and TAAR6 receptors. We have identified orthosteric binding sites for TAAR1 (Asp68, Asp102, Asp284) and TAAR6 (Asp78, Asp112, Asp202). By analyzing the binding results of 7500 structures, we determined that putrescine and cadaverine bind to TAAR1 at one site, Asp68 + Asp102, and to TAAR6 at two sites, Asp78 + Asp112 and Asp112 + Asp202. Tyramine binds to TAAR6 at the same two sites as putrescine and cadaverine and does not bind to TAAR1 at the selected Asp residues. ß-Phenylethylamine and gamma-aminobutyric acid do not bind to the TAAR1 and TAAR6 receptors at the selected Asp residues. The search for ligands targeting allosteric and orthosteric sites of TAARs has excellent pharmaceutical potential.


Subject(s)
Biogenic Amines/metabolism , Cell Cycle Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Amino Acid Sequence , Animals , Binding Sites/physiology , Cadaverine/metabolism , Fishes/metabolism , Humans , Ligands , Mice , Phenethylamines/metabolism , Putrescine/metabolism , Tyramine/metabolism , gamma-Aminobutyric Acid/metabolism
18.
Plant J ; 100(1): 20-37, 2019 10.
Article in English | MEDLINE | ID: mdl-31124249

ABSTRACT

Enzyme promiscuity, a common property of many uridine diphosphate sugar-dependent glycosyltransferases (UGTs) that convert small molecules, significantly hinders the identification of natural substrates and therefore the characterization of the physiological role of enzymes. In this paper we present a simple but effective strategy to identify endogenous substrates of plant UGTs using LC-MS-guided targeted glycoside analysis of transgenic plants. We successfully identified natural substrates of two promiscuous Nicotiana benthamiana UGTs (NbUGT73A24 and NbUGT73A25), orthologues of pathogen-induced tobacco UGT (TOGT) from Nicotiana tabacum, which is involved in the hypersensitive reaction. While in N. tabacum, TOGT glucosylated scopoletin after treatment with salicylate, fungal elicitors and the tobacco mosaic virus, NbUGT73A24 and NbUGT73A25 produced glucosides of phytoalexin N-feruloyl tyramine, which may strengthen cell walls to prevent the intrusion of pathogens, and flavonols after agroinfiltration of the corresponding genes in N. benthamiana. Enzymatic glucosylation of fractions of a physiological aglycone library confirmed the biological substrates of UGTs. In addition, overexpression of both genes in N. benthamiana produced clear lesions on the leaves and led to a significantly reduced content of pathogen-induced plant metabolites such as phenylalanine and tryptophan. Our results revealed some additional biological functions of TOGT enzymes and indicated a multifunctional role of UGTs in plant resistance.


Subject(s)
Coumaric Acids/metabolism , Glucose/metabolism , Glycosyltransferases/genetics , Nicotiana/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Sesquiterpenes/metabolism , Tyramine/analogs & derivatives , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Glycosides/metabolism , Glycosylation , Glycosyltransferases/metabolism , Plant Diseases/virology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/virology , Plant Proteins/metabolism , Substrate Specificity , Nicotiana/metabolism , Nicotiana/virology , Tobacco Mosaic Virus/physiology , Tyramine/metabolism , Phytoalexins
19.
Int J Med Microbiol ; 310(8): 151452, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33091748

ABSTRACT

Salmonella has evolved various metabolic pathways to scavenge energy from the metabolic byproducts of the host gut microbiota, however, the precise metabolic byproducts and pathways utilized by Salmonella remain elusive. Previously we reported that Salmonella can proliferate by deriving energy from two metabolites that naturally occur in the host as gut microbial metabolic byproducts, namely, tyramine (TYR, an aromatic amine) and d-glucuronic acid (DGA, a hexuronic acid). Salmonella Pathogenicity Island 13 (SPI-13) plays a critical role in the ability of Salmonella to derive energy from TYR and DGA, however the catabolic pathways of these two micronutrients in Salmonella are poorly defined. The objective of this study was to identify the specific genetic components and construct the regulatory circuits for the TYR and DGA catabolic pathways in Salmonella. To accomplish this, we employed TYR and DGA-induced global transcriptional profiling and gene functional network analysis approaches. We report that TYR induced differential expression of 319 genes (172 up-regulated and 157 down-regulated) when Salmonella was grown in the presence of TYR as a sole energy source. These included the genes originally predicted to be involved in the classical TYR catabolic pathway. TYR also induced expression of majority of genes involved in the acetaldehyde degradation pathway and aided identification of a few new genes that are likely involved in alternative pathway for TYR catabolism. In contrast, DGA induced differential expression of 71 genes (58 up-regulated and 13 down-regulated) when Salmonella was grown in the presence of DGA as a sole energy source. These included the genes originally predicted to be involved in the classical pathway and a few new genes likely involved in the alternative pathway for DGA catabolism. Interestingly, DGA also induced expression of SPI-2 T3SS, suggesting that DGA may also influence nutritional virulence of Salmonella. In summary, this is the first report describing the global transcriptional profiling of TYR and DGA catabolic pathways of Salmonella. This study will contribute to the better understanding of the role of TYR and DGA in metabolic adaptation and virulence of Salmonella.


Subject(s)
Glucuronic Acid/metabolism , Salmonella typhimurium , Transcriptome , Tyramine/metabolism , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Genomic Islands , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Virulence
20.
Mar Drugs ; 18(11)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114230

ABSTRACT

During an investigation of the chemistry of the Red Sea Verongiid sponge Pseudoceratina arabica, we discovered a small molecule, pseudoceratonic acid (1), along with the new moloka'iamine derivatives, ceratinines N (2), O (3), and the previously reported compounds moloka'iamine (4), hydroxymoloka'iamine (5) and ceratinamine (6). The structural assignments of 1-6 were accomplished by interpretation of their NMR and HRESIMS spectral data. Pseudoceratonic acid possesses a dibrominated hydrazine-derived functional group not found in any reported chemical compound. Pseudoceratonic acid selectively inhibited the growth of E. coli and S. aureus, while ceratinine N selectively inhibited C. albicans. Further, ceratinine N showed potent cytotoxic effects against the triple-negative breast cancer, colorectal carcinoma, and human cervical carcinoma cell lines down to 2.1 µM.


Subject(s)
Antineoplastic Agents/pharmacology , Porifera/chemistry , Tyramine/analogs & derivatives , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Line , Humans , Indian Ocean , Magnetic Resonance Spectroscopy , Molecular Structure , Tyramine/chemistry , Tyramine/metabolism , Tyramine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL