Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 29(47): 474001, 2018 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-30192233

RESUMEN

A method for cross-sectional doping of individual Si/SiO2 core/shell nanowires (NWs) is presented. P and B atoms are laterally implanted at different depths in the Si core. The healing of the implantation-related damage together with the electrical activation of the dopants takes place via solid phase epitaxy driven by millisecond-range flash lamp annealing. Electrical measurements through a bevel formed along the NW enabled us to demonstrate the concurrent formation of n- and p-type regions in individual Si/SiO2 core/shell NWs. These results might pave the way for ion beam doping of nanostructured semiconductors produced by using either top-down or bottom-up approaches.

2.
Nanotechnology ; 26(18): 185704, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25872562

RESUMEN

The effect of the oxide barrier thickness (tSiO2) reduction and the Si excess ([Si]exc) increase on the electrical and electroluminescence (EL) properties of Si-rich oxynitride (SRON)/SiO2 superlattices (SLs) is investigated. The active layers of the metal-oxide-semiconductor devices were fabricated by alternated deposition of SRON and SiO2 layers on top of a Si substrate. The precipitation of the Si excess and thus formation of Si nanocrystals (NCs) within the SRON layers was achieved after an annealing treatment at 1150 °C. A structural characterization revealed a high crystalline quality of the SLs for all devices, and the evaluated NC crystalline size is in agreement with a good deposition and annealing control. We found a dramatic conductivity enhancement when the Si content is increased or the SiO2 barrier thickness is decreased, due to a larger interaction of the carrier wavefunctions from adjacent layers. EL recombination dynamics were studied, revealing radiative recombination decay times of the order of tens of microseconds. Lower lifetimes were found at higher [Si]exc, attributed to exciton confinement delocalization, whereas intermediate barrier thicknesses present the slowest decay. The electrical-to-light conversion efficiency increases monotonously at thicker barriers and smaller Si contents. We ascribe these effects mainly to free carriers, which enhance carrier transport through the SLs while strongly quenching light emission. Finally, the combination of the different results led us to conclude that tSiO2 âˆ¼ 2 nm and [Si]exc from 12 to 15 at% are the ideal structure parameters for a balanced electro-optical response of Si NC-based SLs.

3.
Nanotechnology ; 24(11): 115202, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23449309

RESUMEN

An integrated erbium-based light emitting diode has been realized in a waveguide configuration allowing 1.54 µm light signal routing in silicon photonic circuits. This injection device is based on an asymmetric horizontal slot waveguide where the active slot material is Er(3+) in SiO2 or Er(3+) in Si-rich oxide. The active horizontal slot waveguide allows optical confinement, guiding and lateral extraction of the light for on-chip distribution. Light is then coupled through a taper section to a passive Si waveguide terminated by a grating which extracts (or inserts) the light signal for measuring purposes. We measured an optical power density in the range of tens of µW/cm(2) which follows a super-linear dependence on injected current density. When the device is biased at high current density, upon a voltage pulse (pump signal), free-carrier and space charge absorption losses become large, attenuating a probe signal by more than 60 dB/cm and thus behaving conceptually as an electro-optical modulator. The integrated device reported here is the first example, still to be optimized, of a fundamental block to realize an integrated silicon photonic circuit with monolithic integration of the light emitter.

4.
Opt Express ; 20(27): 28808-18, 2012 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-23263121

RESUMEN

Electrically driven Er(3+) doped Si slot waveguides emitting at 1530 nm are demonstrated. Two different Er(3+) doped active layers were fabricated in the slot region: a pure SiO(2) and a Si-rich oxide. Pulsed polarization driving of the waveguides was used to characterize the time response of the electroluminescence (EL) and of the signal probe transmission in 1 mm long waveguides. Injected carrier absorption losses modulate the EL signal and, since the carrier lifetime is much smaller than that of Er(3+) ions, a sharp EL peak was observed when the polarization was switched off. A time-resolved electrical pump & probe measurement in combination with lock-in amplifier techniques allowed to quantify the injected carrier absorption losses. We found an extinction ratio of 6 dB, passive propagation losses of about 4 dB/mm, and a spectral bandwidth > 25 nm at an effective d.c. power consumption of 120 µW. All these performances suggest the usage of these devices as electro-optical modulators.


Asunto(s)
Erbio/química , Refractometría/instrumentación , Silicio/química , Resonancia por Plasmón de Superficie/instrumentación , Campos Electromagnéticos , Diseño de Equipo , Análisis de Falla de Equipo
5.
Nanotechnology ; 23(12): 125203, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22414783

RESUMEN

The electroluminescence (EL) at 1.54 µm of metal­oxide­semiconductor (MOS) devices withEr3C ions embedded in the silicon-rich silicon oxide (SRSO) layer has been investigated under different polarization conditions and compared with that of erbium doped SiO2 layers. EL time-resolved measurements allowed us to distinguish between two different excitation mechanisms responsible for the Er3C emission under an alternate pulsed voltage signal (APV). Energy transfer from silicon nanoclusters (Si-ncs) to Er3C is clearly observed at low-field APV excitation. We demonstrate that sequential electron and hole injection at the edges of the pulses creates excited states in Si-ncs which upon recombination transfer their energy to Er3C ions. On the contrary, direct impact excitation of Er3C by hot injected carriers starts at the Fowler­Nordheim injection threshold (above 5 MV cm(-1)) and dominates for high-field APV excitation.

6.
Opt Express ; 19 Suppl 3: A234-44, 2011 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-21643365

RESUMEN

The potential for application of silicon nitride-based light sources to general lighting is reported. The mechanism of current injection and transport in silicon nitride layers and silicon oxide tunnel layers is determined by electro-optical characterization of both bi- and tri-layers. It is shown that red luminescence is due to bipolar injection by direct tunneling, whereas Poole-Frenkel ionization is responsible for blue-green emission. The emission appears warm white to the eye, and the technology has potential for large-area lighting devices. A photometric study, including color rendering, color quality and luminous efficacy of radiation, measured under various AC excitation conditions, is given for a spectrum deemed promising for lighting. A correlated color temperature of 4800K was obtained using a 35% duty cycle of the AC excitation signal. Under these conditions, values for general color rendering index of 93 and luminous efficacy of radiation of 112 lm/W are demonstrated. This proof of concept demonstrates that mature silicon technology, which is extendable to low-cost, large-area lamps, can be used for general lighting purposes. Once the external quantum efficiency is improved to exceed 10%, this technique could be competitive with other energy-efficient solid-state lighting options.

7.
Opt Lett ; 36(14): 2617-9, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21765486

RESUMEN

Blue-green to near-IR switching electroluminescence (EL) has been achieved in a metal-oxide-semiconductor light emitting device, where the dielectric has been replaced by a Si-rich silicon oxide/nitride bilayer structure. To form Si nanostructures, the layers were implanted with Si ions at high energy, resulting in a Si excess of 19%, and subsequently annealed at 1000 °C. Transmission electron microscopy and EL studies allowed ascribing the blue-green emission to the Si nitride related defects and the near-IR band with the emission of the Si-nanoclusters embedded into the SiO(2) layer. Charge transport analysis is reported and allows for identifying the origin of this two-wavelength switching effect.

8.
Sci Rep ; 5: 14452, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26396043

RESUMEN

This work reports the dynamical thermal behavior of lasing microspheres placed on a dielectric substrate while they are homogeneously heated-up by the top-pump laser used to excite the active medium. The lasing modes are collected in the far-field and their temporal spectral traces show characteristic lifetimes of about 2 ms. The latter values scale with the microsphere radius and are independent of the pump power in the studied range. Finite-Element Method simulations reproduce the experimental results, revealing that thermal dynamics is dominated by heat dissipated towards the substrate through the medium surrounding the contact point. The characteristic system scale regarding thermal transport is of few hundreds of nanometers, thus enabling an effective toy model for investigating heat conduction in non-continuum gaseous media and near-field radiative energy transfer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA