Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Ther ; 28(8): 1887-1901, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32470325

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disease mainly caused by mutations or deletions in the survival of motor neuron 1 (SMN1) gene and characterized by the degeneration of motor neurons and progressive muscle weakness. A viable therapeutic approach for SMA patients is a gene replacement strategy that restores functional SMN expression using adeno-associated virus serotype 9 (AAV9) vectors. Currently, systemic or intra-cerebrospinal fluid (CSF) delivery of AAV9-SMN is being explored in clinical trials. In this study, we show that the postnatal delivery of an AAV9 that expresses SMN under the control of the neuron-specific promoter synapsin selectively targets neurons without inducing re-expression in the peripheral organs of SMA mice. However, this approach is less efficient in restoring the survival and neuromuscular functions of SMA mice than the systemic or intra-CSF delivery of an AAV9 in which SMN is placed under the control of a ubiquitous promoter. This study suggests that further efforts are needed to understand the extent to which SMN is required in neurons and peripheral organs for a successful therapeutic effect.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/genética , Neuronas Motoras/metabolismo , Neuronas Motoras/virología , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Modelos Animales de Enfermedad , Expresión Génica , Técnicas de Transferencia de Gen , Terapia Genética , Locomoción , Ratones , Atrofia Muscular Espinal/tratamiento farmacológico , Fenotipo , Pronóstico , Regiones Promotoras Genéticas , Médula Espinal/metabolismo , Médula Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Transducción Genética , Resultado del Tratamiento
2.
Hum Mol Genet ; 27(17): 3060-3078, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29878125

RESUMEN

Hyper-activation of extracellular signal-regulated kinase (ERK) 1/2 contributes to heart dysfunction in cardiomyopathy caused by mutations in the lamin A/C gene (LMNA cardiomyopathy). The mechanism of how this affects cardiac function is unknown. We show that active phosphorylated ERK1/2 directly binds to and catalyzes the phosphorylation of the actin depolymerizing factor cofilin-1 on Thr25. Cofilin-1 becomes active and disassembles actin filaments in a large array of cellular and animal models of LMNA cardiomyopathy. In vivo expression of cofilin-1, phosphorylated on Thr25 by endogenous ERK1/2 signaling, leads to alterations in left ventricular function and cardiac actin. These results demonstrate a novel role for cofilin-1 on actin dynamics in cardiac muscle and provide a rationale on how increased ERK1/2 signaling leads to LMNA cardiomyopathy.


Asunto(s)
Actinas/metabolismo , Cardiomiopatía Dilatada/patología , Cofilina 1/metabolismo , Lamina Tipo A/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación , Actinas/genética , Adolescente , Adulto , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Estudios de Casos y Controles , Cofilina 1/genética , Femenino , Corazón/fisiología , Humanos , Lamina Tipo A/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Fosforilación , Transducción de Señal , Adulto Joven
3.
Int J Mol Sci ; 20(18)2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31500113

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease (MND) with no cure. Recent advances in gene therapy open a new perspective to treat this disorder-particularly for the characterized genetic forms. Gene therapy approaches, involving the delivery of antisense oligonucleotides into the central nervous system (CNS) are being tested in clinical trials for patients with mutations in SOD1 or C9orf72 genes. Viral vectors can be used to deliver therapeutic sequences to stably transduce motor neurons in the CNS. Vectors derived from adeno-associated virus (AAV), can efficiently target genes and have been tested in several pre-clinical settings with promising outcomes. Recently, the Food and Drug Administration (FDA) approved Zolgensma, an AAV-mediated treatment for another MND-the infant form of spinal muscular atrophy. Given the accelerated progress in gene therapy, it is potentially a promising avenue to develop an efficient and safe cure for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Terapia Genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteína C9orf72/genética , Modelos Animales de Enfermedad , Edición Génica , Expresión Génica , Técnicas de Transferencia de Gen , Predisposición Genética a la Enfermedad , Terapia Genética/efectos adversos , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Terapia Molecular Dirigida , Neuronas Motoras/metabolismo , Mutación , Superóxido Dismutasa-1/genética , Transgenes , Resultado del Tratamiento
5.
Mol Ther ; 25(9): 2038-2052, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28663100

RESUMEN

One of the most promising therapeutic approaches for familial amyotrophic lateral sclerosis linked to superoxide dismutase 1 (SOD1) is the suppression of toxic mutant SOD1 in the affected tissues. Here, we report an innovative molecular strategy for inducing substantial, widespread, and sustained reduction of mutant human SOD1 (hSOD1) levels throughout the body of SOD1G93A mice, leading to therapeutic effects in animals. Adeno-associated virus serotype rh10 vectors (AAV10) were used to mediate exon skipping of the hSOD1 pre-mRNA by expression of exon-2-targeted antisense sequences embedded in a modified U7 small-nuclear RNA (AAV10-U7-hSOD). Skipping of hSOD1 exon 2 led to the generation of a premature termination codon, inducing production of a deleted transcript that was subsequently degraded by the activation of nonsense-mediated decay. Combined intravenous and intracerebroventricular delivery of AAV10-U7-hSOD increased the survival of SOD1G93A mice injected either at birth or at 50 days of age (by 92% and 58%, respectively) and prevented weight loss and the decline of neuromuscular function. This study reports the effectiveness of an exon-skipping approach in SOD1-ALS mice, supporting the translation of this technology to the treatment of this as yet incurable disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Superóxido Dismutasa-1/genética , Edad de Inicio , Esclerosis Amiotrófica Lateral/mortalidad , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/terapia , Animales , Modelos Animales de Enfermedad , Exones , Orden Génico , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Humanos , Ratones , Ratones Transgénicos , Actividad Motora/genética , Oligonucleótidos Antisentido , Sitios de Empalme de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Recuperación de la Función , Superóxido Dismutasa-1/metabolismo , Tasa de Supervivencia , Transducción Genética
6.
Acta Neuropathol ; 132(2): 257-276, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27138984

RESUMEN

Endosomal-autophagic-lysosomal (EAL) dysfunction is an early and prominent neuropathological feature of Alzheimers's disease, yet the exact molecular mechanisms contributing to this pathology remain undefined. By combined biochemical, immunohistochemical and ultrastructural approaches, we demonstrate a link between EAL pathology and the intraneuronal accumulation of the ß-secretase-derived ßAPP fragment (C99) in two in vivo models, 3xTgAD mice and adeno-associated viral-mediated C99-infected mice. We present a pathological loop in which the accumulation of C99 is both the effect and causality of impaired lysosomal-autophagic function. The deleterious effect of C99 was found to be linked to its aggregation within EAL-vesicle membranes leading to disrupted lysosomal proteolysis and autophagic impairment. This effect was Aß independent and was even exacerbated when γ-secretase was pharmacologically inhibited. No effect was observed in inhibitor-treated wild-type animals suggesting that lysosomal dysfunction was indeed directly linked to C99 accumulation. In some brain areas, strong C99 expression also led to inflammatory responses and synaptic dysfunction. Taken together, this work demonstrates a toxic effect of C99 which could underlie some of the early-stage anatomical hallmarks of Alzheimer's disease pathology. Our work also proposes molecular mechanisms likely explaining some of the unfavorable side-effects associated with γ-secretase inhibitor-directed therapies.


Asunto(s)
Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/patología , Neuronas/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Autofagia/fisiología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Endosomas/metabolismo , Lisosomas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/patología
7.
Mol Ther ; 23(5): 885-895, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25669433

RESUMEN

Although in the last decades the molecular underpinnings of the cell cycle have been unraveled, the acquired knowledge has been rarely translated into practical applications. Here, we investigate the feasibility and safety of triggering proliferation in vivo by temporary suppression of the cyclin-dependent kinase inhibitor, p21. Adeno-associated virus (AAV)-mediated, acute knockdown of p21 in intact skeletal muscles elicited proliferation of multiple, otherwise quiescent cell types, notably including satellite cells. Compared with controls, p21-suppressed muscles exhibited a striking two- to threefold expansion in cellularity and increased fiber numbers by 10 days post-transduction, with no detectable inflammation. These changes partially persisted for at least 60 days, indicating that the muscles had undergone lasting modifications. Furthermore, morphological hyperplasia was accompanied by 20% increases in maximum strength and resistance to fatigue. To assess the safety of transiently suppressing p21, cells subjected to p21 knockdown in vitro were analyzed for γ-H2AX accumulation, DNA fragmentation, cytogenetic abnormalities, ploidy, and mutations. Moreover, the differentiation competence of p21-suppressed myoblasts was investigated. These assays confirmed that transient suppression of p21 causes no genetic damage and does not impair differentiation. Our results establish the basis for further exploring the manipulation of the cell cycle as a strategy in regenerative medicine.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Proliferación Celular , Aberraciones Cromosómicas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Dependovirus/clasificación , Dependovirus/genética , Fibroblastos , Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Reporteros , Vectores Genéticos/genética , Humanos , Inmunohistoquímica , Ratones , Contracción Muscular/genética , Mutación , Interferencia de ARN , ARN Interferente Pequeño/genética , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Serogrupo , Transducción Genética
8.
J Cell Biol ; 176(6): 807-18, 2007 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-17353358

RESUMEN

In adult vertebrates, most cells are not in the cell cycle at any one time. Physiological nonproliferation states encompass reversible quiescence and permanent postmitotic conditions such as terminal differentiation and replicative senescence. Although these states appear to be attained and maintained quite differently, they might share a core proliferation-restricting mechanism. Unexpectedly, we found that all sorts of nonproliferating cells can be mitotically reactivated by the sole suppression of histotype-specific cyclin-dependent kinase (cdk) inhibitors (CKIs) in the absence of exogenous mitogens. RNA interference-mediated suppression of appropriate CKIs efficiently triggered DNA synthesis and mitosis in established and primary terminally differentiated skeletal muscle cells (myotubes), quiescent human fibroblasts, and senescent human embryo kidney cells. In serum-starved fibroblasts and myotubes alike, cell cycle reactivation was critically mediated by the derepression of cyclin D-cdk4/6 complexes. Thus, both temporary and permanent growth arrest must be actively maintained by the constant expression of CKIs, whereas the cell cycle-driving cyclins are always present or can be readily elicited. In principle, our findings could find wide application in biotechnology and tissue repair whenever cell proliferation is limiting.


Asunto(s)
Ciclo Celular/fisiología , Proliferación Celular , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Animales , Diferenciación Celular , Células Cultivadas , Senescencia Celular/fisiología , Ciclina D3 , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Ciclinas/metabolismo , Replicación del ADN/fisiología , Humanos , Ratones , Fibras Musculares Esqueléticas/citología , Interferencia de ARN
9.
J Neuromuscul Dis ; 9(1): 25-37, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34864683

RESUMEN

The development of new possible treatments for C9orf72-related ALS and the possibility of early identification of subjects genetically at risk of developing the disease is creating a critical need for biomarkers to track neurodegeneration that could be used as outcome measures in clinical trials. Current candidate biomarkers in C9orf72-ALS include neuropsychology tests, imaging, electrophysiology as well as different circulating biomarkers. Neuropsychology tests show early executive and verbal function involvement both in symptomatic and asymptomatic mutation carriers. At brain MRI, C9orf72-ALS patients present diffuse white and grey matter degeneration, which are already identified up to 20 years before symptom onset and that seem to be slowly progressive over time, while regions of altered connectivity at fMRI and of hypometabolism at [18F]FDG PET have been described as well. At the same time, spinal cord MRI has also shown progressive decrease of FA in the cortico-spinal tract over time. On the side of wet biomarkers, neurofilament proteins are increased both in the CSF and serum just before symptom onset and tend to slowly increase over time, while poly(GP) protein can be detected in the CSF and probably used as target engagement marker in clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico , Biomarcadores , Canales de Calcio/genética , Sustancia Gris/diagnóstico por imagen , Neuroimagen , Sustancia Blanca/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Sustancia Gris/patología , Humanos , Sustancia Blanca/patología
10.
Nat Commun ; 13(1): 3278, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672312

RESUMEN

Maple syrup urine disease (MSUD) is a rare recessively inherited metabolic disorder causing accumulation of branched chain amino acids leading to neonatal death, if untreated. Treatment for MSUD represents an unmet need because the current treatment with life-long low-protein diet is challenging to maintain, and despite treatment the risk of acute decompensations and neuropsychiatric symptoms remains. Here, based on significant liver contribution to the catabolism of the branched chain amino acid leucine, we develop a liver-directed adeno-associated virus (AAV8) gene therapy for MSUD. We establish and characterize the Bckdha (branched chain keto acid dehydrogenase a)-/- mouse that exhibits a lethal neonatal phenotype mimicking human MSUD. Animals were treated at P0 with intravenous human BCKDHA AAV8 vectors under the control of either a ubiquitous or a liver-specific promoter. BCKDHA gene transfer rescued the lethal phenotype. While the use of a ubiquitous promoter fully and sustainably rescued the disease (long-term survival, normal phenotype and correction of biochemical abnormalities), liver-specific expression of BCKDHA led to partial, though sustained rescue. Here we show efficacy of gene therapy for MSUD demonstrating its potential for clinical translation.


Asunto(s)
Enfermedad de la Orina de Jarabe de Arce , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Terapia Genética , Enfermedad de la Orina de Jarabe de Arce/diagnóstico , Enfermedad de la Orina de Jarabe de Arce/genética , Enfermedad de la Orina de Jarabe de Arce/terapia , Ratones , Fenotipo
11.
Front Genome Ed ; 4: 785698, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359664

RESUMEN

Many inborn errors of metabolism require life-long treatments and, in severe conditions involving the liver, organ transplantation remains the only curative treatment. Non-integrative AAV-mediated gene therapy has shown efficacy in adult patients. However, treatment in pediatric or juvenile settings, or in conditions associated with hepatocyte proliferation, may result in rapid loss of episomal viral DNA and thus therapeutic efficacy. Re-administration of the therapeutic vector later in time may not be possible due to the presence of anti-AAV neutralizing antibodies. We have previously shown the permanent rescue of the neonatal lethality of a Crigler-Najjar mouse model by applying an integrative gene-therapy based approach. Here, we targeted the human coagulation factor IX (hFIX) cDNA into a hemophilia B mouse model. Two AAV8 vectors were used: a promoterless vector with two arms of homology for the albumin locus, and a vector carrying the CRISPR/SaCas9 and the sgRNA. Treatment of neonatal P2 wild-type mice resulted in supraphysiological levels of hFIX being stable 10 months after dosing. A single injection of the AAV vectors into neonatal FIX KO mice also resulted in the stable expression of above-normal levels of hFIX, reaching up to 150% of the human levels. Mice subjected to tail clip analysis showed a clotting capacity comparable to wild-type animals, thus demonstrating the rescue of the disease phenotype. Immunohistological analysis revealed clusters of hFIX-positive hepatocytes. When we tested the approach in adult FIX KO mice, we detected hFIX in plasma by ELISA and in the liver by western blot. However, the hFIX levels were not sufficient to significantly ameliorate the bleeding phenotype upon tail clip assay. Experiments conducted using a AAV donor vectors containing the eGFP or the hFIX cDNAs showed a higher recombination rate in P2 mice compared to adult animals. With this study, we demonstrate an alternative gene targeting strategy exploiting the use of the CRISPR/SaCas9 platform that can be potentially applied in the treatment of pediatric patients suffering from hemophilia, also supporting its application to other liver monogenic diseases. For the treatment of adult patients, further studies for the improvement of targeting efficiency are still required.

12.
Front Cell Dev Biol ; 9: 662837, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33937264

RESUMEN

The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) represents a major advance for the development of human disease models. The emerging of this technique fostered the concept of "disease in a dish," which consists into the generation of patient-specific models in vitro. Currently, iPSCs are used to study pathological molecular mechanisms caused by genetic mutations and they are considered a reliable model for high-throughput drug screenings. Importantly, precision-medicine approaches to treat monogenic disorders exploit iPSCs potential for the selection and validation of lead candidates. For example, antisense oligonucleotides (ASOs) were tested with promising results in myoblasts or motor neurons differentiated from iPSCs of patients affected by either Duchenne muscular dystrophy or Amyotrophic lateral sclerosis. However, the use of iPSCs needs additional optimization to ensure translational success of the innovative strategies based on gene delivery through adeno associated viral vectors (AAV) for these diseases. Indeed, to establish an efficient transduction of iPSCs with AAV, several aspects should be optimized, including viral vector serotype, viral concentration and timing of transduction. This review will outline the use of iPSCs as a model for the development and testing of gene therapies for neuromuscular and motor neuron disorders. It will then discuss the advantages for the use of this versatile tool for gene therapy, along with the challenges associated with the viral vector transduction of iPSCs.

13.
J Neuromuscul Dis ; 8(1): 25-38, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33074186

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating and incurable motor neuron (MN) disorder affecting both upper and lower MNs. Despite impressive advances in the understanding of the disease's pathological mechanism, classical pharmacological clinical trials failed to provide an efficient cure for ALS over the past twenty years. Two different gene therapy approaches were recently approved for the monogenic disease Spinal muscular atrophy, characterized by degeneration of lower MNs. This milestone suggests that gene therapy-based therapeutic solutions could be effective for the treatment of ALS. This review summarizes the possible reasons for the failure of traditional clinical trials for ALS. It provides then a focus on the advent of gene therapy approaches for hereditary forms of ALS. Specifically, it describes clinical use of antisense oligonucleotides in three familial forms of ALS, caused by mutations in SOD1, C9orf72 and FUS genes, respectively.. Clinical and pre-clinical studies based on AAV-mediated gene therapy approaches for both familial and sporadic ALS cases are presented as well. Overall, this overview highlights the potential of gene therapy as a transforming technology that will have a huge impact on treatment perspective for ALS patients and on the design of future clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Ensayos Clínicos como Asunto , Terapia Genética , Oligonucleótidos Antisentido/uso terapéutico , Humanos
14.
Mol Ther Methods Clin Dev ; 20: 1-17, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33335943

RESUMEN

Fabry disease is a rare X-linked disorder affecting α-galactosidase A, a rate-limiting enzyme in lysosomal catabolism of glycosphingolipids. Current treatments present important limitations, such as low half-life and limited distribution, which gene therapy can overcome. The aim of this work was to test a novel adeno-associated viral vector, serotype 9 (AAV9), ubiquitously expressing human α-galactosidase A to treat Fabry disease (scAAV9-PGK-GLA). The vector was preliminary tested in newborns of a Fabry disease mouse model. 5 months after treatment, α-galactosidase A activity was detectable in the analyzed tissues, including the central nervous system. Moreover, we tested the vector in adult animals of both sexes at two doses and disease stages (presymptomatic and symptomatic) by single intravenous injection. We found that the exogenous α-galactosidase A was active in peripheral tissues as well as the central nervous system and prevented glycosphingolipid accumulation in treated animals up to 5 months following injection. Antibodies against α-galactosidase A were produced in 9 out of 32 treated animals, although enzyme activity in tissues was not significantly affected. These results demonstrate that scAAV9-PGK-GLA can drive widespread and sustained expression of α-galactosidase A, cross the blood brain barrier after systemic delivery, and reduce pathological signs of the Fabry disease mouse model.

15.
Cell Rep ; 36(8): 109601, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433058

RESUMEN

Cofilins are important for the regulation of the actin cytoskeleton, sarcomere organization, and force production. The role of cofilin-1, the non-muscle-specific isoform, in muscle function remains unclear. Mutations in LMNA encoding A-type lamins, intermediate filament proteins of the nuclear envelope, cause autosomal Emery-Dreifuss muscular dystrophy (EDMD). Here, we report increased cofilin-1 expression in LMNA mutant muscle cells caused by the inability of proteasome degradation, suggesting a protective role by ERK1/2. It is known that phosphorylated ERK1/2 directly binds to and catalyzes phosphorylation of the actin-depolymerizing factor cofilin-1 on Thr25. In vivo ectopic expression of cofilin-1, as well as its phosphorylated form on Thr25, impairs sarcomere structure and force generation. These findings present a mechanism that provides insight into the molecular pathogenesis of muscular dystrophies caused by LMNA mutations.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Cofilina 1/metabolismo , Destrina/metabolismo , Lamina Tipo A/metabolismo , Laminopatías/metabolismo , Músculo Estriado/metabolismo , Sarcómeros/metabolismo , Adolescente , Adulto , Animales , Línea Celular , Niño , Humanos , Lamina Tipo A/genética , Laminopatías/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Músculo Estriado/patología , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Mutación , Fosforilación , Transducción de Señal , Adulto Joven
16.
J Pers Med ; 10(3)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751151

RESUMEN

Spinal muscular atrophy (SMA) is currently classified into five different subtypes, from the most severe (type 0) to the mildest (type 4) depending on age at onset, best motor function achieved, and copy number of the SMN2 gene. The two recent approved treatments for SMA patients revolutionized their life quality and perspectives. However, upon treatment with Nusinersen, the most widely administered therapy up to date, a high degree of variability in therapeutic response was observed in adult SMA patients. These data, together with the lack of natural history information and the wide spectrum of disease phenotypes, suggest that further efforts are needed to develop precision medicine approaches for all SMA patients. Here, we compile the current methods for functional evaluation of adult SMA patients treated with Nusinersen. We also present an overview of the known molecular changes underpinning disease heterogeneity. We finally highlight the need for novel techniques, i.e., -omics approaches, to capture phenotypic differences and to understand the biological signature in order to revise the disease classification and device personalized treatments.

17.
Transl Neurodegener ; 8: 35, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827783

RESUMEN

BACKGROUND: We recently demonstrated an endolysosomal accumulation of the ß-secretase-derived APP C-terminal fragment (CTF) C99 in brains of Alzheimer disease (AD) mouse models. Moreover, we showed that the treatment with the γ-secretase inhibitor (D6) led to further increased endolysosomal APP-CTF levels, but also revealed extracellular APP-CTF-associated immunostaining. We here hypothesized that this latter staining could reflect extracellular vesicle (EV)-associated APP-CTFs and aimed to characterize these γ-secretase inhibitor-induced APP-CTFs. METHODS: EVs were purified from cell media or mouse brains from vehicle- or D6-treated C99 or APPswedish expressing cells/mice and analyzed for APP-CTFs by immunoblot. Combined pharmacological, immunological and genetic approaches (presenilin invalidation and C99 dimerization mutants (GXXXG)) were used to characterize vesicle-containing APP-CTFs. Subcellular APP-CTF localization was determined by immunocytochemistry. RESULTS: Purified EVs from both AD cell or mouse models were enriched in APP-CTFs as compared to EVs from control cells/brains. Surprisingly, EVs from D6-treated cells not only displayed increased C99 and C99-derived C83 levels but also higher molecular weight (HMW) APP-CTF-immunoreactivities that were hardly detectable in whole cell extracts. Accordingly, the intracellular levels of HMW APP-CTFs were amplified by the exosomal inhibitor GW4869. By combined pharmacological, immunological and genetic approaches, we established that these HMW APP-CTFs correspond to oligomeric APP-CTFs composed of C99 and/or C83. Immunocytochemical analysis showed that monomers were localized mainly to the trans-Golgi network, whereas oligomers were confined to endosomes and lysosomes, thus providing an anatomical support for the selective recovery of HMW APP-CTFs in EVs. The D6-induced APP-CTF oligomerization and subcellular mislocalization was indeed due to γ-secretase blockade, since it similarly occurred in presenilin-deficient fibroblasts. Further, our data proposed that besides favoring APP-CTF oligomerization by preventing C99 proteolysis, γ-secretase inhibiton also led to a defective SorLA-mediated retrograde transport of HMW APP-CTFs from endosomal compartments to the TGN. CONCLUSIONS: This is the first study to demonstrate the presence of oligomeric APP-CTFs in AD mouse models, the levels of which are selectively enriched in endolysosomal compartments including exosomes and amplified by γ-secretase inhibition. Future studies should evaluate the putative contribution of these exosome-associated APP-CTFs in AD onset, progression and spreading.

18.
Thromb Haemost ; 119(12): 1956-1967, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31659733

RESUMEN

Gene therapy using recombinant adeno-associated virus (AAV) has induced sustained long-term coagulation human factor IX (hFIX) levels in hemophilia B (HB) patients. However, asymptomatic transient liver toxicity was observed at high vector doses, highlighting the need to improve the potency of these vectors. We report the generation of an AAV transgene cassette containing the hyperfunctional hFIX-E456H variant showing improved binding to platelets, with a comparison to wild-type hFIX (hFIX-WT) and hFIX-R384L variant (Padua) transgenes, containing F9 truncated-intron 1 (I1). In vitro specific activity was increased by 3.2- and 4.2-fold with hFIX-E456H and hFIX-R384L variants compared with hFIX-WT, using chromogenic assay, and by 7-and 8.6-fold with hFIX-E456H and hFIX-R384L variants compared with hFIX-WT, using one-stage assay. The transgenes were packaged into single-stranded AAV2/8 vectors that were tail vein injected at 5 × 109, 2 × 1010, and 5 × 1010 vg per mouse in HB mice. Plasma FIX activity level, assessed by chromogenic assay, was up to fourfold higher for hFIX-E456H compared with hFIX-WT and was not different compared with hFIX-R384L, among the three dose cohorts. Overall, the in vivo specific activity was increased by threefold for hFIX-E456H and 4.9-fold for hFIX-R384L compared with hFIX-WT. At the lower dose of 5 × 109 vg, the blood loss was significantly lower for hFIX-E456H compared with hFIX-WT, but did not differ compared with hFIX-R384L. The results found for the hFIX-E456H variant indicate that it might be a suitable alternative for gene therapy of HB.


Asunto(s)
Dependovirus , Factor IX/genética , Terapia Genética , Hemofilia B/sangre , Hemofilia B/genética , Animales , Coagulación Sanguínea , Plaquetas/metabolismo , Western Blotting , Línea Celular Tumoral , Modelos Animales de Enfermedad , Variación Genética , Vectores Genéticos , Células HEK293 , Hemostasis , Humanos , Hígado/metabolismo , Ratones , Ratones Transgénicos , Fenotipo , Unión Proteica , Transgenes
19.
Biol Psychiatry ; 83(5): 416-427, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28587718

RESUMEN

BACKGROUND: Mitophagy and mitochondrial dynamics alterations are two major hallmarks of neurodegenerative diseases. Dysfunctional mitochondria accumulate in Alzheimer's disease-affected brains by yet unexplained mechanisms. METHODS: We combined cell biology, molecular biology, and pharmacological approaches to unravel a novel molecular pathway by which presenilins control phosphatase and tensin homolog-induced kinase 1 (Pink-1) expression and transcription. In vivo approaches were carried out on various transgenic and knockout animals as well as in adeno-associated virus-infected mice. Functional readout and mitochondrial physiology (mitochondrial potential) were assessed by combined procedures including flow cytometry, live imaging analysis, and immunohistochemistry. RESULTS: We show that presenilins 1 and 2 trigger opposite effects on promoter transactivation, messenger RNA, and protein expression of Pink-1. This control is linked to γ-secretase activity and ß-amyloid precursor protein but is independent of phosphatase and tensin homolog. We show that amyloid precursor protein intracellular domain (AICD) accounts for presenilin-dependent phenotype and upregulates Pink-1 transactivation in cells as well as in vivo in a Forkhead box O3a-dependent manner. Interestingly, the modulation of γ-secretase activity or AICD expression affects Pink-1-related control of mitophagy and mitochondrial dynamics. Finally, we show that parkin acts upstream of presenilins to control Pink-1 promoter transactivation and protein expression. CONCLUSIONS: Overall, we delineate a molecular cascade presenilins-AICD-Forkhead box O3a linking parkin to Pink-1. Our study demonstrates AICD-mediated Pink-1-dependent control of mitochondrial physiology by presenilins. Furthermore, it unravels a parkin-Pink-1 feedback loop controlling mitochondrial physiology that could be disrupted in neurodegenerative conditions.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteína Forkhead Box O3/metabolismo , Hipocampo/metabolismo , Mitocondrias/metabolismo , Presenilinas/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Embrión de Mamíferos , Fibroblastos , Células HEK293 , Humanos , Espacio Intracelular/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA