Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nucleic Acids Res ; 37(17): 5678-89, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19625493

RESUMEN

ATM and ATR protein kinases play a crucial role in cellular DNA damage responses. The inhibition of ATM and ATR can lead to the abolition of the function of cell cycle checkpoints. In this regard, it is expected that checkpoint inhibitors can serve as sensitizing agents for anti-cancer chemo/radiotherapy. Although several ATM inhibitors have been reported, there are no ATR-specific inhibitors currently available. Here, we report the inhibitory effect of schisandrin B (SchB), an active ingredient of Fructus schisandrae, on ATR activity in DNA damage response. SchB treatment significantly decreased the viability of A549 adenocarcinoma cells after UV exposure. Importantly, SchB treatment inhibited both the phosphorylation levels of ATM and ATR substrates, as well as the activity of the G2/M checkpoint in UV-exposed cells. The protein kinase activity of immunoaffinity-purified ATR was dose-dependently decreased by SchB in vitro (IC(50): 7.25 muM), but the inhibitory effect was not observed in ATM, Chk1, PI3K, DNA-PK, and mTOR. The extent of UV-induced phosphorylation of p53 and Chk1 was markedly reduced by SchB in ATM-deficient but not siATR-treated cells. Taken together, our demonstration of the ability of SchB to inhibit ATR protein kinase activity following DNA damage in cells has clinical implications in anti-cancer therapy.


Asunto(s)
Antineoplásicos/toxicidad , Proteínas de Ciclo Celular/antagonistas & inhibidores , Daño del ADN , Lignanos/toxicidad , Compuestos Policíclicos/toxicidad , Inhibidores de Proteínas Quinasas/toxicidad , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ciclooctanos/química , Ciclooctanos/toxicidad , Humanos , Lignanos/química , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Compuestos Policíclicos/química , Transducción de Señal/efectos de los fármacos , Rayos Ultravioleta
2.
J Clin Invest ; 112(6): 824-6, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12975465

RESUMEN

Histone acetylation, regulated by two antagonistic enzymes - histone acetyltransferases (HATs) and histone deacetylases (HDACs) - results in transcriptional changes and also plays a critical role in cardiac development and disease. A new study shows that overexpression of the atypical transcriptional corepressor homeodomain-only protein (Hop) causes cardiac hypertrophy via recruitment of a class I HDAC. In contrast to the body of work on transcriptional mechanisms that drive cardiac hypertrophy, including class II HDACs, this report elucidates a novel growth-suppressing transcriptional pathway in cardiac muscle that opposes hypertrophic growth.


Asunto(s)
Acetiltransferasas/metabolismo , Cardiomegalia/metabolismo , Histona Desacetilasas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Animales , Cardiomegalia/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Histona Acetiltransferasas , Histona Desacetilasas/clasificación , Proteínas de Homeodominio/metabolismo , Miocardio/metabolismo
3.
Circulation ; 111(8): 1071-7, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15710763

RESUMEN

BACKGROUND: Rad (Ras associated with diabetes) GTPase is a prototypic member of a new subfamily of Ras-related GTPases with unique structural features, although its physiological role remains largely unknown. In the present study, we characterized the Rad function in vascular smooth muscle cells (VSMCs) and the influence of adenovirus-mediated Rad (Ad-Rad) gene delivery on vascular remodeling after experimental angioplasty. METHODS AND RESULTS: We documented for the first time that neointimal formation using balloon-injured rat carotid arteries was associated with a significant increase in Rad expression as determined by immunohistochemistry and quantitative real-time reverse-transcriptase polymerase chain reaction. The levels of Rad expression in VSMCs were highly induced by platelet-derived growth factor and tumor necrosis factor-alpha. Morphometric analyses 14 days after injury revealed significantly diminished neointimal formation in the Ad-Rad-treated carotid arteries compared with Ad-GFP or PBS controls, whereas the mutated form of Rad GTPase, which can bind GDP but not GTP, increased neointimal formation. Overexpression of Rad significantly inhibited the attachment and migration of VSMCs. In addition, Rad expression dramatically reduced the formation of focal contacts and stress fibers in VSMCs by blocking the Rho/ROK signaling pathway. CONCLUSIONS: Our data clearly identified Rad GTPase as a novel and critical mediator that inhibits vascular lesion formation. Manipulation of the Rad signaling pathway may provide new therapeutic approaches that will limit vascular pathological remodeling.


Asunto(s)
Movimiento Celular/fisiología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/fisiología , Neovascularización Patológica/patología , Proteínas ras/fisiología , Actinas/antagonistas & inhibidores , Animales , Aorta/citología , Aorta/embriología , Arterias Carótidas , Adhesiones Focales/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Músculo Liso Vascular/enzimología , Neovascularización Patológica/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Fibras de Estrés/metabolismo , Túnica Íntima/metabolismo , Túnica Íntima/patología , Proteínas ras/biosíntesis , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho
4.
Arterioscler Thromb Vasc Biol ; 23(4): 543-53, 2003 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-12615665

RESUMEN

Notch signaling is an extremely conserved and widely used mechanism regulating cell fate in metazoans. Interaction of Notch receptors (Notch) with their ligands (Delta-like or Jagged) leads to cleavage of the Notch intracellular domain (NICD) that migrates into the nucleus. In the nucleus, NICD associates with a transcription factor, RBP-Jk. The NICD-RBP-Jk complex, in turn, upregulates expression of primary target genes of Notch signaling, such as hairy and enhancer of split (HES) and HES-related repressor protein (HERP) transcriptional repressors. Recent evidence has demonstrated that the Notch pathway is involved in multiple aspects of vascular development, including proliferation, migration, smooth muscle differentiation, angiogenic processes, and arterial-venous differentiation. In this brief review, we focus on ligands, receptors, and target genes of Notch signaling in the vascular system and discuss (1) tissue distribution; (2) gain- and loss-of-function studies; and (3) the role of Notch components in human diseases involving the vascular system.


Asunto(s)
Sistema Cardiovascular/embriología , Proteínas de la Membrana , Neovascularización Fisiológica , Proteínas Proto-Oncogénicas/fisiología , Receptores de Superficie Celular/fisiología , Transducción de Señal , Factores de Transcripción , Síndrome de Alagille/genética , Animales , Proteínas de Unión al Calcio , Sistema Cardiovascular/crecimiento & desarrollo , Proteínas Portadoras/fisiología , Demencia por Múltiples Infartos/genética , Regulación de la Expresión Génica , Glicoproteínas/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular , Proteína Jagged-1 , Proteína Jagged-2 , Sustancias Macromoleculares , Ratones , Ratones Noqueados , Proteínas/fisiología , Receptor Notch1 , Receptor Notch4 , Receptores Notch , Proteínas Serrate-Jagged , Vertebrados/embriología , Vertebrados/genética
5.
Semin Nephrol ; 24(5): 437-40, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15490406

RESUMEN

Similar to the kidney in uremia, end-stage cardiac failure is an outcome common to many disparate disease processes including hypertension, various inflammatory pathologies, as well as ischemic loss of tissue. In regard to the heart, cellular and molecular mechanisms responsible for heart failure have been investigated with renewed intensity over the past several years with newer techniques of molecular genetics, genomic analysis, and cell biology. Although this article reviews some recent advances made in our understanding of molecular and cellular events in the heart leading to heart failure and explores possible new targets for therapeutics, the main point is to stress the importance of investigative interactions between organ physiologists and molecular and cellular biologists. These interactions between organ physiologists and molecular geneticists is stressed and supported as a mechanism for rapid advancement for both understanding the underlying pathophysiology of human disease and the development of therapeutic strategies.


Asunto(s)
Cardiopatías/terapia , Investigación Biomédica , Sistema Cardiovascular/embriología , Diferenciación Celular , Terapia Genética/métodos , Humanos , Miocitos Cardíacos/fisiología , Neovascularización Fisiológica
6.
J Biol Chem ; 283(28): 19176-83, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18442975

RESUMEN

Structure maintenance of chromosome 1 (SMC1) is phosphorylated by ataxia telangiectasia-mutated (ATM) in response to ionizing radiation (IR) to activate intra-S phase checkpoint. A role of CK2 in DNA damage response has been implicated in many previous works, but the molecular mechanism for its activation is not clear. In the present work, we report that SMC3 is phosphorylated at Ser-1067 and Ser-1083 in vivo. Ser-1083 phosphorylation is IR-inducible, depends on ATM and Nijmegen breakage syndrome 1 (NBS1), and is required for intra-S phase checkpoint. Interestingly, Ser-1067 phosphorylation is constitutive and is not induced by IR but also affects intra-S phase checkpoint. Phosphorylation of Ser-1083 is weakened in cells expressing S1067A mutant, suggesting interplay between Ser-1067 and Ser-1083 phosphorylation in DNA damage response. Consistently, small interfering RNA knockdown of CK2 leads to attenuated phosphorylation of Ser-1067 as well as intra-S phase checkpoint defect. Our data provide evidence that phosphorylation of a core cohesin subunit SMC3 by ATM plays an important role in DNA damage response and suggest that a constitutive phosphorylation by CK2 may affect intra-S phase checkpoint by modulating SMC3 phosphorylation by ATM.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN/efectos de la radiación , Radiación Ionizante , Fase S/efectos de la radiación , Sustitución de Aminoácidos , Proteínas de la Ataxia Telangiectasia Mutada , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteoglicanos Tipo Condroitín Sulfato/antagonistas & inhibidores , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Proteínas Cromosómicas no Histona/genética , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Mutación Missense , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación/efectos de la radiación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
7.
Biochem Biophys Res Commun ; 348(2): 351-8, 2006 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-16876108

RESUMEN

TGFbeta1 plays critical roles in stimulating smooth muscle gene transcription during myofibroblast and smooth muscle cell (SMC) differentiation. Increasing evidence demonstrates that histone modification plays important roles in regulating gene transcription. Here, we investigated the effect of changes in the expression of histone acetyltransferases (HAT) or histone deacetylases (HDAC) on TGFbeta1-induced SM22 promoter activities. We found that overexpressing HAT proteins such as p300 and CBP enhances TGFbeta1-induced SM22 promoter activities; conversely, overexpressing HAT inhibitor such as Twist1 (but not Twist2/Dermo-1) and E1A suppresses this effect of TGFbeta1. We also found that TSA, a HDAC inhibitor that stimulates histone acetylation of the SM22alpha locus, further enhances the transactivational activity of Smad2, Smad3 and Smad4, and relieves the inhibitory effect of Smad6, Smad7, and the dominant negative mutants of Smads. TGFbeta1 also stimulates the association of Smad3 (a potent transactivator for the SM22 promoter) and p300 by co-immunoprecipitation assay. In contrast, overexpressing HDAC 1-6 inhibits TGFbeta1-induced as well as Smad3 and myocardin-activated SM22 promoter. Moreover, chromatin immunoprecipitation (ChIP) assays show that TGFbeta1 induces histone acetylation at the SM22alpha locus. This study demonstrates that the balance of HAT and HDAC expression affects TGFbeta1-induced SM22alpha transcription; TGFbeta1-induced SM22alpha transcription is accompanied by histone hyperacetylation at the SM22alpha locus. This study provides the first evidence showing that histone hyperacetylation of the SM22 promoter is a target of TGFbeta1 signaling, suggesting that modulation of histone acetylation is involved in the molecular mechanisms of TGFbeta1-regulated SMC gene transcription.


Asunto(s)
Cromatina/metabolismo , Histona Acetiltransferasas/biosíntesis , Histona Desacetilasas/biosíntesis , Proteínas de Microfilamentos/biosíntesis , Proteínas Musculares/biosíntesis , Proteína smad3/fisiología , Factor de Crecimiento Transformador beta/fisiología , Acetilación , Animales , Línea Celular , Proteínas Nucleares/fisiología , Transducción de Señal , Transactivadores/fisiología , Factores de Transcripción p300-CBP/biosíntesis
8.
J Biol Chem ; 281(22): 15320-9, 2006 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-16574662

RESUMEN

Rho-associated coiled-coil protein kinase (ROCK) is an effector for the small GTPase Rho and plays a pivotal role in diverse cellular activities, including cell adhesion, cytokinesis, and gene expression, primarily through an alteration of actin cytoskeleton dynamics. Here, we show that ROCK2 is localized in the nucleus and associates with p300 acetyltransferase both in vitro and in cells. Nuclear ROCK2 is present in a large protein complex and partially cofractionates with p300 by gel filtration analysis. By immunofluorescence, ROCK2 partially colocalizes with p300 in distinct insoluble nuclear structures. ROCK2 phosphorylates p300 in vitro, and nuclear-restricted expression of constitutively active ROCK2 induces p300 phosphorylation in cells. p300 acetyltransferase activity is dependent on its phosphorylation status in cells, and p300 phosphorylation by ROCK2 results in an increase in its acetyltransferase activity in vitro. These observations suggest that nucleus-localized ROCK2 targets p300 for phosphorylation to regulate its acetyltransferase activity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Histona Acetiltransferasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Bovinos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Núcleo Celular/enzimología , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Humanos , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular , Complejos Multiproteicos , Mapeo Peptídico , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos , Factores de Transcripción p300-CBP , Quinasas Asociadas a rho
9.
J Biol Chem ; 280(5): 3129-37, 2005 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-15563453

RESUMEN

p160 coregulators were initially identified as nuclear hormone receptor coactivators. In this study, functional data demonstrate that members of the three p160 families can have opposing roles in regulating gene expression by the same transcription factor. Both SRC1A and p/CIP function as coactivators for MyoD-mediated transcription whereas GRIP1 acts negatively as a (co)repressor. SRC1A and p/CIP predominantly interact with distinct sites on the NH2-terminal activation domain of MyoD. GRIP1 binds to both these regions but it alone, and neither SRC1A nor p/CIP, also interacts with specific sites on MyoD that are critical for the binding of the essential MyoD coactivator, p300. This suggests that competition by GRIP1 for SRC1A, p/CIP, and p300 binding sites on a transcription factor may regulate the activity of the factor.


Asunto(s)
Proteína MioD/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Fibroblastos/citología , Fibroblastos/fisiología , Eliminación de Gen , Regulación de la Expresión Génica/fisiología , Histona Acetiltransferasas , Ratones , Ratones Endogámicos C3H , Proteína MioD/química , Coactivador 1 de Receptor Nuclear , Coactivador 2 del Receptor Nuclear , Coactivador 3 de Receptor Nuclear , Regiones Promotoras Genéticas/fisiología , Estructura Terciaria de Proteína , Factores de Transcripción/química , Factores de Transcripción/genética
10.
J Cell Physiol ; 194(3): 237-55, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12548545

RESUMEN

Notch signaling dictates cell fate and critically influences cell proliferation, differentiation, and apoptosis in metazoans. Multiple factors at each step-ligands, receptors, signal transducers and effectors-play critical roles in executing the pleiotropic effects of Notch signaling. Ligand-binding results in proteolytic cleavage of Notch receptors to release the signal-transducing Notch intracellular domain (NICD). NICD migrates into the nucleus and associates with the nuclear proteins of the RBP-Jkappa family (also known as CSL or CBF1/Su(H)/Lag-1). RBP-Jkappa, when complexed with NICD, acts as a transcriptional activator, and the RBP-Jkappa-NICD complex activates expression of primary target genes of Notch signaling such as the HES and enhancer of split [E(spl)] families. HES/E(spl) is a basic helix-loop-helix (bHLH) type of transcriptional repressor, and suppresses expression of downstream target genes such as tissue-specific transcriptional activators. Thus, HES/E(spl) directly affects cell fate decisions as a primary Notch effector. HES/E(spl) had been the only known effector of Notch signaling until a recent discovery of a related but distinct bHLH protein family, termed HERP (HES-related repressor protein, also called Hey/Hesr/HRT/CHF/gridlock). In this review, we summarize the recent data supporting the idea of HERP being a new Notch effector, and provide an overview of the similarities and differences between HES and HERP in their biochemical properties as well as their tissue distribution. One key observation derived from identification of HERP is that HES and HERP form a heterodimer and cooperate for transcriptional repression. The identification of the HERP family as a Notch effector that cooperates with HES/E(spl) family has opened a new avenue to our understanding of the Notch signaling pathway.


Asunto(s)
Proteínas de Homeodominio/genética , Proteínas de la Membrana/fisiología , Proteínas Represoras/genética , Transducción de Señal/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas de Homeodominio/metabolismo , Datos de Secuencia Molecular , Receptores Notch , Proteínas Represoras/metabolismo , Homología de Secuencia de Aminoácido
11.
J Biol Chem ; 277(8): 6598-607, 2002 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-11741889

RESUMEN

Notch signaling is involved in many cell fate determination events in metazoans. Ligand binding results in proteolytic cleavage to release the signal-transducing Notch intracellular domain (NICD). The nuclear protein RBP-J kappa, when complexed with NICD, acts as a transcriptional activator which, in turn, induces a target gene of Notch such as the repressors HES/E(spl) and HERP2. Under physiological stimulation using co-culture with Notch ligand-expressing cells and target cells expressing Notch receptors, the HES1 gene and the HERP2 gene have been shown to be directly up-regulated by Notch ligand binding. However, expression of another member of the HERP family, HERP1, was not induced by ligand stimulation in any cells tested, leading to the suggestion that HERP1 may not be an immediate target of Notch or that Notch pathways can be cell type-specific. Because HERP1 appears to play a central role in the development of the aorta (Zhong, T. P., Rosenberg, M., Mohideen, M. A., Weinstein, B., and Fishman, M. C. (2000) Science 287, 1820-1824), we re-addressed the issue of its relationship with the Notch pathway by examining its expression in A10 smooth muscle cells derived from thoracic aorta. We show that in these specific cells HERP1 is also a direct target gene of Notch. NICD activates the HERP1 promoter in an RBP-J kappa-dependent manner, and induces expression of endogenous HERP1 mRNA as well as HERP1 protein in A10 cells. Co-culture with Notch ligand-bearing cells induces endogenous HERP1 mRNA expression in A10 cells, and these events occur even in the absence of de novo protein synthesis. In addition, RBP-J kappa proved essential for induction of HERP1 mRNA in Notch signaling because exogenous RBP-J kappa was sufficient to rescue HERP1 mRNA expression in RBP-J kappa-deficient cells. These findings provide the first solid evidence that HERP1 is a novel primary target of Notch and underscores the cell-specific complexity of the Notch regulatory pathway. Given that Notch signaling plays a crucial role in vascular development, Notch may derive its function via HERP family members.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas Nucleares , Proteínas Represoras/genética , Secuencia de Aminoácidos , Animales , Aorta , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Sitios de Unión , Secuencia de Consenso , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Biblioteca Genómica , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Músculo Liso Vascular/metabolismo , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Receptores Notch , Proteínas Represoras/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Transcripción Genética
12.
EMBO J ; 23(3): 541-51, 2004 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-14739937

RESUMEN

Notch and bone morphogenetic protein signaling pathways are important for cellular differentiation, and both have been implicated in vascular development. In many cases the two pathways act similarly, but antagonistic effects have also been reported. The underlying mechanisms and whether this is caused by an interplay between Notch and BMP signaling is unknown. Here we report that expression of the Notch target gene, Herp2, is synergistically induced upon activation of Notch and BMP receptor signaling pathways in endothelial cells. The synergy is mediated via RBP-Jkappa/CBF-1 and GC-rich palindromic sites in the Herp2 promoter, as well as via interactions between the Notch intracellular domain and Smad that are stabilized by p/CAF. Activated Notch and its downstream effector Herp2 were found to inhibit endothelial cell (EC) migration. In contrast, BMP via upregulation of Id1 expression has been reported to promote EC migration. Interestingly, Herp2 was found to antagonize BMP receptor/Id1-induced migration by inhibiting Id1 expression. Our results support the notion that Herp2 functions as a critical switch downstream of Notch and BMP receptor signaling pathways in ECs.


Asunto(s)
Células Endoteliales/fisiología , Proteínas de la Membrana/metabolismo , Receptores de Factores de Crecimiento/metabolismo , Transducción de Señal/fisiología , Animales , Receptores de Proteínas Morfogenéticas Óseas , Células COS , Movimiento Celular/genética , Movimiento Celular/fisiología , Chlorocebus aethiops , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/fisiología , Secuencia Rica en GC/fisiología , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas , Proteína 1 Inhibidora de la Diferenciación , Proteínas de la Membrana/genética , Ratones , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/fisiología , Receptores de Factores de Crecimiento/genética , Receptores Notch , Proteínas Represoras/metabolismo , Transducción de Señal/genética , Proteínas Smad , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba/fisiología
13.
EMBO J ; 23(17): 3559-69, 2004 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15297879

RESUMEN

Hypertrophy allows the heart to adapt to workload but culminates in later pump failure; how it is achieved remains uncertain. Previously, we showed that hypertrophy is accompanied by activation of cyclin T/Cdk9, which phosphorylates the C-terminal domain of the large subunit of RNA polymerase II, stimulating transcription elongation and pre-mRNA processing; Cdk9 activity was required for hypertrophy in culture, whereas heart-specific activation of Cdk9 by cyclin T1 provoked hypertrophy in mice. Here, we report that alphaMHC-cyclin T1 mice appear normal at baseline yet suffer fulminant apoptotic cardiomyopathy when challenged by mechanical stress or signaling by the G-protein Gq. At pathophysiological levels, Cdk9 activity suppresses many genes for mitochondrial proteins including master regulators of mitochondrial function (peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1), nuclear respiratory factor-1). In culture, cyclin T1/Cdk9 suppresses PGC-1, decreases mitochondrial membrane potential, and sensitizes cardiomyocytes to apoptosis, effects rescued by exogenous PGC-1. Cyclin T1/Cdk9 inhibits PGC-1 promoter activity and preinitiation complex assembly. Thus, chronic activation of Cdk9 causes not only cardiomyocyte enlargement but also defective mitochondrial function, via diminished PGC-1 transcription, and a resulting susceptibility to apoptotic cardiomyopathy.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Insuficiencia Cardíaca/etiología , Miocardio/metabolismo , Factores de Transcripción/metabolismo , Animales , Apoptosis , Células Cultivadas , Ciclina T , Ciclinas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factor 1 Relacionado con NF-E2 , Factor Nuclear 1 de Respiración , Factores Nucleares de Respiración , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Ratas , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA