Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Haematologica ; 106(7): 1979-1987, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32586904

RESUMEN

Pharmacological induction of fetal hemoglobin (HbF) expression is an effective therapeutic strategy for the management of beta-hemoglobinopathies such as sickle cell disease. DNA methyltransferase (DNMT) inhibitors 5-azacytidine (5-aza) and 5-aza-2'-deoxycytidine (decitabine) have been shown to induce fetal hemoglobin expression in both preclinical models and clinical studies, but are not currently approved for the management of hemoglobinopathies. We report here the discovery of a novel class of orally bioavailable DNMT1-selective inhibitors as exemplified by GSK3482364. This molecule potently inhibits the methyltransferase activity of DNMT1, but not DNMT family members DNMT3A or DNMT3B. In contrast with cytidine analog DNMT inhibitors, the DNMT1 inhibitory mechanism of GSK3482364 does not require DNA incorporation and is reversible. In cultured human erythroid progenitor cells (EPCs), GSK3482364 decreased overall DNA methylation resulting in de-repression of the gamma globin genes HBG1 and HBG2 and increased HbF expression. In a transgenic mouse model of sickle cell disease, orally administered GSK3482364 caused significant increases in both HbF levels and in the percentage HbF-expressing erythrocytes, with good overall tolerability. We conclude that in these preclinical models, selective, reversible inhibition of DNMT1 is sufficient for the induction of HbF, and is well-tolerated. We anticipate that GSK3482364 will be a useful tool molecule for the further study of selective DNMT1 inhibition both in vitro and in vivo.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Fetal , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/genética , Animales , Azacitidina/farmacología , Metilación de ADN , Hemoglobina Fetal/genética , Ratones , gamma-Globinas/genética
2.
Bioorg Med Chem Lett ; 28(23-24): 3676-3680, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30554630

RESUMEN

Beta-hemoglobinopathies such as sickle cell disease represent a major global unmet medical need. De-repression of fetal hemoglobin in erythrocytes is a clinically validated approach for the management of sickle cell disease, but the only FDA-approved medicine for this purpose has limitations to its use. We conducted a phenotypic screen in human erythroid progenitor cells to identify molecules with the ability to de-repress fetal hemoglobin, which resulted in the identification of the benzoxaborole-containing hit compound 1. This compound was found to have modest cellular potency and lead-like pharmacokinetics, but no identifiable SAR to enable optimization. Systematic deconstruction of a closely related analog of 1 revealed the fragment-like carboxylic acid 12, which was then optimized to provide tetrazole 31, which had approximately 100-fold improved cellular potency compared to 1, high levels of oral exposure in rats, and excellent solubility.


Asunto(s)
Benzoxazoles/química , Hemoglobina Fetal/metabolismo , Animales , Benzoxazoles/farmacocinética , Benzoxazoles/farmacología , Disponibilidad Biológica , Ácidos Borónicos/química , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Semivida , Humanos , Ratas , Ratas Sprague-Dawley , Solubilidad
3.
Nat Chem Biol ; 10(3): 181-7, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24390428

RESUMEN

Although therapeutic interventions of signal-transduction cascades with targeted kinase inhibitors are a well-established strategy, drug-discovery efforts to identify targeted phosphatase inhibitors have proven challenging. Herein we report a series of allosteric, small-molecule inhibitors of wild-type p53-induced phosphatase (Wip1), an oncogenic phosphatase common to multiple cancers. Compound binding to Wip1 is dependent on a 'flap' subdomain located near the Wip1 catalytic site that renders Wip1 structurally divergent from other members of the protein phosphatase 2C (PP2C) family and that thereby confers selectivity for Wip1 over other phosphatases. Treatment of tumor cells with the inhibitor GSK2830371 increases phosphorylation of Wip1 substrates and causes growth inhibition in both hematopoietic tumor cell lines and Wip1-amplified breast tumor cells harboring wild-type TP53. Oral administration of Wip1 inhibitors in mice results in expected pharmacodynamic effects and causes inhibition of lymphoma xenograft growth. To our knowledge, GSK2830371 is the first orally active, allosteric inhibitor of Wip1 phosphatase.


Asunto(s)
Aminopiridinas/química , Dipéptidos/química , Inhibidores Enzimáticos/farmacología , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Administración Oral , Regulación Alostérica , Secuencias de Aminoácidos , Aminopiridinas/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Dominio Catalítico , Línea Celular Tumoral , Dipéptidos/farmacología , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Femenino , Xenoinjertos , Humanos , Ratones , Ratones SCID , Modelos Biológicos , Neoplasias , Proteína Fosfatasa 2C
4.
Proc Natl Acad Sci U S A ; 107(13): 5839-44, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20167803

RESUMEN

Centromere-associated protein-E (CENP-E) is a kinetochore-associated mitotic kinesin that is thought to function as the key receptor responsible for mitotic checkpoint signal transduction after interaction with spindle microtubules. We have identified GSK923295, an allosteric inhibitor of CENP-E kinesin motor ATPase activity, and mapped the inhibitor binding site to a region similar to that bound by loop-5 inhibitors of the kinesin KSP/Eg5. Unlike these KSP inhibitors, which block release of ADP and destabilize motor-microtubule interaction, GSK923295 inhibited release of inorganic phosphate and stabilized CENP-E motor domain interaction with microtubules. Inhibition of CENP-E motor activity in cultured cells and tumor xenografts caused failure of metaphase chromosome alignment and induced mitotic arrest, indicating that tight binding of CENP-E to microtubules is insufficient to satisfy the mitotic checkpoint. Consistent with genetic studies in mice suggesting that decreased CENP-E function can have a tumor-suppressive effect, inhibition of CENP-E induced tumor cell apoptosis and tumor regression.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Sarcosina/análogos & derivados , Sitio Alostérico , Animales , Antineoplásicos/química , Sitios de Unión , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Perros , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Técnicas In Vitro , Cinesinas/antagonistas & inhibidores , Cinesinas/química , Cinesinas/metabolismo , Ratones , Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Sarcosina/química , Sarcosina/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Nat Cancer ; 2(10): 1002-1017, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34790902

RESUMEN

DNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions. These agents induce notable toxicity to normal blood cells thus limiting their clinical doses. Herein we report the discovery of GSK3685032, a potent first-in-class DNMT1-selective inhibitor that was shown via crystallographic studies to compete with the active-site loop of DNMT1 for penetration into hemi-methylated DNA between two CpG base pairs. GSK3685032 induces robust loss of DNA methylation, transcriptional activation and cancer cell growth inhibition in vitro. Due to improved in vivo tolerability compared with decitabine, GSK3685032 yields superior tumor regression and survival mouse models of acute myeloid leukemia.


Asunto(s)
Azacitidina , Leucemia Mieloide Aguda , Animales , Azacitidina/farmacología , ADN/metabolismo , Metilación de ADN , Metilasas de Modificación del ADN/genética , Decitabina/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones
6.
Comp Med ; 68(5): 396-402, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30092854

RESUMEN

Hydroxyurea induces production of fetal hemoglobin (HbF), a tetramer of α and γ globin proteins and corresponding heme molecules, normally found in less than 1% of adult RBC. Increases in circulating HbF are correlated with clinical improvement of patients with hemoglobinopathies, and hydroxyurea, as a daily medication, is the standard treatment for sickle cell anemia. Although olive baboons (Papio anubis) are considered a key model species for HbF induction, cynomolgus macaques (Macaca fasicularis) are another species that conserves the ability to produce HbF into maturity. In this study, moderate anemia was experimentally induced in cynomolgus macaques by phlebotomy, to stimulate accelerated erythropoiesis and HbF production. In contrast to previous studies, vascular access ports were implanted for phlebotomy of conscious monkeys, followed by fluid replacement. As total Hgb levels dropped, reticulocyte counts and the percentage of HbF-expressing cells increased. Once total Hgb levels declined to less than 8 g/dL, 2 courses of oral hydroxyurea (once daily for 5 d) were completed, with a 9-d interval between courses. After hydroxyurea dosing, the percentage of HbF-expressing cells and total HbF were increased significantly. In addition, a significant but transient decrease in reticulocyte count and a transient increase in MCV occurred, replicating the characteristic response of patients receiving hydroxyurea. Daily clinical observations revealed no serious health issues or decreases in food consumption or activity levels. Methods were established for assessing the patency of vascular access ports. This study details a new protocol for the safe and routine induction of moderate anemia in cynomolgus macaques and validates its use in the investigation of novel pharmacologic entities to induce the production of HbF.


Asunto(s)
Anemia , Modelos Animales de Enfermedad , Hemoglobina Fetal/biosíntesis , Macaca fascicularis/fisiología , Anemia/tratamiento farmacológico , Animales , Hidroxiurea/uso terapéutico , Masculino , Flebotomía/métodos , Flebotomía/veterinaria
7.
PLoS One ; 10(2): e0115635, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25658463

RESUMEN

The wild-type p53-induced phosphatase 1 (WIP1) is a serine/threonine phosphatase that negatively regulates multiple proteins involved in DNA damage response including p53, CHK2, Histone H2AX, and ATM, and it has been shown to be overexpressed or amplified in human cancers including breast and ovarian cancers. We examined WIP1 mRNA levels across multiple tumor types and found the highest levels in breast cancer, leukemia, medulloblastoma and neuroblastoma. Neuroblastoma is an exclusively TP53 wild type tumor at diagnosis and inhibition of p53 is required for tumorigenesis. Neuroblastomas in particular have previously been shown to have 17q amplification, harboring the WIP1 (PPM1D) gene and associated with poor clinical outcome. We therefore sought to determine whether inhibiting WIP1 with a selective antagonist, GSK2830371, can attenuate neuroblastoma cell growth through reactivation of p53 mediated tumor suppression. Neuroblastoma cell lines with wild-type TP53 alleles were highly sensitive to GSK2830371 treatment, while cell lines with mutant TP53 were resistant to GSK2830371. The majority of tested neuroblastoma cell lines with copy number gains of the PPM1D locus were also TP53 wild-type and sensitive to GSK2830371A; in contrast cell lines with no copy gain of PPM1D were mixed in their sensitivity to WIP1 inhibition, with the primary determinant being TP53 mutational status. Since WIP1 is involved in the cellular response to DNA damage and drugs used in neuroblastoma treatment induce apoptosis through DNA damage, we sought to determine whether GSK2830371 could act synergistically with standard of care chemotherapeutics. Treatment of wild-type TP53 neuroblastoma cell lines with both GSK2830371 and either doxorubicin or carboplatin resulted in enhanced cell death, mediated through caspase 3/7 induction, as compared to either agent alone. Our data suggests that WIP1 inhibition represents a novel therapeutic approach to neuroblastoma that could be integrated with current chemotherapeutic approaches.


Asunto(s)
Aminopiridinas/farmacología , Dipéptidos/farmacología , Mutación , Neuroblastoma/tratamiento farmacológico , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Alelos , Línea Celular Tumoral , Femenino , Sitios Genéticos , Humanos , Masculino , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteína Fosfatasa 2C , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Clin Cancer Res ; 17(5): 989-1000, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21245089

RESUMEN

PURPOSE: Despite their preclinical promise, previous MEK inhibitors have shown little benefit for patients. This likely reflects the narrow therapeutic window for MEK inhibitors due to the essential role of the P42/44 MAPK pathway in many nontumor tissues. GSK1120212 is a potent and selective allosteric inhibitor of the MEK1 and MEK2 (MEK1/2) enzymes with promising antitumor activity in a phase I clinical trial (ASCO 2010). Our studies characterize GSK1120212' enzymatic, cellular, and in vivo activities, describing its unusually long circulating half-life. EXPERIMENTAL DESIGN: Enzymatic studies were conducted to determine GSK1120212 inhibition of recombinant MEK, following or preceding RAF kinase activation. Cellular studies examined GSK1120212 inhibition of ERK1 and 2 phosphorylation (p-ERK1/2) as well as MEK1/2 phosphorylation and activation. Further studies explored the sensitivity of cancer cell lines, and drug pharmacokinetics and efficacy in multiple tumor xenograft models. RESULTS: In enzymatic and cellular studies, GSK1120212 inhibits MEK1/2 kinase activity and prevents Raf-dependent MEK phosphorylation (S217 for MEK1), producing prolonged p-ERK1/2 inhibition. Potent cell growth inhibition was evident in most tumor lines with mutant BRAF or Ras. In xenografted tumor models, GSK1120212 orally dosed once daily had a long circulating half-life and sustained suppression of p-ERK1/2 for more than 24 hours; GSK1120212 also reduced tumor Ki67, increased p27(Kip1/CDKN1B), and caused tumor growth inhibition in multiple tumor models. The largest antitumor effect was among tumors harboring mutant BRAF or Ras. CONCLUSIONS: GSK1120212 combines high potency, selectivity, and long circulating half-life, offering promise for successfully targeting the narrow therapeutic window anticipated for clinical MEK inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Piridonas/farmacología , Pirimidinonas/farmacología , Animales , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Genes ras , Humanos , Immunoblotting , Antígeno Ki-67/metabolismo , Ratones , Ratones Desnudos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Fosforilación , Proteínas Proto-Oncogénicas B-raf/genética , Piridonas/farmacocinética , Pirimidinonas/farmacocinética , Ratas , Ratas Sprague-Dawley , Ensayos Antitumor por Modelo de Xenoinjerto
9.
ACS Med Chem Lett ; 2(4): 320-4, 2011 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24900312

RESUMEN

Inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) represents a promising strategy for the discovery of a new generation of anticancer chemotherapeutics. Our synthetic efforts, beginning from the lead compound 2, were directed at improving antiproliferative activity against cancer cells as well as various drug properties. These efforts led to the discovery of N-{3-[3-cyclopropyl-5-(2-fluoro-4-iodophenylamino)-6,8-dimethyl-2,4,7-trioxo-3,4,6,7-tetrahydro-2H-pyrido[4,3-d]pyrimidin-1-yl]phenyl}acetamide dimethylsulfoxide solvate (GSK1120212, JTP-74057 DMSO solvate; 1), a selective and highly potent MEK inhibitor with improved drug properties. We further confirmed that the antiproliferative activity correlates with cellular MEK inhibition and observed significant antitumor activity with daily oral dosing of 1 in a tumor xenograft model. These qualities led to the selection of 1 for clinical development.

10.
Mol Cancer Ther ; 9(7): 2079-89, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20571075

RESUMEN

Polo-like kinases are a family of serine threonine kinases that are critical regulators of cell cycle progression and DNA damage response. Predictive biomarkers for the Plk1-selective inhibitor GSK461364A were identified by comparing the genomics and genetics of a panel of human cancer cell lines with their response to a drug washout followed by an outgrowth assay. In this assay, cell lines that have lost p53 expression or carry mutations in the TP53 gene tended to be more sensitive to GSK461364A. These more sensitive cell lines also had increased levels of chromosome instability, a characteristic associated with loss of p53 function. Further mechanistic studies showed that p53 wild-type (WT) and not mutant cells can activate a postmitotic tetraploidy checkpoint and arrest at pseudo-G(1) state after GSK461364A treatment. RNA silencing of WT p53 increased the antiproliferative activity of GSK461364A. Furthermore, silencing of p53 or p21/CDKN1A weakened the tetraploidy checkpoint in cells that survived mitotic arrest and mitotic slippage. As many cancer therapies tend to be more effective in p53 WT patients, the higher sensitivity of p53-deficient tumors toward GSK461364A could potentially offer an opportunity to treat tumors that are refractory to other chemotherapies as well as early line therapy for these genotypes.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Inestabilidad Cromosómica , Mutación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Tiofenos/farmacología , Proteína p53 Supresora de Tumor/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Immunoblotting , Concentración 50 Inhibidora , Mitosis/efectos de los fármacos , Mitosis/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Poliploidía , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Proteína p53 Supresora de Tumor/metabolismo , Quinasa Tipo Polo 1
11.
Cancer Res ; 69(17): 6969-77, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19690138

RESUMEN

Polo-like kinase 1 (Plk1) is a conserved serine/threonine kinase that plays an essential role in regulating the many processes involved in mitotic entry and progression. In humans, Plk1 is expressed primarily during late G(2) and M phases and, in conjunction with Cdk1/cyclin B1, acts as master regulatory kinases for the myriad protein substrates involved in mitosis. Plk1 overexpression is strongly associated with cancer and has been correlated with poor prognosis in a broad range of human tumor types. We have identified a potent, selective, reversible, ATP-competitive inhibitor of Plk1, GSK461364A, capable of inhibiting cell growth of most proliferating cancer cell lines tested. We observe distinct cell cycle effects of GSK461364A depending on the dose used. The predominant phenotype for cells treated with GSK461364A is prometaphase arrest with characteristic collapsed polar polo spindle. At high concentrations, GSK461364A delays mitotic entry in G(2) followed by gradual progression into terminal mitosis; in some cell lines, this correlates with decreased apoptosis. Cell culture growth inhibition by GSK461364A can be cytostatic or cytotoxic but leads to tumor regression in xenograft tumor models under proper dose scheduling. Finally, we describe pharmacodynamic biomarkers of GSK461364A activity (pHH3 and Plk1) that are currently being evaluated in human cancer clinical trials.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Neoplasias/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Tiofenos/farmacología , Adenosina Trifosfato/metabolismo , Animales , Biomarcadores de Tumor , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Ensayos Clínicos como Asunto , Relación Dosis-Respuesta a Droga , Fase G2/efectos de los fármacos , Humanos , Ratones , Ratones Desnudos , Mitosis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/enzimología , Neoplasias Experimentales/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Tiofenos/uso terapéutico , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA