Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 368, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860989

RESUMEN

The increasing applications for eicosapentaenoic acid (EPA) and the potential shortfall in supply due to sustainability and contamination issues related with its conventional sources (i.e., fish oils; seafood) led to an extensive search for alternative and sustainable sources, as well as production processes. The present mini-review covers all the steps involved in the production of EPA from microorganisms, with a deeper focus on microalgae. From production systems to downstream processing, the most important achievements within each area are briefly highlighted. Comparative tables of methodologies are also provided, as well as additional references of recent reviews, so that readers may deepen their knowledge in the different issues addressed. KEY POINTS: • Microorganisms are more sustainable alternative sources of EPA than fish. • Due to the costly separation from DHA, species that produce only EPA are preferable. • EPA production can be optimised using non-genetic and genetic tailoring engineering.


Asunto(s)
Ácido Eicosapentaenoico , Microalgas , Ácido Eicosapentaenoico/biosíntesis , Ácido Eicosapentaenoico/metabolismo , Microalgas/metabolismo , Bacterias/metabolismo , Bacterias/genética
2.
Appl Microbiol Biotechnol ; 108(1): 73, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38194142

RESUMEN

Vulvovaginal candidiasis (VVC) affects approximately 30-50% of women at least once during their lifetime, causing uncomfortable symptoms and limitations in their daily quality of life. Antifungal therapy is not very effective, does not prevent recurrencies and usually causes side effects. Therefore, alternative therapies are urgently needed. The goal of this work was to investigate the potential benefits of using mannan oligosaccharides (MOS) extracts together with a Lactobacillus sp. pool, composed by the most significant species present in the vaginal environment, to prevent infections by Candida albicans. Microbial growth of isolated strains of the main vaginal lactobacilli and Candida strains was assessed in the presence of MOS, to screen their impact upon growth. A pool of the lactobacilli was then tested against C. albicans in competition and prophylaxis studies; bacterial and yeast cell numbers were quantified in specific time points, and the above-mentioned studies were assessed in simulated vaginal fluid (SVF). Finally, adhesion to vaginal epithelial cells (HeLa) was also evaluated, once again resorting to simultaneous exposure (competition) or prophylaxis assays, aiming to measure the effect of MOS presence in pathogen adherence. Results demonstrated that MOS extracts have potential to prevent vaginal candidiasis in synergy with vaginal lactobacilli, with improved results than those obtained when using lactobacilli alone. KEY POINTS: Potential benefits of MOS extracts with vaginal lactobacilli to prevent C. albicans infections. MOS impacts on growth of vaginal lactobacilli pool and C. albicans in SVF. MOS extracts in synergy with L. crispatus inhibit C. albicans adhesion in HeLa cells.


Asunto(s)
Candida albicans , Candidiasis Vulvovaginal , Femenino , Humanos , Mananos , Células HeLa , Calidad de Vida , Candidiasis Vulvovaginal/prevención & control , Lactobacillus
3.
Molecules ; 29(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276595

RESUMEN

Hierarchical ZSM5 and Y zeolites were prepared through a surfactant-mediated strategy with NH4OH changing the duration of the treatment and the amount of CTAB surfactant and taking as reference multiples of the critical micellar concentration (CMC). The materials were characterized using powder X-ray diffraction, N2 adsorption isotherms at -196 °C, and SEM and TEM microscopy. The catalytic performance was evaluated in Friedel-Crafts acylation of furan with acetic anhydride at 80 °C. The alkaline surfactant-mediated treatment had different effects on the two zeolites. For ZSM5, the CTAB molecular aggregates can hardly diffuse inside the medium-size pores, leading mainly to intercrystalline mesoporosity and increased external surface area, with no positive catalytic impact. On the other hand, for large-pore Y zeolite, the CTAB molecular aggregates can easily diffuse and promote the rearrangement of crystal units around micelles, causing the enlargement of the pores, i.e., intracrystalline porosity. The optimized Y-based sample, treated for 12 h with a CTAB amount 32 times the CMC, shows an increase in product yield and rate constant that was not observed when a higher amount of surfactant was added. The reuse of spent catalysts upon thermal treatment at 400 °C shows a regeneration efficiency around 90%, showing good potentialities for the modified catalysts.

4.
Appl Microbiol Biotechnol ; 107(11): 3405-3417, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37086282

RESUMEN

Yeast cells face various stress factors during industrial fermentations, since they are exposed to harsh environmental conditions, which may impair biomolecules productivity and yield. In this work, the use of an antioxidant peptide extract obtained from industrial spent yeast was explored as supplement for Saccharomyces cerevisiae fermentation to prevent a common bottleneck: oxidative stress. For that, a recombinant yeast strain, producer of ß-farnesene, was firstly incubated with 0.5 and 0.7 g/L peptide extract, in the presence and absence of hydrogen peroxide (an oxidative stress inducer), for 1-5 h, and then assayed for intracellular reactive oxygen species, and growth ability in agar spot assays. Results showed that under 2 mM H2O2, the peptide extract could improve cells growth and reduce reactive oxygen species production. Therefore, this antioxidant effect was further evaluated in shake-flasks and 2-L bioreactor batch fermentations. Peptide extract (0.7 g/L) was able to increase yeast resistance to the oxidative stress promoted by 2 mM H2O2, by reducing reactive oxygen species levels between 1.2- and 1.7-fold in bioreactor and between 1.2- and 3-fold in shake-flask fermentations. Moreover, improvements on yeast cell density of up to 1.5-fold and 2-fold, and on biomolecule concentration of up to 1.6-fold and 2.8-fold, in bioreactor and shake-flasks, respectively, were obtained. Thus, culture medium supplementation with antioxidant peptide extracted from industrial spent yeast is a promising strategy to improve fermentation performance while valuing biomass waste. This valorization can promote a sustainable and eco-friendly solution for the biotechnology industry by the implementation of a circular economy model. KEY POINTS: • Peptide extract from spent yeast applied for the first time on yeast fermentation. • Antioxidant peptide extract enhanced S. cerevisiae oxidative stress resistance. • Fermentation performance under stress improved by peptide extract supplementation.


Asunto(s)
Antioxidantes , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Especies Reactivas de Oxígeno , Antioxidantes/farmacología , Peróxido de Hidrógeno/farmacología , Fermentación , Estrés Oxidativo , Péptidos/farmacología , Extractos Vegetales
5.
Appl Microbiol Biotechnol ; 107(16): 5063-5077, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37382612

RESUMEN

Nannochloropsis oculata is naturally rich in eicosapentaenoic acid (EPA). To turn this microalga into an economically viable source for commercial applications, extraction efficiency must be achieved. Pursuing this goal, emerging technologies such as high hydrostatic pressure (HHP) and moderate electric fields (MEF) were tested, aiming to increase EPA accessibility and subsequent extraction yields. The innovative approach used in this study combined these technologies and associated tailored, less hazardous different solvent mixtures (SM) with distinct polarity indexes. Although the classical Folch SM with chloroform: methanol (PI 4.4) provided the highest yield concerning total lipids (166.4 mglipid/gbiomass), diethyl ether: ethanol (PI 3.6) presented statistically higher values in terms of EPA per biomass, corresponding to 1.3-fold increase. When SM were used in HHP and MEF, neither technology independently improved EPA extraction yields, although the sequential combination of technologies did result in 62% increment in EPA extraction. Overall, the SM and extraction methodologies tested (HHP-200 MPa, 21 °C, 15 min, followed by MEF processing at 40 °C, 15 min) enabled increased EPA extraction yields from wet N. oculata biomass. These findings are of high relevance for the food and pharmaceutical industries, providing viable alternatives to the "classical" extraction methodologies and solvents, with increased yields and lower environmental impact. KEY POINTS: • Et2O: EtOH is a less toxic and more efficient alternative to Folch solvent mixture • HHP or MEF per se was not able to significantly increase EPA extraction yield • Combinations of HHP and MEF technologies increased both lipids and EPA yields.


Asunto(s)
Microalgas , Estramenopilos , Ácido Eicosapentaenoico , Solventes , Metanol , Etanol , Biomasa
6.
Mar Drugs ; 21(6)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37367690

RESUMEN

Nannochloropsis is a genus of microalgae widely recognized as potential sources of distinct lipids, particularly polyunsaturated fatty acids (PUFA). These may be obtained through extraction, which has conventionally been performed using hazardous organic solvents. To substitute such solvents with "greener" alternatives, several technologies have been studied to increase their extraction potential. Distinct technologies utilize different principles to achieve such objective; while some aim at disrupting the cell walls of the microalgae, others target the extraction per se. While some methods have been utilized independently, several technologies have also been combined, which has proven to be an effective strategy. The current review focuses on the technologies explored in the last five years to extract or increase extraction yields of fatty acids from Nannochloropsis microalgae. Depending on the extraction efficacy of the different technologies, distinct types of lipids and/or fatty acids are obtained accordingly. Moreover, the extraction efficiency may vary depending on the Nannochloropsis species. Hence, a case-by-case assessment must be conducted in order to ascertain the most suited technology, or tailor a specific one, to be applied to recover a particular fatty acid (or fatty acid class), namely PUFA, including eicosapentaenoic acid.


Asunto(s)
Microalgas , Estramenopilos , Ácidos Grasos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Estramenopilos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Tecnología , Solventes/metabolismo , Microalgas/metabolismo
7.
Appl Microbiol Biotechnol ; 106(11): 4017-4027, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35599259

RESUMEN

Two environmental parameters, temperature and light intensity, were independently used as stress modulators to enhance eicosapentaenoic acid (EPA) production by the microalga Nannochloropsis oculata, without hindering biomass production. A sinusoidal approach was used, as environmental conditions were alternated between optimum and stress status in multi-day cycles. Low temperatures (5 and 10 °C) and light intensities (30 and 50 µmol photons/m2/s) were tested. Results revealed that the modulated stress approach used was able to avoid decreases in biomass production. Temperature stress (10 °C) presented the highest impact, increasing EPA content to 12.8 mgEPA/L, 158% more than the amount obtained in optimum (non-modulated) growth conditions at that point in time, while the lower light intensity stress was able to increase to 126% more. It is important to point out that in both cases increases in EPA amounts resulted from increased content in each individual cell and not just from increased biomass contents. KEY POINTS: • Temperature stress (10 °C) presented the highest impact increasing EPA content 158% • Lower light intensity stress was able to increase EPA to 126% more • EPA increased in individual cell contents simultaneous with biomass increase.


Asunto(s)
Microalgas , Estramenopilos , Biomasa , Ácido Eicosapentaenoico , Temperatura
8.
Mar Drugs ; 20(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36547884

RESUMEN

Nannochloropsis oculata is well-recognized as a potential microalgal source of valuable compounds such as polyunsaturated fatty acids, particularly, eicosapentaenoic acid (EPA). The content and profile of these lipids is highly dependent on the growth conditions and can, therefore, be tailored through modulation of the growth parameters, specifically, temperature. Moreover, biological activities are composition dependent. In the present work, lipid extracts obtained from N. oculata, grown under constant temperature and under modulated temperature stress (to increase EPA content; Str) were characterized by GC-FID and several bioactivities were evaluated, namely, antioxidant (L-ORACFL), cytotoxic (MTT), adipolytic, anti-hepatic lipid accumulation (steatosis), and anti-inflammatory properties. Both extracts exhibited antioxidant activity (c.a. 49 µmol Troloxequivalent/mgextract) and the absence of toxicity (up to 800 µg/mL) toward colon and hepatic cells, adipocytes, and macrophages. They also induced adipolysis and the inhibition of triglycerides hepatic accumulation, with a higher impact from Str. In addition, anti-inflammatory activity was observed in the lipopolysaccharide-induced inflammation of macrophages in the presence of either extract, since lower levels of pro-inflammatory interleukin-6 and interferon-ß were obtained, specifically by Str. The results presented herein revealed that modulated temperature stress may enhance the health effects of N. oculata lipid extracts, which may be safely utilized to formulate novel food products.


Asunto(s)
Microalgas , Estramenopilos , Triglicéridos , Ácido Eicosapentaenoico , Ácidos Grasos Insaturados , Temperatura
9.
Molecules ; 24(20)2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618947

RESUMEN

The presence of pharmaceutical compounds in the environment is a reality that calls for more efficient water treatment technologies. Photocatalysis is a powerful technology available but the high energy costs associated with the use of UV irradiation hinder its large scale implementation. More sustainable and cheaper photocatalytic processes can be achieved by improving the sunlight harvesting and the synthesis of semiconductor/carbon composites has proved to be a promising strategy. Carbamazepine, diclofenac, and sulfamethoxazole were selected as target pharmaceuticals due to their recalcitrant behavior during conventional wastewater treatment and persistence in the environment, as properly reviewed. The literature data on the photocatalytic removal of carbamazepine, diclofenac, and sulfamethoxazole by semiconductor/carbon materials was critically revised to highlight the role of the carbon in the enhanced semiconductor performance under solar irradiation. Generally it was demonstrated that carbon materials induce red-shift absorption and they contribute to more effective charge separation, thus improving the composite photoactivity. Carbon was added as a dopant (C-doping) or as support or doping materials (i.e., nanoporous carbons, carbon nanotubes (CNTs), graphene, and derived materials, carbon quantum dots (CQDs), and biochars) and in the large majority of the cases, TiO2 was the semiconductor tested. The specific role of carbon materials is dependent on their properties but even the more amorphous forms, like nanoporous carbons or biochars, allow to prepare composites with improved properties compared to the bare semiconductor. The self-photocatalytic activity of the carbon materials was also reported and should be further explored. The removal and mineralization rates, as well as degradation pathways and toxicity of the treated solutions were also critically analyzed.


Asunto(s)
Carbamazepina/química , Diclofenaco/química , Grafito/química , Procesos Fotoquímicos , Semiconductores , Sulfametoxazol/química , Catálisis , Procesos Fotoquímicos/efectos de la radiación , Luz Solar , Contaminantes Químicos del Agua
10.
J Environ Sci (China) ; 82: 113-123, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31133256

RESUMEN

Duloxetine (DUL), an antidepressant drug, has been detected in surface water and wastewater effluents, however, there is little information on the formation of its transformation products (TPs). In this work, hydrolysis, photodegradation (UV irradiation) and chlorination experiments were performed on spiked distillated water, under controlled experimental conditions to simulate abiotic processes that can occur in the environment and wastewater treatment plants (WWTPs). Eleven TPs, nine from reaction with UV light and two from chlorine contact, were formed and detected by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry, and nine of them had their chemical structures elucidated upon analyses of their fragmentation patterns in MS/MS spectra. The formation and degradation of the TPs were observed. The parent compound was completely degraded after 30 min in photodegradation and after 24 hr in chlorination. Almost all TPs were completely degraded in the experiments. The ecotoxicity and mutagenicity of the TPs were predicted based on several in silico models and it was found that a few of these products presented more ecotoxicity than DUL itself and six TPs showed positive mutagenicity. Finally, wastewater samples were analyzed and DUL and one TP, possibly formed by chlorination process, were detected in the effluent, which showed that WWTP not only did not remove DUL, but also formed a TP.


Asunto(s)
Clorhidrato de Duloxetina/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Simulación por Computador , Clorhidrato de Duloxetina/análisis , Fotólisis , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
11.
J Environ Manage ; 219: 9-17, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29715638

RESUMEN

Fish canning industry generates large amounts of liquid wastes, which are discarded, after proper treatment to remove the organic load. However, alternative treatment processes may also be designed in order to target the recovery of valuable compounds; with this procedure, these wastewaters are converted into liquid by-products, becoming an additional source of revenue for the company. This study evaluated green and economically sustainable methodologies for the extraction of ω3 lipids from fish canning liquid by-products. Lipids were extracted by processes combining physical and chemical parameters (conventional and pressurized extraction processes), as well as chemical and biological parameters. Furthermore, LCA was applied to evaluate the environmental performance and costs indicators for each process. Results indicated that extraction with high hydrostatic pressure provides the highest amounts of ω3 polyunsaturated fatty acids (3331,5 mg L-1 effluent), apart from presenting the lowest environmental impact and costs. The studied procedures allow to obtain alternative, sustainable and traceable sources of ω3 lipids for further applications in food, pharmaceutical and cosmetic industries. Additionally, such approach contributes towards the organic depuration of canning liquid effluents, therefore reducing the overall waste treatment costs.


Asunto(s)
Ácidos Grasos Omega-3 , Residuos Industriales , Aguas Residuales , Animales , Conservación de los Recursos Naturales , Peces , Lípidos
12.
Molecules ; 22(9)2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-28906448

RESUMEN

Fish skins constitute an important fraction of the enormous amount of wastes produced by the fish processing industry, part of which may be valorized through the extraction of gelatins. This research exploited the extraction and characterization of gelatins from the skin of three seawater fish species, namely yellowfin tuna (Thunnus albacares), blue shark (Prionace glauca), and greenland halibut (Reinhardtius hippoglossoides). Characterization included chemical composition, rheology, structure, texture, and molecular weight, whereas extraction studies intended to reduce costly steps during extraction process (reagents concentration, water consumption, and time of processing), while maintaining extraction efficiency. Chemical and physical characterization of the obtained gelatins revealed that the species from which the gelatin was extracted, as well as the heat treatment used, were key parameters in order to obtain a final product with specific properties. Therefore, the extraction conditions selected during gelatin production will drive its utilization into markets with well-defined specifications, where the necessity of unique products is being claimed. Such achievements are of utmost importance to the food industry, by paving the way to the introduction in the market of gelatins with distinct rheological and textural properties, which enables them to enlarge their range of applications.


Asunto(s)
Proteínas de Peces/química , Gelatina/química , Piel/química , Extractos de Tejidos/química , Animales , Lenguado , Peso Molecular , Tiburones , Atún , Viscosidad
13.
Am Heart J ; 171(1): 73-81.e1-2, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26699603

RESUMEN

This article reports the rationale for the Brazilian Cardioprotective Nutritional Program (BALANCE Program) Trial. This pragmatic, multicenter, nationwide, randomized, concealed, controlled trial was designed to investigate the effects of the BALANCE Program in reducing cardiovascular events. The BALANCE Program consists of a prescribed diet guided by nutritional content recommendations from Brazilian national guidelines using a unique nutritional education strategy, which includes suggestions of affordable foods. In addition, the Program focuses on intensive follow-up through one-on-one visits, group sessions, and phone calls. In this trial, participants 45 years or older with any evidence of established cardiovascular disease will be randomized to the BALANCE or control groups. Those in the BALANCE group will receive the afore mentioned program interventions, while controls will be given generic advice on how to follow a low-fat, low-energy, low-sodium, and low-cholesterol diet, with a view to achieving Brazilian nutritional guideline recommendations. The primary outcome is a composite of death (any cause), cardiac arrest, acute myocardial infarction, stroke, myocardial revascularization, amputation for peripheral arterial disease, or hospitalization for unstable angina. A total of 2468 patients will be enrolled in 34 sites and followed up for up to 48 months. If the BALANCE Program is found to decrease cardiovascular events and reduce risk factors, this may represent an advance in the care of patients with cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Dieta/métodos , Programas Nacionales de Salud/normas , Evaluación Nutricional , Prevención Secundaria/métodos , Brasil/epidemiología , Enfermedades Cardiovasculares/epidemiología , Conducta Alimentaria , Humanos , Incidencia , Tasa de Supervivencia/tendencias
14.
Phys Chem Chem Phys ; 17(18): 12340-9, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25898008

RESUMEN

The influence of temperature (20-40 °C) on the acetaminophen adsorption onto activated carbons with different textures was studied. Different temperature dependences, not explained by kinetic effects, were observed for carbons with different micropore size distribution patterns: adsorption capacity increased for pine gasification residues (Pi-fa) derived carbons and decreased for sisal based materials. No significant variation was seen for carbon CP. The species identified by (1)H NMR spectroscopy on the back-extraction solution proved that during the adsorption process exist the conditions required to promote the formation of acetaminophen oligomers which have constrained access to the narrow microporosity. The rotation energy of the dihedral angle between monomers (estimated by electronic DFT methods) showed that conformations in the planar form are less stable than the non-planar conformation (energy barrier of 70 and 23 kJ mol(-1)), but have critical dimensions similar to the monomer and can access most of the micropore volume. The enthalpy change of the overall process showed that the energy gain of the system (endothermic) for Pi-fa samples (≈40 kJ mol(-1)) was enough to allow a change in the dimer, or even a larger oligomer, conformation to the planar form. This will permit adsorption in the narrow micropores, thus explaining the uptake increase with temperature. Non-continuous micropore size distributions centered at pore widths close to the critical dimensions of the planar form seem to be crucial for a positive evolution of the adsorption capacity with temperature.


Asunto(s)
Acetaminofén/aislamiento & purificación , Carbón Orgánico/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Modelos Moleculares , Porosidad , Propiedades de Superficie , Temperatura , Termodinámica , Eliminación de Residuos Líquidos/métodos
15.
Biomolecules ; 14(2)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397470

RESUMEN

Sugarcane, a globally cultivated crop constituting nearly 80% of total sugar production, yields residues from harvesting and sugar production known for their renewable bioactive compounds with health-promoting properties. Despite previous studies, the intricate interplay of extracts from diverse sugarcane byproducts and their biological attributes remains underexplored. This study focused on extracting the lipid fraction from a blend of selected sugarcane byproducts (straw, bagasse, and filter cake) using ethanol. The resulting extract underwent comprehensive characterization, including physicochemical analysis (FT-IR, DSC, particle size distribution, and color) and chemical composition assessment (GC-MS). The biological properties were evaluated through antihypertensive (ACE), anticholesterolemic (HMG-CoA reductase), and antidiabetic (alpha-glucosidase and Dipeptidyl Peptidase-IV) assays, alongside in vitro biocompatibility assessments in Caco-2 and Hep G2 cells. The phytochemicals identified, such as ß-sitosterol and 1-octacosanol, likely contribute to the extract's antidiabetic, anticholesterolemic, and antihypertensive potential, given their association with various beneficial bioactivities. The extract exhibited substantial antidiabetic effects, inhibiting α-glucosidase (5-60%) and DPP-IV activity (25-100%), anticholesterolemic potential with HMG-CoA reductase inhibition (11.4-63.2%), and antihypertensive properties through ACE inhibition (24.0-27.3%). These findings lay the groundwork for incorporating these ingredients into the development of food supplements or nutraceuticals, offering potential for preventing and managing metabolic syndrome-associated conditions.


Asunto(s)
Saccharum , Humanos , Saccharum/metabolismo , Células CACO-2 , Antihipertensivos/farmacología , alfa-Glucosidasas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Azúcares , Lípidos , Extractos Vegetales/farmacología , Extractos Vegetales/química
16.
Food Chem ; 412: 135545, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36708669

RESUMEN

Mannans are polysaccharides whose physicochemical and biological properties render them commercialization in several products. Since these properties are strongly dependent on production conditions, the present study aims to assess the impact of different drying technologies - freeze (FDM) and spray drying (SDM) - on the structural, physicochemical, and biological properties of mannans from Saccharomyces cerevisiae. Structural analysis was assessed by FT-IR, PXRD and SEM, whereas physicochemical properties were evaluated based on sugars, protein, ash and water contents, solubility, and molecular weight distribution. Thermal behaviour was analysed by DSC, and antioxidant activity by DPPH and ABTS assays. The parameters which revealed major differences, in terms of structural and physicochemical properties regarded morphology (SEM), physical appearance (colour), moisture (3.6 ± 0.1 % and 11.9 ± 0.6 % for FDM and SDM, respectively) and solubility (1 mg/mL for FDM and 25 mg/mL for SDM). Nevertheless, these differences were not translated into the antioxidant capacity.


Asunto(s)
Mananos , Saccharomyces cerevisiae , Espectroscopía Infrarroja por Transformada de Fourier , Desecación , Antioxidantes/química , Liofilización
17.
Pathogens ; 12(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37513732

RESUMEN

Urinary tract infections (UTIs) are a common public health problem, mainly caused by uropathogenic Escherichia coli (UPEC). Patients with chronic UTIs are usually treated with long-acting prophylactic antibiotics, which promotes the development of antibiotic-resistant UPEC strains and may complicate their long-term management. D-mannose and extracts rich in D-mannose such as mannan oligosaccharides (MOS; D-mannose oligomers) are promising alternatives to antibiotic prophylaxis due to their ability to inhibit bacterial adhesion to urothelial cells and, therefore, infection. This highlights the therapeutic potential and commercial value of using them as health supplements. Studies on the effect of MOS in UTIs are, however, scarce. Aiming to evaluate the potential benefits of using MOS extracts in UTIs prophylaxis, their ability to inhibit the adhesion of UPEC to urothelial cells and its mechanism of action were assessed. Additionally, the expression levels of the pro-inflammatory marker interleukin 6 (IL-6) were also evaluated. After characterizing their cytotoxic profiles, the preliminary results indicated that MOS extracts have potential to be used for the handling of UTIs and demonstrated that the mechanism through which they inhibit bacterial adhesion is through the competitive inhibition of FimH adhesins through the action of mannose, validated by a bacterial growth impact assessment.

18.
Int J Biol Macromol ; 208: 1116-1126, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35331792

RESUMEN

Bioactive peptides become popular in several economic sectors over the years as they have demonstrated important biological benefits in digestive, immune, cardiovascular, and nervous human systems. Although many commercial peptides are chemically synthesized, they can also be obtained from natural protein sources such as spent brewer's yeast (Saccharomyces cerevisiae). The recovery of this fermentation by-product for production of functional ingredients is an important step in the increasingly demand to implement and promote a circular economy-based industry. Bioactive peptides can be found in protein-rich extracts produced from S. cerevisiae, and several studies have described their positive impact of human body. In this line, the present review highlights and discuss the reported biological properties of S. cerevisiae bioactive peptides in terms of antihypertensive, antioxidant and antimicrobial effects, although other bioactivities are also described. Concerning the growing interest in yeast protein-rich products by agri-food and cosmetic sectors, some of the products currently on the market are also pointed out and their potential source is discussed.


Asunto(s)
Proteínas Fúngicas , Saccharomyces cerevisiae , Digestión , Fermentación , Proteínas Fúngicas/metabolismo , Humanos , Péptidos/metabolismo , Péptidos/farmacología , Saccharomyces cerevisiae/química
19.
Nanomaterials (Basel) ; 12(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36234609

RESUMEN

The present work aims to explore steam activation of sisal or glucose-derived acid-chars as an alternative to KOH activation to prepare superactivated carbons, and to assess the adsorption performance of acid-chars and derived activated carbons for pharmaceuticals removal. Acid-chars were prepared from two biomass precursors (sisal and glucose) using various H2SO4 concentrations (13.5 M, 12 M, and 9 M) and further steam-activated at increasing burn-off degrees. Selected materials were tested for the removal of ibuprofen and iopamidol from aqueous solution (kinetic and equilibrium assays) in single-solute conditions. Activated carbons prepared from acid-char carbonized with 13.5 M and 12 M H2SO4 are mainly microporous solids composed of compact rough particles, yielding a maximum surface area and a total pore volume of 1987 m2 g-1 and 0.96 cm3 g-1, respectively. Solid state NMR reveals that steam activation increased the aromaticity degree and amount of C=O functionalities. Steam activation improved the acid-chars adsorption capacity for ibuprofen from 20-65 mg g-1 to higher than 280 mg g-1, leading to fast adsorption kinetics (15-20 min). The maximum adsorption capacities of selected activated samples for ibuprofen and iopamidol were 323 and 1111 mg g-1, respectively.

20.
J Hazard Mater ; 437: 129319, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35897170

RESUMEN

Novel powdered activated carbons (PACs) from pine cones and pine nut shells (PNSs) were tested for the competitive adsorption of pharmaceutical compounds (PhCs) in spiked (100 µg/L) secondary effluent and mixed liquor from an urban wastewater treatment plant. Steam activated PNS77, with hierarchical pore structure and 1463 m2/g of BET area, outperformed the commercial benchmark (WP220, mineral origin) for PhCs and dissolved organic matter (DOM) control. PNS77 attained the highest adsorption capacity and rate in synthetic and real wastewaters. Competitive adsorption isotherms revealed the detrimental effect of direct site competing DOM on PhC removal. The PhCs' adsorbability increased with their hydrophobicity, regardless of the water matrix. Kinetic data allowed inferring that indirect competition due to pore constriction/blockage appeared to occur only in mixed liquor. Adsorption isotherm data modelling for ng/L range revealed 80 % removal of carbamazepine and diclofenac would be achieved dosing 8-15 mg/L PNS77 to secondary effluent, while for mixed liquor the dose must be doubled to balance the increased competition. Hydrophilic sulfamethoxazole required a higher dose (34-44 mg/L), lower in the mixed liquor. PNS77 hierarchical pore network and basic surface chemistry minimized DOM direct site competition, requiring lower doses in practical applications for wastewater treatment.


Asunto(s)
Residuos de Medicamentos , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico/química , Materia Orgánica Disuelta , Residuos de Medicamentos/aislamiento & purificación , Nueces/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA