Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35214356

RESUMEN

Nowadays, wearables-based Human Activity Recognition (HAR) systems represent a modern, robust, and lightweight solution to monitor athlete performance. However, user data variability is a problem that may hinder the performance of HAR systems, especially the cross-subject HAR models. Such a problem may have a lesser effect on the subject-specific model because it is a tailored model that serves a specific user; hence, data variability is usually low, and performance is often high. However, such a performance comes with a high cost in data collection and processing per user. Therefore, in this work, we present a personalized model that achieves higher performance than the cross-subject model while maintaining a lower data cost than the subject-specific model. Our personalization approach sources data from the crowd based on similarity scores computed between the test subject and the individuals in the crowd. Our dataset consists of 3750 concentration curl repetitions from 25 volunteers with ages and BMI ranging between 20-46 and 24-46, respectively. We compute 11 hand-crafted features and train 2 personalized AdaBoost models, Decision Tree (AdaBoost-DT) and Artificial Neural Networks (AdaBoost-ANN), using data from whom the test subject shares similar physical and single traits. Our findings show that the AdaBoost-DT model outperforms the cross-subject-DT model by 5.89%, while the AdaBoost-ANN model outperforms the cross-subject-ANN model by 3.38%. On the other hand, at 50.0% less of the test subject's data consumption, our AdaBoost-DT model outperforms the subject-specific-DT model by 16%, while the AdaBoost-ANN model outperforms the subject-specific-ANN model by 10.33%. Yet, the subject-specific models achieve the best performances at 100% of the test subjects' data consumption.


Asunto(s)
Brazo , Dispositivos Electrónicos Vestibles , Ejercicio Físico , Humanos , Músculo Esquelético , Redes Neurales de la Computación
2.
Sensors (Basel) ; 21(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557239

RESUMEN

Nowadays, Human Activity Recognition (HAR) systems, which use wearables and smart systems, are a part of our daily life. Despite the abundance of literature in the area, little is known about the impact of muscle fatigue on these systems' performance. In this work, we use the biceps concentration curls exercise as an example of a HAR activity to observe the impact of fatigue impact on such systems. Our dataset consists of 3000 biceps concentration curls performed and collected from 20 volunteers aged between 20-35. Our findings indicate that fatigue often occurs in later sets of an exercise and extends the completion time of later sets by up to 31% and decreases muscular endurance by 4.1%. Another finding shows that changes in data patterns are often occurring during fatigue presence, causing seven features to become statistically insignificant. Further findings indicate that fatigue can cause a substantial decrease in performance in both subject-specific and cross-subject models. Finally, we observed that a Feedforward Neural Network (FNN) showed the best performance in both cross-subject and subject-specific models in all our evaluations.


Asunto(s)
Aprendizaje Automático , Fatiga Muscular , Adulto , Brazo , Ejercicio Físico , Actividades Humanas , Humanos , Adulto Joven
3.
Sensors (Basel) ; 21(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34770303

RESUMEN

Inertial sensors are widely used in the field of human activity recognition (HAR), since this source of information is the most informative time series among non-visual datasets. HAR researchers are actively exploring other approaches and different sources of signals to improve the performance of HAR systems. In this study, we investigate the impact of combining bio-signals with a dataset acquired from inertial sensors on recognizing human daily activities. To achieve this aim, we used the PPG-DaLiA dataset consisting of 3D-accelerometer (3D-ACC), electrocardiogram (ECG), photoplethysmogram (PPG) signals acquired from 15 individuals while performing daily activities. We extracted hand-crafted time and frequency domain features, then, we applied a correlation-based feature selection approach to reduce the feature-set dimensionality. After introducing early fusion scenarios, we trained and tested random forest models with subject-dependent and subject-independent setups. Our results indicate that combining features extracted from the 3D-ACC signal with the ECG signal improves the classifier's performance F1-scores by 2.72% and 3.00% (from 94.07% to 96.80%, and 83.16% to 86.17%) for subject-dependent and subject-independent approaches, respectively.


Asunto(s)
Fotopletismografía , Procesamiento de Señales Asistido por Computador , Acelerometría , Electrocardiografía , Actividades Humanas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA