Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 665
Filter
1.
Cell ; 169(2): 301-313.e11, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28366204

ABSTRACT

Receptor-interacting protein kinase-3 (RIPK3) is an activator of necroptotic cell death, but recent work has implicated additional roles for RIPK3 in inflammatory signaling independent of cell death. However, while necroptosis has been shown to contribute to antiviral immunity, death-independent roles for RIPK3 in host defense have not been demonstrated. Using a mouse model of West Nile virus (WNV) encephalitis, we show that RIPK3 restricts WNV pathogenesis independently of cell death. Ripk3-/- mice exhibited enhanced mortality compared to wild-type (WT) controls, while mice lacking the necroptotic effector MLKL, or both MLKL and caspase-8, were unaffected. The enhanced susceptibility of Ripk3-/- mice arose from suppressed neuronal chemokine expression and decreased central nervous system (CNS) recruitment of T lymphocytes and inflammatory myeloid cells, while peripheral immunity remained intact. These data identify pleiotropic functions for RIPK3 in the restriction of viral pathogenesis and implicate RIPK3 as a key coordinator of immune responses within the CNS.


Subject(s)
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , West Nile Fever/immunology , West Nile virus/physiology , Animals , Central Nervous System/metabolism , Chemokines/immunology , Leukocytes/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Necrosis , Neurons/metabolism
2.
Nat Immunol ; 17(4): 397-405, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26928339

ABSTRACT

The signaling adaptor TRAF3 is a highly versatile regulator of both innate immunity and adaptive immunity, but how its phosphorylation is regulated is still unknown. Here we report that deficiency in or inhibition of the conserved serine-threonine kinase CK1ɛ suppressed the production of type I interferon in response to viral infection. CK1ɛ interacted with and phosphorylated TRAF3 at Ser349, which thereby promoted the Lys63 (K63)-linked ubiquitination of TRAF3 and subsequent recruitment of the kinase TBK1 to TRAF3. Consequently, CK1ɛ-deficient mice were more susceptible to viral infection. Our findings establish CK1ɛ as a regulator of antiviral innate immune responses and indicate a novel mechanism of immunoregulation that involves CK1ɛ-mediated phosphorylation of TRAF3.


Subject(s)
Casein Kinase 1 epsilon/immunology , Immunity, Innate/immunology , Interferon-beta/immunology , TNF Receptor-Associated Factor 3/immunology , Animals , Casein Kinase 1 epsilon/antagonists & inhibitors , Casein Kinase 1 epsilon/genetics , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , HeLa Cells , Herpes Simplex/immunology , Herpesvirus 1, Human/immunology , Humans , Interferon Type I/biosynthesis , Interferon Type I/immunology , Interferon-beta/biosynthesis , Mass Spectrometry , Mice , Mice, Knockout , Phosphorylation , Protein Serine-Threonine Kinases , Real-Time Polymerase Chain Reaction , Rhabdoviridae Infections/immunology , TNF Receptor-Associated Factor 3/genetics , Ubiquitination , Vesiculovirus/immunology , West Nile Fever/immunology , West Nile virus/immunology
3.
Nat Immunol ; 16(5): 485-94, 2015 May.
Article in English | MEDLINE | ID: mdl-25822250

ABSTRACT

The human helicase senataxin (SETX) has been linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS4) and ataxia with oculomotor apraxia (AOA2). Here we identified a role for SETX in controlling the antiviral response. Cells that had undergone depletion of SETX and SETX-deficient cells derived from patients with AOA2 had higher expression of antiviral mediators in response to infection than did wild-type cells. Mechanistically, we propose a model whereby SETX attenuates the activity of RNA polymerase II (RNAPII) at genes stimulated after a virus is sensed and thus controls the magnitude of the host response to pathogens and the biogenesis of various RNA viruses (e.g., influenza A virus and West Nile virus). Our data indicate a potentially causal link among inborn errors in SETX, susceptibility to infection and the development of neurologic disorders.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Influenza, Human/immunology , Orthomyxoviridae/physiology , RNA Helicases/metabolism , RNA Polymerase II/metabolism , Spinocerebellar Degenerations/genetics , West Nile Fever/immunology , West Nile virus/physiology , Animals , Cell Line, Tumor , Chlorocebus aethiops , Cytokines/metabolism , DNA Helicases , Dogs , Down-Regulation , Humans , Immunity, Innate/genetics , Interferon Regulatory Factor-3/metabolism , Madin Darby Canine Kidney Cells , Mice , Mice, Knockout , Microarray Analysis , Multifunctional Enzymes , RNA Helicases/genetics , RNA Polymerase II/genetics , RNA, Small Interfering/genetics , Spinocerebellar Ataxias/congenital , Vero Cells , Virus Replication/genetics
4.
Nat Immunol ; 15(9): 884-93, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25029552

ABSTRACT

Although the transcription factor c-Myc is essential for the establishment of a metabolically active and proliferative state in T cells after priming, its expression is transient. It remains unknown how T cell activation is maintained after c-Myc expression is downregulated. Here we identified AP4 as the transcription factor that was induced by c-Myc and sustained activation of antigen-specific CD8+ T cells. Despite normal priming, AP4-deficient CD8+ T cells failed to continue transcription of a broad range of c-Myc-dependent targets. Mice lacking AP4 specifically in CD8+ T cells showed enhanced susceptibility to infection with West Nile virus. Genome-wide analysis suggested that many activation-induced genes encoding molecules involved in metabolism were shared targets of c-Myc and AP4. Thus, AP4 maintains c-Myc-initiated cellular activation programs in CD8+ T cells to control microbial infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocyte Activation/immunology , Proto-Oncogene Proteins c-myc/immunology , Transcription Factors/immunology , Animals , Mice , West Nile Fever/immunology
5.
Nat Immunol ; 14(12): 1237-46, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24185615

ABSTRACT

Induction of type I interferon is a central event of innate immunity, essential for host defense. Here we report that the transcription factor ELF4 is induced by type I interferon and upregulates interferon expression in a feed-forward loop. ELF4 deficiency leads to reduced interferon production, resulting in enhanced susceptibility to West Nile virus encephalitis in mice. After viral infection, ELF4 is recruited by STING, interacts with and is activated by the MAVS-TBK1 complex, and translocates into the nucleus to bind interferon promoters. Cooperative binding with ELF4 increases the binding affinity of interferon regulatory factors IRF3 and IRF7, which is mediated by EICE elements. Thus, in addition to identifying a regulator of innate immune signaling, we uncovered a role for EICE elements in interferon transactivation.


Subject(s)
DNA-Binding Proteins/immunology , Interferon-beta/immunology , Transcription Factors/immunology , West Nile Fever/immunology , West Nile virus/immunology , Animals , Cell Line , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , HeLa Cells , Host-Pathogen Interactions/immunology , Humans , Immunoblotting , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/immunology , Interferon Regulatory Factor-7/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Membrane Proteins/genetics , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Protein Binding/immunology , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/immunology , Survival Analysis , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation/immunology , West Nile Fever/virology , West Nile virus/physiology
6.
J Virol ; 97(10): e0111223, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37796127

ABSTRACT

IMPORTANCE: Arboviruses, particularly those transmitted by mosquitoes, pose a significant threat to humans and are an increasing concern because of climate change, human activity, and expanding vector-competent populations. West Nile virus is of significant concern as the most frequent mosquito-borne disease transmitted annually within the continental United States. Here, we identify a previously uncharacterized signaling pathway that impacts West Nile virus infection, namely endothelin signaling. Additionally, we demonstrate that we can successfully translate results obtained from D. melanogaster into the more relevant human system. Our results add to the growing field of insulin-mediated antiviral immunity and identify potential biomarkers or intervention targets to better address West Nile virus infection and severe disease.


Subject(s)
Endothelins , Insulin , West Nile Fever , Animals , Humans , Drosophila melanogaster/immunology , Drosophila melanogaster/metabolism , Drosophila melanogaster/virology , Insulin/metabolism , Signal Transduction , West Nile Fever/immunology , West Nile Fever/metabolism , West Nile Fever/virology , West Nile virus/immunology , West Nile virus/physiology , Endothelins/immunology , Endothelins/metabolism
7.
Nat Immunol ; 13(8): 717-9, 2012 Jul 19.
Article in English | MEDLINE | ID: mdl-22814343

ABSTRACT

Most myeloid cells express the growth-factor receptor CSF1R. Recognition of interleukin 34 by CSF1R is required for the development of tissue-resident Langerhans cells and microglia, which explains the independence of their growth from CSF1.


Subject(s)
Interleukins/metabolism , Langerhans Cells/physiology , Microglia/physiology , Receptor, Macrophage Colony-Stimulating Factor/metabolism , West Nile Fever/immunology , Animals
8.
Nat Immunol ; 13(8): 753-60, 2012 Jun 24.
Article in English | MEDLINE | ID: mdl-22729249

ABSTRACT

The differentiation of bone marrow-derived progenitor cells into monocytes, tissue macrophages and some dendritic cell (DC) subtypes requires the growth factor CSF1 and its receptor, CSF1R. Langerhans cells (LCs) and microglia develop from embryonic myeloid precursor cells that populate the epidermis and central nervous system (CNS) before birth. Notably, LCs and microglia are present in CSF1-deficient mice but absent from CSF1R-deficient mice. Here we investigated whether an alternative CSF1R ligand, interleukin 34 (IL-34), is responsible for this discrepancy. Through the use of IL-34-deficient (Il34(LacZ/LacZ)) reporter mice, we found that keratinocytes and neurons were the main sources of IL-34. Il34(LacZ/LacZ) mice selectively lacked LCs and microglia and responded poorly to skin antigens and viral infection of the CNS. Thus, IL-34 specifically directs the differentiation of myeloid cells in the skin epidermis and CNS.


Subject(s)
Interleukins/metabolism , Langerhans Cells/physiology , Microglia/physiology , Receptor, Macrophage Colony-Stimulating Factor/metabolism , West Nile Fever/immunology , Animals , Cell Differentiation , Central Nervous System/metabolism , Interleukins/deficiency , Interleukins/genetics , Keratinocytes/metabolism , Langerhans Cells/cytology , Langerhans Cells/immunology , Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/cytology , Microglia/immunology , Myeloid Cells/metabolism , Myelopoiesis , Neurons/metabolism , Receptor, Macrophage Colony-Stimulating Factor/genetics , Receptor, Macrophage Colony-Stimulating Factor/immunology , Skin/metabolism , West Nile Fever/genetics , West Nile virus/pathogenicity
9.
Virol J ; 21(1): 158, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004752

ABSTRACT

BACKGROUND: West Nile virus (WNV) is a rapidly spreading mosquito-borne virus accounted for neuroinvasive diseases. An insight into WNV-host factors interaction is necessary for development of therapeutic approaches against WNV infection. CD11b has key biological functions and been identified as a therapeutic target for several human diseases. The purpose of this study was to determine whether CD11b was implicated in WNV infection. METHODS: SH-SY5Y cells with and without MEK1/2 inhibitor U0126 or AKT inhibitor MK-2206 treatment were infected with WNV. CD11b mRNA levels were assessed by real-time PCR. WNV replication and expression of stress (ATF6 and CHOP), pro-inflammatory (TNF-α), and antiviral (IFN-α, IFN-ß, and IFN-γ) factors were evaluated in WNV-infected SH-SY5Y cells with CD11b siRNA transfection. Cell viability was determined by MTS assay. RESULTS: CD11b mRNA expression was remarkably up-regulated by WNV in a time-dependent manner. U0126 but not MK-2206 treatment reduced the CD11b induction by WNV. CD11b knockdown significantly decreased WNV replication and protected the infected cells. CD11b knockdown markedly increased TNF-α, IFN-α, IFN-ß, and IFN-γ mRNA expression induced by WNV. ATF6 mRNA expression was reduced upon CD11b knockdown following WNV infection. CONCLUSION: These results demonstrate that CD11b is involved in maintaining WNV replication and modulating inflammatory as well as antiviral immune response, highlighting the potential of CD11b as a target for therapeutics for WNV infection.


Subject(s)
CD11b Antigen , Virus Replication , West Nile virus , Humans , Virus Replication/drug effects , West Nile virus/physiology , West Nile virus/immunology , CD11b Antigen/genetics , CD11b Antigen/metabolism , Cell Line, Tumor , West Nile Fever/immunology , West Nile Fever/virology , Neuroblastoma/immunology , Neuroblastoma/virology , Host-Pathogen Interactions/immunology , Cell Survival/drug effects , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics
10.
J Virol ; 95(22): e0104021, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34495694

ABSTRACT

We previously identified a subset of interferon-stimulated genes (ISGs) upregulated by West Nile virus (WNV) infection in wild-type mouse embryo fibroblasts (MEFs) after viral proteins had inhibited type I interferon (IFN)-mediated JAK-STAT signaling and also in WNV-infected RIG-I-/-, MDA5-/-, STAT1-/-, STAT2-/-, IFNAR-/-, IRF3-/-, IRF7-/-, and IRF3/7-/- MEFs. In this study, ISG upregulation by WNV infection in IFNAR-/- MEFs was confirmed by transcriptome sequencing (RNA-seq). ISG upregulation by WNV infection was inhibited in RIG-I/MDA5-/- MEFs. ISGs were upregulated in IRF1-/- and IRF5-/- MEFs but only minimally upregulated in IRF3/5/7-/- MEFs, suggesting redundant IRF involvement. We previously showed that a single proximal interferon-stimulated response element (ISRE) in the Oas1a and Oas1b promoters bound the ISGF3 complex after type I IFN treatment. In this study, we used wild-type and mutant promoter luciferase reporter constructs to identify critical regions in the Oas1b and Ifit1 promoters for gene activation in infected IFNAR-/- MEFs. Two ISREs were required in both promoters. Mutation of these ISREs in an Ifit1 promoter DNA probe reduced in vitro complex formation with infected nuclear extracts. An NF-κB inhibitor decreased Ifit1 promoter activity in cells and in vitro complex formation. IRF3 and p50 promoter binding was detected by chromatin immunoprecipitation (ChIP) for upregulated ISGs with two proximal ISREs. The data indicate that ISREs function cooperatively to upregulate the expression of some ISGs when type I IFN signaling is absent, with the binding complex consisting of IRF3, IRF5, and/or IRF7 and an NF-κB component(s) as well as other, as-yet-unknown factors. IMPORTANCE Type I IFN signaling in mammalian cells induces formation of the ISGF3 transcription factor complex, which binds to interferon stimulated response elements (ISREs) in the promoters of interferon-stimulated genes (ISGs) in the cell nucleus. Flavivirus proteins counteract type I IFN signaling by preventing either the formation or nuclear localization of ISGF3. A subset of ISRE-regulated ISGs was still induced in West Nile virus (WNV)-infected mouse embryo fibroblasts (MEFs), indicating that cells have an alternative mechanism for activating these ISGs. In this study, cellular components involved in this ISG upregulation mechanism were identified using gene knockout MEFs and ChIP, and critical promoter regions for gene activation were mapped using reporter assays. The data indicate a cooperative function between two ISREs and required binding of IRF3, IRF5, and/or IRF7 and an NF-κB component(s). Moreover, type I IFN signaling-independent ISG activation requires different additional promoter activation regions than type I IFN-dependent activation.


Subject(s)
Fibroblasts , Gene Expression Regulation/immunology , Interferon Type I/immunology , West Nile Fever/immunology , West Nile virus/immunology , Animals , Fibroblasts/immunology , Fibroblasts/virology , Mice , Mice, Inbred C57BL , Mice, Knockout , Response Elements/immunology
11.
J Virol ; 95(18): e0083521, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34190599

ABSTRACT

Recruitment of immune cells from the periphery is critical for controlling West Nile virus (WNV) growth in the central nervous system (CNS) and preventing subsequent WNV-induced CNS disease. Neuroinflammatory responses, including the release of proinflammatory cytokines and chemokines by CNS cells, influence the entry and function of peripheral immune cells that infiltrate the CNS. However, these same cytokines and chemokines contribute to tissue damage in other models of CNS injury. Rosiglitazone is a peroxisome proliferator-activated receptor gamma (PPARγ) agonist that inhibits neuroinflammation. We used rosiglitazone in WNV-infected ex vivo brain slice cultures (BSC) to investigate the role of neuroinflammation within the CNS in the absence of peripheral immune cells. Rosiglitazone treatment inhibited WNV-induced expression of proinflammatory chemokines and cytokines, interferon beta (IFN-ß), and IFN-stimulated genes (ISG) and also decreased WNV-induced activation of microglia. These decreased neuroinflammatory responses were associated with activation of astrocytes, robust viral growth, increased activation of caspase 3, and increased neuronal loss. Rosiglitazone had a similar effect on in vivo WNV infection, causing increased viral growth, tissue damage, and disease severity in infected mice, even though the number of infiltrating peripheral immune cells was higher in rosiglitazone-treated, WNV-infected mice than in untreated, infected controls. These results indicate that local neuroinflammatory responses are capable of controlling viral growth within the CNS and limiting neuronal loss and may function to keep the virus in check prior to the infiltration of peripheral immune cells, limiting both virus- and immune-mediated neuronal damage. IMPORTANCE West Nile virus is the most common cause of epidemic encephalitis in the United States and can result in debilitating CNS disease. There are no effective vaccines or treatments for WNV-induced CNS disease in humans. The peripheral immune response is critical for protection against WNV CNS infections. We now demonstrate that intrinsic immune responses also control viral growth and limit neuronal loss. These findings have important implications for developing new therapies for WNV-induced CNS disease.


Subject(s)
Brain/immunology , Cell Death , Central Nervous System Diseases/prevention & control , Immunity, Innate/immunology , Neurons/immunology , West Nile Fever/immunology , West Nile virus/immunology , Animals , Brain/pathology , Brain/virology , Central Nervous System Diseases/etiology , Central Nervous System Diseases/pathology , Chemokines/metabolism , Cytokines/metabolism , Female , Male , Mice , Neurons/pathology , Neurons/virology , West Nile Fever/complications , West Nile Fever/pathology , West Nile Fever/virology
12.
J Virol ; 95(19): e0061921, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34232731

ABSTRACT

Although transmission of Zika virus (ZIKV) in the Americas has greatly declined since late 2017, recent reports of reduced risks of symptomatic Zika by prior dengue virus (DENV) infection and increased risks of severe dengue disease by previous ZIKV or DENV infection underscore a critical need for serological tests that can discriminate past ZIKV, DENV, and/or other flavivirus infections and improve our understanding of the immune interactions between these viruses and vaccine strategy in endemic regions. As serological tests for ZIKV primarily focus on envelope (E) and nonstructural protein 1 (NS1), antibodies to other ZIKV proteins have not been explored. Here, we employed Western blot analysis using antigens of 6 flaviviruses from 3 serocomplexes to investigate antibody responses following reverse transcription-PCR (RT-PCR)-confirmed ZIKV infection. Panels of 20 primary ZIKV and 20 ZIKV with previous DENV infection recognized E proteins of all 6 flaviviruses and the NS1 protein of ZIKV with some cross-reactivity to DENV. While the primary ZIKV panel recognized only the premembrane (prM) protein of ZIKV, the ZIKV with previous DENV panel recognized both ZIKV and DENV prM proteins. Analysis of antibody responses following 42 DENV and 18 West Nile virus infections revealed similar patterns of recognition by anti-E and anti-NS1 antibodies, whereas both panels recognized the prM protein of the homologous serocomplex but not others. The specificity was further supported by analysis of sequential samples. Together, these findings suggest that anti-prM antibody is a flavivirus serocomplex-specific marker and can be used to delineate current and past flavivirus infections in endemic areas. IMPORTANCE Despite a decline in Zika virus (ZIKV) transmission since late 2017, questions regarding its surveillance, potential reemergence, and interactions with other flaviviruses in regions where it is endemic remain unanswered. Recent studies have reported reduced risks of symptomatic Zika by prior dengue virus (DENV) infection and increased risks of severe dengue disease by previous ZIKV or DENV infection, highlighting a need for better serological tests to discriminate past ZIKV, DENV, and/or other flavivirus infections and improved understanding of the immune interactions and vaccine strategy for these viruses. As most serological tests for ZIKV focused on envelope and nonstructural protein 1, antibodies to other ZIKV proteins, including potentially specific antibodies, remain understudied. We employed Western blot analysis using antigens of 6 flaviviruses to study antibody responses following well-documented ZIKV, DENV, and West Nile virus infections and identified anti-premembrane antibody as a flavivirus serocomplex-specific marker to delineate current and past flavivirus infections in areas where flaviviruses are endemic.


Subject(s)
Antibodies, Viral/blood , Dengue/immunology , Viral Envelope Proteins/immunology , West Nile Fever/immunology , Zika Virus Infection/immunology , Antibodies, Viral/immunology , Blotting, Western , Cross Reactions , Dengue/diagnosis , Dengue Virus/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Sensitivity and Specificity , Viral Nonstructural Proteins/immunology , West Nile Fever/diagnosis , West Nile virus/immunology , Zika Virus/immunology , Zika Virus Infection/diagnosis
13.
J Virol ; 95(20): e0084421, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34346770

ABSTRACT

Dengue virus (DENV) and West Nile virus (WNV) are arthropod-transmitted flaviviruses that cause systemic vascular leakage and encephalitis syndromes, respectively, in humans. However, the viral factors contributing to these specific clinical disorders are not completely understood. Flavivirus nonstructural protein 1 (NS1) is required for replication, expressed on the cell surface, and secreted as a soluble glycoprotein, reaching high levels in the blood of infected individuals. Extracellular DENV NS1 and WNV NS1 interact with host proteins and cells, have immune evasion functions, and promote endothelial dysfunction in a tissue-specific manner. To characterize how differences in DENV NS1 and WNV NS1 might function in pathogenesis, we generated WNV NS1 variants with substitutions corresponding to residues found in DENV NS1. We discovered that the substitution NS1-P101K led to reduced WNV infectivity in the brain and attenuated lethality in infected mice, although the virus replicated efficiently in cell culture and peripheral organs and bound at wild-type levels to brain endothelial cells and complement components. The P101K substitution resulted in reduced NS1 antigenemia in mice, and this was associated with reduced WNV spread to the brain. Because exogenous administration of NS1 protein rescued WNV brain infectivity in mice, we conclude that circulating WNV NS1 facilitates viral dissemination into the central nervous system and impacts disease outcomes. IMPORTANCE Flavivirus NS1 serves as an essential scaffolding molecule during virus replication but also is expressed on the cell surface and is secreted as a soluble glycoprotein that circulates in the blood of infected individuals. Although extracellular forms of NS1 are implicated in immune modulation and in promoting endothelial dysfunction at blood-tissue barriers, it has been challenging to study specific effects of NS1 on pathogenesis without disrupting its key role in virus replication. Here, we assessed WNV NS1 variants that do not affect virus replication and evaluated their effects on pathogenesis in mice. Our characterization of WNV NS1-P101K suggests that the levels of NS1 in the circulation facilitate WNV dissemination to the brain and affect disease outcomes. Our findings facilitate understanding of the role of NS1 during flavivirus infection and support antiviral strategies for targeting circulating forms of NS1.


Subject(s)
Viral Nonstructural Proteins/metabolism , West Nile virus/metabolism , Animals , Brain/metabolism , Brain/virology , Dengue Virus/drug effects , Dengue Virus/immunology , Dengue Virus/metabolism , Endothelial Cells , Female , Flavivirus/pathogenicity , Immune Evasion , Male , Mice , Mice, Inbred C57BL , Viral Nonstructural Proteins/analysis , Viral Nonstructural Proteins/blood , Viral Nonstructural Proteins/genetics , Virus Replication/genetics , Virus Replication/physiology , West Nile Fever/immunology , West Nile virus/drug effects , West Nile virus/immunology
14.
PLoS Pathog ; 16(10): e1009009, 2020 10.
Article in English | MEDLINE | ID: mdl-33104760

ABSTRACT

A key difference that distinguishes viral infections from protein immunizations is the recognition of viral nucleic acids by cytosolic pattern recognition receptors (PRRs). Insights into the functions of cytosolic PRRs such as the RNA-sensing Rig-I-like receptors (RLRs) in the instruction of adaptive immunity are therefore critical to understand protective immunity to infections. West Nile virus (WNV) infection of mice deficent of RLR-signaling adaptor MAVS results in a defective adaptive immune response. While this finding suggests a role for RLRs in the instruction of adaptive immunity to WNV, it is difficult to interpret due to the high WNV viremia, associated exessive antigen loads, and pathology in the absence of a MAVS-dependent innate immune response. To overcome these limitations, we have infected MAVS-deficient (MAVSKO) mice with a single-round-of-infection mutant of West Nile virus. We show that MAVSKO mice failed to produce an effective neutralizing antibody response to WNV despite normal antibody titers against the viral WNV-E protein. This defect occurred independently of antigen loads or overt pathology. The specificity of the antibody response in infected MAVSKO mice remained unchanged and was still dominated by antibodies that bound the neutralizing lateral ridge (LR) epitope in the DIII domain of WNV-E. Instead, MAVSKO mice produced IgM antibodies, the dominant isotype controlling primary WNV infection, with lower affinity for the DIII domain. Our findings suggest that RLR-dependent signals are important for the quality of the humoral immune response to WNV.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Receptors, Pattern Recognition/immunology , Adaptive Immunity/immunology , Adaptor Proteins, Signal Transducing/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation , DEAD Box Protein 58/immunology , DEAD Box Protein 58/metabolism , Female , Immunity, Humoral , Immunity, Innate/immunology , Immunoglobulin M , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Pattern Recognition/metabolism , Signal Transduction/immunology , West Nile Fever/immunology , West Nile Fever/virology , West Nile virus/pathogenicity
15.
Nat Immunol ; 11(10): 912-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20818395

ABSTRACT

Caspase-12 has been shown to negatively modulate inflammasome signaling during bacterial infection. Its function in viral immunity, however, has not been characterized. We now report an important role for caspase-12 in controlling viral infection via the pattern-recognition receptor RIG-I. After challenge with West Nile virus (WNV), caspase-12-deficient mice had greater mortality, higher viral burden and defective type I interferon response compared with those of challenged wild-type mice. In vitro studies of primary neurons and mouse embryonic fibroblasts showed that caspase-12 positively modulated the production of type I interferon by regulating E3 ubiquitin ligase TRIM25-mediated ubiquitination of RIG-I, a critical signaling event for the type I interferon response to WNV and other important viral pathogens.


Subject(s)
Caspase 12/metabolism , DEAD-box RNA Helicases/metabolism , Interferon Type I/biosynthesis , Receptors, Virus/metabolism , West Nile Fever/immunology , West Nile virus , Animals , Caspase 12/genetics , Cells, Cultured , DEAD Box Protein 58 , DNA-Binding Proteins/metabolism , Fibroblasts/metabolism , Immunity, Innate , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Signal Transduction , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , West Nile Fever/genetics
16.
J Immunol ; 204(6): 1508-1520, 2020 03 15.
Article in English | MEDLINE | ID: mdl-32034064

ABSTRACT

B cell activating factor (BAFF) is essential for B cells to develop and respond to Ags. Dysregulation of BAFF contributes to the development of some autoimmune diseases and malignancies. Little is known about when, where, and how BAFF is produced in vivo and about which BAFF-producing cells contribute to B cell responses. To better understand BAFF functions, we created BAFF reporter (BAFF-RFP) mice and Baff floxed (Bafffl/fl ) mice. Splenic and bone marrow neutrophils (Nphs) from BAFF-RFP mice expressed the highest constitutive levels of BAFF; other myeloid subsets, including conventional dendritic cells (cDCs) and monocyte (MO) subsets, expressed lower levels. Treatment of BAFF-RFP mice with polyinosinic:polycytidylic acid increased BAFF expression in splenic Ly6Chi inflammatory MOs, CD11bhi activated NK subset, and in bone marrow myeloid precursors. Postinfection with West Nile virus (WNV), BAFF increased in CD8- cDCs and Nphs, and BAFF+ CD11bhi NK cells expanded in draining lymph nodes. The cell- and tissue-specific increases in BAFF expression were dependent on type I IFN signaling. MAVS also was required or contributed to BAFF expression in dendritic cell and MO subsets, respectively. Mice with deletion of Baff in either cDCs or Nphs had reduced Ab responses after NP-Ficoll immunization; thus, BAFF produced by both cDCs and Nphs contributes to T cell-independent Ab responses. Conversely, mice with a cDC Baff deficiency had increased mortality after WNV infection and decreased WNV-specific IgG and neutralizing Ab responses. BAFF produced by Nphs and cDCs is regulated differently and has key roles in Ab responses and protective immunity.


Subject(s)
B-Cell Activating Factor/metabolism , Dendritic Cells/metabolism , Neutrophils/metabolism , West Nile Fever/immunology , West Nile virus/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , B-Cell Activating Factor/genetics , B-Cell Activating Factor/immunology , Dendritic Cells/immunology , Disease Models, Animal , Humans , Immunity, Humoral , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Interferon Type I/metabolism , Mice , Mice, Knockout , Neutrophils/immunology , Signal Transduction/immunology , West Nile Fever/blood , West Nile Fever/virology
17.
BMC Immunol ; 22(1): 5, 2021 01 09.
Article in English | MEDLINE | ID: mdl-33421988

ABSTRACT

BACKGROUND: Recent outbreaks of Zika Virus (ZIKV) infection and associated microcephaly has raised multiple scientific questions. The close antigenic relatedness between flaviviruses makes diagnosis of specific infection difficult. This relatedness also raises the potential of Antibody Dependent Enhancement (ADE) via cross reactive antibodies to flaviviruses like West Nile Virus (WNV) and Dengue Virus (DENV). Asymptomatic WNV infections are endemic throughout the US creating a large proportion of the population that is seropositive for WNV antibodies. Whether these sero-positive individuals potentially carry ZIKV enhancing antibodies remains unknown. RESULTS: Serum samples obtained from human subjects with symptomatic or asymptomatic WNV infection from a WNV endemic region in Texas were tested for their ability to enhance or neutralize ZIKV infection. Sero-surveillance data demonstrated a ~ 7% prevalence for WNV antibodies in the population. Sera from both symptomatic and asymptomatic WNV seropositive donors effectively neutralized WNV and to some extent DENV infection. Interestingly, WNV+ sera failed to inhibit ZIKV while significantly enhancing infection. Conversely, ZIKV specific sera effectively neutralized ZIKV, with ADE only evident at lower concentrations. The enhancement of ZIKV via WNV antibody positive sera was likely due to non-neutralizing Envelope (E) antibodies as seen with monoclonal ZIKV E antibodies. CONCLUSIONS: Overall, our findings suggest that WNV antibodies in the sera significantly enhance ZIKV infection in Fc receptor positive cells with limited neutralization activity. Further studies in more relevant models of ADE will be needed to confirm the relevance of these findings in vivo.


Subject(s)
Antibodies, Viral/immunology , Antibody-Dependent Enhancement , West Nile virus/immunology , Zika Virus/immunology , Antibodies, Neutralizing/immunology , Cross Reactions , Dengue Virus/immunology , Female , Humans , Male , Middle Aged , Prevalence , Texas/epidemiology , West Nile Fever/epidemiology , West Nile Fever/immunology , Zika Virus Infection/immunology
18.
J Neuroinflammation ; 18(1): 166, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34311763

ABSTRACT

BACKGROUND: Differentiating infiltrating myeloid cells from resident microglia in neuroinflammatory disease is challenging, because bone marrow-derived inflammatory monocytes infiltrating the inflamed brain adopt a 'microglia-like' phenotype. This precludes the accurate identification of either cell type without genetic manipulation, which is important to understand their temporal contribution to disease and inform effective intervention in its pathogenesis. During West Nile virus (WNV) encephalitis, widespread neuronal infection drives substantial CNS infiltration of inflammatory monocytes, causing severe immunopathology and/or death, but the role of microglia in this remains unclear. METHODS: Using high-parameter cytometry and dimensionality-reduction, we devised a simple, novel gating strategy to identify microglia and infiltrating myeloid cells during WNV-infection. Validating our strategy, we (1) blocked the entry of infiltrating myeloid populations from peripheral blood using monoclonal blocking antibodies, (2) adoptively transferred BM-derived monocytes and tracked their phenotypic changes after infiltration and (3) labelled peripheral leukocytes that infiltrate into the brain with an intravenous dye. We demonstrated that myeloid immigrants populated only the identified macrophage gates, while PLX5622 depletion reduced all 4 subsets defined by the microglial gates. RESULTS: Using this gating approach, we identified four consistent microglia subsets in the homeostatic and WNV-infected brain. These were P2RY12hi CD86-, P2RY12hi CD86+ and P2RY12lo CD86- P2RY12lo CD86+. During infection, 2 further populations were identified as 'inflammatory' and 'microglia-like' macrophages, recruited from the bone marrow. Detailed kinetic analysis showed significant increases in the proportions of both P2RY12lo microglia subsets in all anatomical areas, largely at the expense of the P2RY12hi CD86- subset, with the latter undergoing compensatory proliferation, suggesting replenishment of, and differentiation from this subset in response to infection. Microglia altered their morphology early in infection, with all cells adopting temporal and regional disease-specific phenotypes. Late in disease, microglia produced IL-12, downregulated CX3CR1, F4/80 and TMEM119 and underwent apoptosis. Infiltrating macrophages expressed both TMEM119 and P2RY12 de novo, with the microglia-like subset notably exhibiting the highest proportional myeloid population death. CONCLUSIONS: Our approach enables detailed kinetic analysis of resident vs infiltrating myeloid cells in a wide range of neuroinflammatory models without non-physiological manipulation. This will more clearly inform potential therapeutic approaches that specifically modulate these cells.


Subject(s)
Brain/pathology , Flow Cytometry/methods , Microglia , Neuroinflammatory Diseases/pathology , Spatio-Temporal Analysis , Adoptive Transfer/methods , Animals , Antibodies, Monoclonal/administration & dosage , Blood-Brain Barrier , Brain/immunology , Brain/virology , Female , Immunophenotyping , Interleukin-12/immunology , Interleukin-12/metabolism , Kinetics , Mice , Mice, Inbred C57BL , Microglia/classification , Microglia/immunology , Microglia/physiology , Microglia/virology , Myeloid Cells/classification , Myeloid Cells/immunology , Myeloid Cells/physiology , Myeloid Cells/virology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/virology , Organic Chemicals , Staining and Labeling , West Nile Fever/immunology , West Nile Fever/pathology , West Nile Fever/virology
19.
J Virol ; 94(2)2020 01 06.
Article in English | MEDLINE | ID: mdl-31694946

ABSTRACT

Several members of the tripartite motif (TRIM) family of E3 ubiquitin ligases regulate immune pathways, including the antiviral type I interferon (IFN-I) system. Previously, we demonstrated that TRIM6 is involved in IFN-I induction and signaling. In the absence of TRIM6, optimal IFN-I signaling is reduced, allowing increased replication of interferon-sensitive viruses. Despite having evolved numerous mechanisms to restrict the vertebrate host's IFN-I response, West Nile virus (WNV) replication is sensitive to pretreatment with IFN-I. However, the regulators and products of the IFN-I pathway that are important in regulating WNV replication are incompletely defined. Consistent with WNV's sensitivity to IFN-I, we found that in TRIM6 knockout (TRIM6-KO) A549 cells, WNV replication is significantly increased and IFN-I induction and signaling are impaired compared to wild-type (wt) cells. IFN-ß pretreatment was more effective in protecting against subsequent WNV infection in wt cells than TRIM6-KO, indicating that TRIM6 contributes to the establishment of an IFN-induced antiviral response against WNV. Using next-generation sequencing, we identified VAMP8 as a potential factor involved in this TRIM6-mediated antiviral response. VAMP8 knockdown resulted in reduced JAK1 and STAT1 phosphorylation and impaired induction of several interferon-stimulated genes (ISGs) following WNV infection or IFN-ß treatment. Furthermore, VAMP8-mediated STAT1 phosphorylation required the presence of TRIM6. Therefore, the VAMP8 protein is a novel regulator of IFN-I signaling, and its expression and function are dependent on TRIM6 activity. Overall, these results provide evidence that TRIM6 contributes to the antiviral response against WNV and identify VAMP8 as a novel regulator of the IFN-I system.IMPORTANCE WNV is a mosquito-borne flavivirus that poses a threat to human health across large discontinuous areas throughout the world. Infection with WNV results in febrile illness, which can progress to severe neurological disease. Currently, there are no approved treatment options to control WNV infection. Understanding the cellular immune responses that regulate viral replication is important in diversifying the resources available to control WNV. Here, we show that the elimination of TRIM6 in human cells results in an increase in WNV replication and alters the expression and function of other components of the IFN-I pathway through VAMP8. Dissecting the interactions between WNV and host defenses both informs basic molecular virology and promotes the development of host- and virus-targeted antiviral strategies.


Subject(s)
Immunity, Innate , Interferon Type I/immunology , R-SNARE Proteins/immunology , Tripartite Motif Proteins/immunology , Ubiquitin-Protein Ligases/immunology , Virus Replication/immunology , West Nile Fever/immunology , West Nile virus/physiology , A549 Cells , Gene Deletion , HEK293 Cells , Humans , Janus Kinase 1/genetics , Janus Kinase 1/immunology , Phosphorylation/genetics , Phosphorylation/immunology , R-SNARE Proteins/genetics , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/immunology , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Virus Replication/genetics , West Nile Fever/genetics , West Nile Fever/pathology
20.
J Virol ; 94(10)2020 05 04.
Article in English | MEDLINE | ID: mdl-32132233

ABSTRACT

Members of the flavivirus genus share a high level of sequence similarity and often circulate in the same geographical regions. However, whether T cells induced by one viral species cross-react with other related flaviviruses has not been globally addressed. In this study, we tested pools of epitopes derived from dengue (DENV), Zika (ZIKV), Japanese encephalitis (JEV), West Nile (WNV), and yellow fever (YFV) viruses by intracellular cytokine staining (ICS) using peripheral blood mononuclear cells (PBMCs) of individuals naturally exposed to DENV or immunized with DENV (TV005) or YF17D vaccine. CD8 T cell responses recognized epitopes from multiple flaviviruses; however, the magnitude of cross-reactive responses was consistently severalfold lower than those to the autologous epitope pools and was associated with lower expression of activation markers such as CD40L, CD69, and CD137. Next, we characterized the antigen sensitivity of short-term T cell lines (TCL) representing 29 different individual epitope/donor combinations. TCL derived from DENV monovalent vaccinees induced CD8 and CD4 T cells that cross-reacted within the DENV serocomplex but were consistently associated with >100-fold-lower antigen sensitivity for most other flaviviruses, with no cross-recognition of YFV-derived peptides. CD8 and CD4 TCL from YF17D vaccinees were associated with very limited cross-reactivity with any other flaviviruses and in five out of eight cases >1,000-fold-lower antigen sensitivity. Overall, our data suggest limited cross-reactivity for both CD4 and CD8 T cell responses between flaviviruses and have implications for understanding immunity elicited by natural infection and strategies to develop live attenuated vaccines against flaviviral species.IMPORTANCE The envelope (E) protein is the dominant target of neutralizing antibodies for dengue virus (DENV) and yellow fever virus (YFV). Accordingly, several DENV vaccine constructs use the E protein in a live attenuated vaccine format, utilizing a backbone derived from a heterologous flavivirus (such as YF) as a delivery vector. This backbone comprises the nonstructural (NS) and capsid (C) antigens, which are dominant targets of T cell responses. Here, we demonstrate that cross-reactivity at the level of T cell responses among different flaviviruses is very limited, despite high levels of sequence homology. Thus, the use of heterologous flavivirus species as a live attenuated vaccine vector is not likely to generate optimal T cell responses and might thus impair vaccine performance.


Subject(s)
Cross Reactions/immunology , Flavivirus Infections/immunology , Flavivirus/immunology , Vaccination , Vaccines, Attenuated/immunology , Viral Vaccines/immunology , Adolescent , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes/immunology , Dengue/immunology , Dengue/prevention & control , Dengue Vaccines/immunology , Dengue Virus/immunology , Encephalitis, Japanese/immunology , Encephalitis, Japanese/prevention & control , Epitopes, T-Lymphocyte/genetics , Female , Flavivirus Infections/prevention & control , Humans , Leukocytes, Mononuclear/immunology , Male , Middle Aged , Sequence Homology , West Nile Fever/immunology , West Nile Fever/prevention & control , Yellow Fever/immunology , Yellow Fever/prevention & control , Yellow Fever Vaccine , Yellow fever virus/immunology , Young Adult , Zika Virus/immunology , Zika Virus Infection/immunology , Zika Virus Infection/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL