Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Environ Sci Technol ; 58(9): 4357-4367, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38326940

RESUMEN

Gas nanobubbles used for water treatment and recovery give rise to great concern for their unique advantages of less byproducts, higher efficiency, and environmental friendliness. Nanoscale zerovalent iron (nZVI), which has also been widely explored in the field of environmental remediation, can generate gas hydrogen by direct reaction with water. Whether nanoscale hydrogen bubbles can be produced to enhance the pollution removal of the nZVI system is one significant concern involved. Herein, we report direct observations of in situ generation of hydrogen nanobubbles (HNBs) from nZVI in water. More importantly, the formed HNBs can enhance indeed the reduction of Se(IV) beyond the chemical reduction ascribed to Fe(0), especially in the anaerobic environment. The possible mechanism is that HNBs enhance the reducibility of the system and promote electron transport in the solution. This study demonstrates a unique function of HNBs combined with nZVI for the pollutant removal and a new approach for in situ HNB generation for potential applications in the fields of in situ remediation agriculture, biotechnology, medical treatment, health, etc.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Contaminantes Químicos del Agua , Purificación del Agua , Hierro
2.
J Dairy Sci ; 105(11): 9162-9178, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36175226

RESUMEN

Low-temperature conditions influence cattle productivity and survivability. Understanding the metabolic regulations of specific cattle breeds and identifying potential biomarkers related to cold challenges are important for cattle management and optimization of genetic improvement programs. In this study, 28 Inner-Mongolia Sanhe and 22 Holstein heifers were exposed to -25°C for 1 h to evaluate the differences in metabolic mechanisms of thermoregulation. In response to this acute cold challenge, altered rectal temperature was only observed in Holstein cattle. Further metabolome analyses showed a greater baseline of glycolytic activity and mobilization of AA in Sanhe cattle during normal conditions. Both breeds responded to the acute cold challenge by altering their metabolism of volatile fatty acids and AA for gluconeogenesis, which resulted in increased glucose levels. Furthermore, Sanhe cattle mobilized the citric acid cycle activity, and creatine and creatine phosphate metabolism to supply energy, whereas Holstein cattle used greater AA metabolism for this purpose. Altogether, we found that propionate and methanol are potential biomarkers of acute cold challenge response in cattle. Our findings provide novel insights into the biological mechanisms of acute cold response and climatic resilience, and will be used as the basis when developing breeding tools for genetically selecting for improved cold adaptation in cattle.


Asunto(s)
Creatina , Propionatos , Bovinos , Animales , Femenino , Creatina/metabolismo , Metanol , Mongolia , Fosfocreatina/metabolismo , Metaboloma , Biomarcadores/metabolismo , Glucosa/metabolismo
3.
Physiol Plant ; 173(1): 449-459, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33616963

RESUMEN

Heavy metal pollution not only decreases crop yield and quality, but also affects human health via the food chain. Ubiquitination-dependent protein degradation is involved in plant growth, development, and environmental interaction, but the functions of ubiquitin-ligase (E3) genes are largely unknown in tomato (Solanum lycopersicum L.). Here, we functionally characterized a RING E3 ligase gene, SlRING1, which positively regulates cadmium (Cd) tolerance in tomato plants. An in vitro ubiquitination experiment shows that SlRING1 has E3 ubiquitin ligase activity. The determination of the subcellular localization reveals that SlRING1 is localized at both the plasma membrane and the nucleus. Overexpression of SlRING1 in tomato increased the chlorophyll content, the net photosynthetic rate, and the maximal photochemical efficiency of photosystem II (Fv/Fm), but reduced the levels of reactive oxygen species and relative electrolyte leakage under Cd stress. Moreover, SlRING1 overexpression increased the transcript levels of CATALASE (CAT), DEHYDROASCORBATE REDUCTASE (DHAR), MONODEHYDROASCORBATE REDUCTASE (MDHAR), GLUTATHIONE (GSH1), and PHYTOCHELATIN SYNTHASE (PCS), which contribute to the antioxidant and detoxification system. Crucially, SlRING1 overexpression also reduced the concentrations of Cd in both shoots and roots. Thus, SlRING1-overexpression-induced enhanced tolerance to Cd is ascribed to reduced Cd accumulation and alleviated oxidative stress. Our findings suggest that SlRING1 is a positive regulator of Cd tolerance, which can be a potential breeding target for improving heavy metal tolerance in horticultural crops.


Asunto(s)
Cadmio , Solanum lycopersicum , Antioxidantes , Cadmio/toxicidad , Solanum lycopersicum/genética , Estrés Oxidativo , Ubiquitina-Proteína Ligasas/genética
4.
Phytopathology ; 110(5): 999-1009, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32096697

RESUMEN

Melatonin is a multifunctional molecule that confers tolerance to a number of biotic and abiotic stresses in plants. However, the role of melatonin in plant response to Fusarium oxysporum and the interaction with arbuscular mycorrhizal fungi (AMF) remain unclear. Here we show that exogenous melatonin application promoted the AMF colonization rate in cucumber roots, which potentially suppressed Fusarium wilt as evidenced by a decreased disease index and an increased control effect. Leaf gas exchange analysis revealed that Fusarium inoculation significantly decreased the net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentrations (Ci), and transpiration rate (Tr). Intriguingly, either melatonin application or AMF inoculation significantly increased the Pn, Gs, Tr, and dry biomass, and their combined treatment showed a more profound effect under Fusarium stress. Further analysis showed that Fusarium induced oxidative stress as evidenced by increased lipid peroxidation and electrolyte leakage. Conversely, either melatonin or AMF drastically attenuated the levels of malondialdehyde, H2O2, and electrolyte leakage in Fusarium-inoculated plants, and their combined treatment caused a further decrease. Fusarium inoculation decreased the activity and transcripts of superoxide dismutase and ascorbate peroxidase, and the content of glutathione and proline. Besides, the activity and transcripts of peroxidase and catalase, the content of phenols and flavonoids increased after Fusarium infection. Importantly, melatonin and/or AMF significantly increased those parameters with the greatest effect with their combined treatment under Fusarium stress. Our results suggest that a positive collaboration between melatonin and AMF enhances resistance to Fusarium wilt in cucumber plants.


Asunto(s)
Cucumis sativus , Fusarium , Melatonina , Micorrizas , Peróxido de Hidrógeno , Enfermedades de las Plantas
5.
Phytopathology ; 109(6): 972-982, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30714883

RESUMEN

Plant survival in the terrestrial ecosystem is influenced by both beneficial and harmful microbes. Trichoderma spp. are a group of filamentous fungi that promote plant growth and resistance to harmful microbes. Previously, we showed that the genus Trichoderma could effectively suppress Fusarium wilt in cucumber. However, the mechanisms that underlie the effects of the genus Trichoderma on plant defense have not been fully substantiated. Two essential metabolic pathways, such as the ascorbate (AsA)-glutathione (GSH) cycle and the oxidative pentose phosphate pathway (OPPP), have been shown to participate in plant tolerance to biotic stressors; nevertheless, the involvement of these pathways in Trichoderma-induced enhanced defense remains elusive. Here, we show that Trichoderma harzianum could alleviate oxidative and nitrostative stress by minimizing reactive oxygen species (ROS; hydrogen peroxide and superoxide) and reactive nitrogen species (nitric oxide [NO]) accumulation, respectively, under Fusarium oxysporum infection in cucumber roots. The genus Trichoderma enhanced antioxidant potential to counterbalance the overproduced ROS and attenuated the transcript and activity of NO synthase and nitrate reductase. The genus Trichoderma also stimulated S-nitrosylated glutathione reductase activity and reduced S-nitrosothiol and S-nitrosylated glutathione content. Furthermore, the genus Trichoderma enhanced AsA and GSH concentrations and activated their biosynthetic enzymes, γ-GCS and l-galactono-1,4-lactone dehydrogenase. Interestingly, the genus Trichoderma alleviated Fusarium-inhibited activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, enzymes involved in the OPPP. Such positive regulation of the key enzymes indicates the adequate maintenance of the AsA-GSH pathway and the OPPP, which potentially contributed to improve redox balance, energy flow, and defense response. Our study advances the current knowledge of Trichoderma-induced enhanced defense against F. oxysporum in cucumber.


Asunto(s)
Cucumis sativus , Fusarium , Enfermedades de las Plantas/microbiología , Trichoderma , Raíces de Plantas , Especies Reactivas de Oxígeno
6.
Asian-Australas J Anim Sci ; 28(4): 467-75, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25656186

RESUMEN

Improvement for carcass traits related to beef quality is the key concern in beef production. Recent reports found that epigenetics mediates the interaction of individuals with environment and nutrition. The present study was designed to analyze the genetic effect of single nucleotide polymorphisms (SNPs) in seven epigenetic-related genes (DNMT1, DNMT3a, DNMT3b, DNMT3L, Ago1, Ago2, and HDAC5) and two meat quality candidate genes (CAPN1 and PRKAG3) on fourteen carcass traits related to beef quality in a Snow Dragon beef population, and also to identify SNPs in a total of fourteen cattle populations. Sixteen SNPs were identified and genotyped in 383 individuals sampled from the 14 cattle breeds, which included 147 samples from the Snow Dragon beef population. Data analysis showed significant association of 8 SNPs within 4 genes related to carcass and/or meat quality traits in the beef populations. SNP1 (13154420A>G) in exon 17 of DNMT1 was significantly associated with rib-eye width and lean meat color score (p<0.05). A novel SNP (SNP4, 76198537A>G) of DNMT3a was significantly associated with six beef quality traits. Those individuals with the wild-type genotype AA of DNMT3a showed an increase in carcass weight, chilled carcass weight, flank thicknesses, chuck short rib thickness, chuck short rib score and in chuck flap weight in contrast to the GG genotype. Five out of six SNPs in DNMT3b gene were significantly associated with three beef quality traits. SNP15 (45219258C>T) in CAPN1 was significantly associated with chuck short rib thickness and lean meat color score (p<0.05). The significant effect of SNP15 on lean meat color score individually and in combination with each of other 14 SNPs qualify this SNP to be used as potential marker for improving the trait. In addition, the frequencies of most wild-type alleles were higher than those of the mutant alleles in the native and foreign cattle breeds. Seven SNPs were identified in the epigenetic-related genes. The SNP15 in CAPN1 could be used as a powerful genetic marker in selection programs for beef quality improvement in the Snow Dragon Beef population.

7.
Analyst ; 139(18): 4512-8, 2014 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-25050411

RESUMEN

An angstrom-resolution physical model of nanoscale zero-valent iron (nZVI) is generated with a combination of spherical aberration corrected scanning transmission electron microscopy (Cs-STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS) on the Fe L-edge. Bright-field (BF), high-angle annular dark-field (HAADF) and secondary electron (SE) imaging of nZVI acquired by a Hitachi HD-2700 STEM show near atomic resolution images and detailed morphological and structural information of nZVI. The STEM-EDS technique confirms that the fresh nZVI comprises of a metallic iron core encapsulated with a thin layer of iron oxides or oxyhydroxides. SAED patterns of the Fe core suggest the polycrystalline structure in the metallic core and amorphous nature of the oxide layer. Furthermore, Fe L-edge of EELS shows varied structural features from the innermost Fe core to the outer oxide shell. A qualitative analysis of the Fe L(2,3) edge fine structures reveals that the shell of nZVI consists of a mixed Fe(II)/Fe(III) phase close to the Fe (0) interface and a predominantly Fe(III) at the outer surface of nZVI.

8.
J Plant Res ; 127(6): 775-85, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25160659

RESUMEN

The combined effects of arbuscular mycorrhizal fungi (AMF) and low temperature (LT) on cucumber plants were investigated with respect to biomass production, H2O2 accumulation, NADPH oxidase, ATPase activity and related gene expression. Mycorrhizal colonization ratio was gradually increased after AMF-inoculation. However, LT significantly decreased mycorrhizal colonization ability and mycorrhizal dependency. Regardless of temperature, the total fresh and dry mass, and root activity of AMF-inoculated plants were significantly higher than that of the non-AMF control. The H2O2 accumulation in AMF-inoculated roots was decreased by 42.44% compared with the control under LT. H2O2 predominantly accumulated on the cell walls of apoplast but was hardly detectable in the cytosol or organelles of roots. Again, NADPH oxidase activity involved in H2O2 production was significantly reduced by AMF inoculation under LT. AMF-inoculation remarkably increased the activities of P-type H(+)-ATPase, P-Ca(2+)-ATPase, V-type H(+)-ATPase, total ATPase activity, ATP concentration and plasma membrane protein content in the roots under LT. Additionally, ATP concentration and expression of plasma membrane ATPase genes were increased by AMF-inoculation. These results indicate that NADPH oxidase and ATPase might play an important role in AMF-mediated tolerance to chilling stress, thereby maintaining a lower H2O2 accumulation in the roots of cucumber.


Asunto(s)
Adenosina Trifosfatasas/genética , Cucumis sativus/microbiología , Cucumis sativus/fisiología , Glomeromycota/fisiología , Peróxido de Hidrógeno/metabolismo , Micorrizas/fisiología , Proteínas de Plantas/genética , Adenosina Trifosfatasas/metabolismo , Frío , Cucumis sativus/genética , Proteínas de Plantas/metabolismo
9.
Plant Physiol Biochem ; 212: 108706, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776824

RESUMEN

Trichoderma spp. can enhance plant resistance against a wide range of biotic stressors. However, the fundamental mechanisms by which Trichoderma enhances plant resistance against Meloidogyne incognita, known as root-knot nematodes (RKNs), are still unclear. Here, we identified a strain of Trichoderma asperellum (T141) that could effectively suppress RKN infestation in tomato (Solanum lycopersicum L.). Nematode infestation led to an increase in the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) in roots but pre-inoculation with T141 significantly decreased oxidative stress. The reduction in ROS and MDA was accompanied by an increase in the activity of antioxidant enzymes and the accumulation of flavonoids and phenols. Moreover, split root test-based analysis showed that T141 inoculation in local roots before RKN inoculation increased the concentration of phytohormone jasmonate (JA) and the transcripts of JA synthesis and signaling-related genes in distant roots. UPLC-MS/MS-based metabolomics analysis identified 1051 differentially accumulated metabolites (DAMs) across 4 pairwise comparisons in root division test, including 81 flavonoids. Notably, 180 DAMs were found in comparison between RKN and T141-RKN, whereas KEGG annotation and enrichment analysis showed that the secondary metabolic pathways, especially the flavonoid biosynthesis, played a key role in the T141-induced systemic resistance to RKNs. The role of up-regulated flavonoids in RKN mortality was further verified by in vitro experiments with the exogenous treatment of kaempferol, hesperidin and rutin on J2-stage RKNs. Our results revealed a critical mechanism by which T141 induced resistance of tomato plants against the RKNs by systemically promoting secondary metabolism in distant roots.


Asunto(s)
Resistencia a la Enfermedad , Flavonoides , Enfermedades de las Plantas , Raíces de Plantas , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/parasitología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Solanum lycopersicum/genética , Solanum lycopersicum/inmunología , Flavonoides/metabolismo , Animales , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Hypocreales/metabolismo , Resistencia Sistémica Adquirida de la Planta
10.
Plant Physiol Biochem ; 207: 108398, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38359555

RESUMEN

Reactive oxygen species (ROS) are crucial signaling molecules in plants that play multifarious roles in prompt response to environmental stimuli. Despite the classical thoughts that ROS are toxic when accumulate in excess, recent advances in plant ROS signaling biology reveal that ROS participate in biotic and abiotic stress perception, signal integration, and stress-response network activation, hence contributing to plant defense and stress tolerance. ROS production, scavenging and transport are fine-tuned by plant hormones and stress-response signaling pathways. Crucially, the emerging plant hormone melatonin attenuates excessive ROS accumulation under stress, whereas ROS signaling mediates melatonin-induced plant developmental response and stress tolerance. In particular, RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) proteins responsible for apoplastic ROS generation act downstream of melatonin to mediate stress response. In this review, we discuss promising developments in plant ROS signaling and how ROS might mediate melatonin-induced plant resilience to environmental stress.


Asunto(s)
Melatonina , Especies Reactivas de Oxígeno/metabolismo , Melatonina/farmacología , Plantas/metabolismo , Estrés Fisiológico , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo
11.
J Hazard Mater ; 471: 134299, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38631252

RESUMEN

Trichoderma can enhance the metabolism of organophosphate pesticides in plants, but the mechanism is unclear. Here, we performed high-throughput transcriptome sequencing of roots upon Trichoderma asperellum (TM) inoculation and phoxim (P) application in tomato (Solanum lycopersicum L.). A total of 4059 differentially expressed genes (DEGs) were obtained, including 2110 up-regulated and 1949 down-regulated DEGs in P vs TM+P. COG and KOG analysis indicated that DEGs were mainly enriched in signal transduction mechanisms. We then focused on the pesticide detoxification pathway and screened out cytochrome P450 CYP736A12 as a putative gene for functional analysis. We suppressed the expression of CYP736A12 in tomato plants by virus-induced gene silencing and analyzed tissue-specific phoxim residues, oxidative stress markers, glutathione pool, GST activity and related gene expression. Silencing CYP736A12 significantly increased phoxim residue and induced oxidative stress in tomato plants, by attenuating the TM-induced increased activity of antioxidant and detoxification enzymes, redox homeostasis and transcripts of detoxification genes including CYP724B2, GSH1, GSH2, GR, GPX, GST1, GST2, GST3, and ABC. The study revealed a critical mechanism by which TM promotes the metabolism of phoxim in tomato roots, which can be useful for further understanding the Trichoderma-induced xenobiotic detoxification and improving food safety.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Compuestos Organotiofosforados , Raíces de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Compuestos Organotiofosforados/toxicidad , Compuestos Organotiofosforados/metabolismo , Residuos de Plaguicidas/toxicidad , Residuos de Plaguicidas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hypocreales/metabolismo , Hypocreales/genética
12.
Yi Chuan ; 35(5): 623-7, 2013 May.
Artículo en Zh | MEDLINE | ID: mdl-23732669

RESUMEN

Arachnomelia syndrome (AS) is a recessive inherited disease in cattle. Although the arachnomelia phenotypes are virtually identical in Brown Swiss and Simmental cattle, the causative mutation are different, which are a 1 bp insertion c.363-364insG in the sulfite oxidase (SUOX) gene and a 2 bp deletion c.1224_1225delCA in the molybdenum cofactor syn-thesis step 1 (MOCS1) gene, respectively. In the current study, combining fluorescence PCR with capillary electrophoresis technology, an automatic fluorescence method was established, which could detect the two causative loci rapidly and cor-rectly with a single reaction. Samples from 51 Simmental bulls, 80 cows mated artificially using semen of Simmental bulls and their resulted 106 progeny, together with 55 Xinjiang Brown were collected and used for validation of the newly de-signed methods. Our results have laid a foundation for screening AS disease causing mutations in Chinese cattle.


Asunto(s)
Enfermedades de los Bovinos/genética , Coenzimas/genética , Deformidades Congénitas de las Extremidades/veterinaria , Metaloproteínas/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Reacción en Cadena de la Polimerasa/métodos , Animales , Bovinos , Enfermedades de los Bovinos/congénito , Enfermedades de los Bovinos/diagnóstico , Femenino , Deformidades Congénitas de las Extremidades/diagnóstico , Deformidades Congénitas de las Extremidades/genética , Masculino , Cofactores de Molibdeno , Mutagénesis Insercional , Pteridinas , Eliminación de Secuencia
13.
Environ Pollut ; 327: 121597, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37031849

RESUMEN

Chromium (Cr) is one of the toxic elements that harms all forms of life, including plants. Industrial discharges and mining largely contribute to Cr release into the soil environment. Excessive Cr pollution in arable land significantly reduces the yield and quality of important agricultural crops. Therefore, remediation of polluted soil is imperative not only for agricultural sustainability but also for food safety. Arbuscular mycorrhizal fungi (AMF) are widespread soil-borne endophytic fungi that form mutualistic relationships with the vast majority of land plants. In mycorrhizal symbiosis, AMF are largely dependent on the host plant-supplied carbohydrates and lipids, in return, AMF aid the host plants in acquiring water and mineral nutrients, especially phosphorus, nitrogen and sulfur from distant soils, and this distinguishing feature of the two-way exchange of resources is a functional requirement for such mutualism and ecosystem services. In addition to supplying nutrients and water to plants, the AMF symbiosis enhances plant resilience to biotic and abiotic stresses including Cr stress. Studies have revealed vital physiological and molecular mechanisms by which AMF alleviate Cr phytotoxicity and aid plants in nutrient acquisition under Cr stress. Notably, plant Cr tolerance is enhanced by both the direct effects of AMF on Cr stabilization and transformation, and the indirect effects of AMF symbiosis on plant nutrient uptake and physiological regulation. In this article, we summarized the research progress on AMF and associated mechanisms of Cr tolerance in plants. In addition, we reviewed the present understanding of AMF-assisted Cr remediation. Since AMF symbiosis can enhance plant resilience to Cr pollution, AMF may have promising prospects in agricultural production, bioremediation, and ecological restoration in Cr-polluted soils.


Asunto(s)
Micorrizas , Micorrizas/fisiología , Cromo/toxicidad , Ecosistema , Simbiosis , Productos Agrícolas , Suelo , Raíces de Plantas/microbiología
14.
J Hazard Mater ; 453: 131456, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37088022

RESUMEN

Chromium (Cr) is a toxic heavy metal for both animals and plants. The multifunctional signaling molecule melatonin can confer plant tolerance to heavy metal stress, but the mechanisms remain largely unknown. Here, we unveiled the critical role of the secondary metabolite anthocyanin in melatonin-induced Cr stress tolerance. Excess Cr caused severe phytotoxicity, which was manifested by leaf yellowing, stunted growth, reduced Fv/Fm, and increased accumulation of reactive oxygen species and malondialdehyde in a dose-dependent manner. Interestingly, leaf anthocyanin content increased under Cr stress and was the highest under 100 µM Cr (7.67-fold), while exogenous melatonin further increased anthocyanin accumulation with the highest being with 100 µM melatonin (by 90.72 %). In addition, exogenous melatonin increased endogenous melatonin content and alleviated Cr stress; however, suppression of melatonin accumulation aggravated Cr phytotoxicity and inhibited anthocyanin accumulation by downregulating the transcript levels of key structural genes. Melatonin also reduced the Cr content in roots and leaves. Crucially, suppression of anthocyanin biosynthesis by silencing an anthocyanin biosynthetic gene ANTHOCYANIDIN SYNTHASE (ANS) significantly compromised melatonin-induced anthocyanin accumulation and alleviation of Cr phytotoxicity, suggesting that anthocyanin potentially acts downstream of melatonin and its accumulation is essential for melatonin-induced Cr stress tolerance in tomato plants.


Asunto(s)
Melatonina , Solanum lycopersicum , Melatonina/farmacología , Estrés Oxidativo , Antocianinas , Cromo/toxicidad , Cromo/metabolismo , Antioxidantes/metabolismo
15.
J Hazard Mater ; 443(Pt A): 130212, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36308936

RESUMEN

Pesticide overuse has led to serious global concerns regarding food safety and environmental pollution. Although the reduction of pesticide residue is critical, our knowledge about induced pesticide metabolism in plants remains fragmentary. Melatonin (N-acetyl-5-methoxytryptamine) is an effective stress-relieving agent in both animals and plants, but little is known about the melatonin signaling mechanism and its effect on pesticide metabolism in plants. Here, we found that exogenous melatonin treatment significantly reduced chlorothalonil residue by 41 % but suppression of endogenous melatonin accumulation increased chlorothalonil residue in tomato leaves. Moreover, melatonin increased photosynthesis, Fv/Fm, Calvin cycle enzyme activity, antioxidant enzyme activity, glutathione pool, and RESPIRATORY BURST HOMOLOG1 (RBOH1) expression in tomato leaves. However, the upregulation of RBOH1, CYP724B2, GST1, GST2, GSH and ABC, the increased glutathione concentrations and the activity of detoxification enzymes due to melatonin treatment were all significantly attenuated by the treatment with an NADPH oxidase inhibitor and a ROS scavenger, indicating a clear relationship between the reduction of pesticide residue and induction in detoxifying enzymes and genes upon melatonin treatment in an apoplastic H2O2-dependent manner. These results reveal that melatonin-induced reduction in chlorothalonil residue is mediated by H2O2 signaling in tomato leaves.


Asunto(s)
Melatonina , Residuos de Plaguicidas , Plaguicidas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Melatonina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Residuos de Plaguicidas/metabolismo , Hojas de la Planta/metabolismo , Antioxidantes/metabolismo , Glutatión/metabolismo , Plaguicidas/metabolismo
16.
Front Plant Sci ; 13: 1011859, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311065

RESUMEN

Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (Fo), is a severe soil-borne disease affecting cucumber production worldwide, particularly under monocropping in greenhouses. Silicon (Si) plays an important role in improving the resistance of crops to Fusarium wilt, but the underlying mechanism is largely unclear. Here, an in vitro study showed that 3 mmol·l-1 Si had the best inhibitory effect on the mycelial growth of F. oxysporum in potato dextrose agar (PDA) culture for 7 days. Subsequently, the occurrence of cucumber wilt disease and its mechanisms were investigated upon treatments with exogenous silicon under soil culture. The plant height, stem diameter, root length, and root activity under Si+Fo treatment increased significantly by 39.53%, 94.87%, 74.32%, and 95.11% compared with Fo only. Importantly, the control efficiency of Si+Fo was 69.31% compared with that of Fo treatment. Compared with Fo, the activities of peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) significantly increased by 148.92%, 26.47%, and 58.54%, while the contents of H2O2, O 2 · - , and malondialdehyde (MDA) notably decreased by 21.67%, 59.67%, and 38.701%, respectively, in roots of cucumber plants treated with Si + Fo. Compared with Fo treatment, the net photosynthesis rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), maximum RuBisCO carboxylation rates (Vcmax), maximum RuBP regeneration rates (Jmax), and activities of ribulose-1,5-bisphosphate carboxylase (RuBisCO), fructose-1,6-bisphosphatase (FBPase), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the expression of FBPA, TPI, SBPase, and FBPase in Si+Fo treatment increased significantly. Furthermore, Si alleviated stomatal closure and enhanced endogenous silicon content compared with only Fo inoculation. The study results suggest that exogenous silicon application improves cucumber resistance to Fusarium wilt by stimulating the antioxidant system, photosynthetic capacity, and stomatal movement in cucumber leaves. This study brings new insights into the potential of Si application in boosting cucumber resistance against Fusarium wilt with a bright prospect for Si use in cucumber production under greenhouse conditions.

17.
Res Vet Sci ; 152: 323-332, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36088773

RESUMEN

Arachnomelia syndrome (AS) is an autosomal recessive hereditary disorder in cattle, and affected calves are usually stillborn and characterized by complex anomalies. Therefore, identification of the carrier animals based on genetic tests is important for the control and elimination of this defect. The aim of this study was to build an effective workflow to routinely screen the AS mutations in bovine MOSC1 and SUOX genes and determine individuals carrying the AS mutations in four Chinese cattle populations. By combining the fluorescence-labeled PCR and capillary electrophoresis, we established a convenient and cost-effective workflow to detect two AS casual mutations simultaneously. Sanger sequencing was further used as a validation criterion and showed that 100% of the tests (37/37) had consistent results with genotype calls determined by our established workflow. Then, 582 bulls and 1-926 cows from Chinese dual-purpose cattle populations of Simmental, Sanhe, Shuxuan, and Xinjiang Brown were subjected to AS detection. The results showed that four bulls and 11 cows in the Simmental population, and six bulls and six cows in the Sanhe population were identified as AS carriers with the MOCS1 mutation c.1224_1225delCA. However, no animal was found to carry the c.363_364insG mutation in the SUOX gene. The frequencies of AS carriers were 1.08% and 1.65% in the Simmental and Sanhe populations, respectively, with a frequency of 1.076% in four populations. The pedigree analysis found that all carriers could be traced back to a common ancestor, the German Simmental sire ROMEL. Those findings suggested that this genetic defect spread into China mainly through the wide use of ROMEL. In conclusion, the occurrence of AS has not had a wide impact on the Chinese cattle industry; however, a screening system and mating strategy should be employed to gradually eliminate this recessive gene from the Chinese dual-purpose cattle population.


Asunto(s)
Enfermedades de los Bovinos , Femenino , Bovinos/genética , Animales , Masculino , Enfermedades de los Bovinos/genética , Reacción en Cadena de la Polimerasa/veterinaria , Genotipo , Mutación , China/epidemiología
18.
Chemosphere ; 263: 127875, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32835968

RESUMEN

Nanoscale zero-valent iron (nZVI) settled slowly and incompletely in a nano-iron reactor (NIR) in wastewater treatment, and the effluent quality and processing capacity of nZVI were degenerated. Herein, three types of polyacrylamide (PAM), anionic-APAM (nZVIAPAM), cationic-CPAM (nZVICPAM), and nonionic-NPAM (nZVINPAM)) were applied to modify the nZVI (nZVIPAM), which were proved to enhance aggregation and sedimentation in the gravity settling clarifier of NIR. PAM modification lead to aggregate by forming large agglomerates. The median sizes of aggregates were 32, 194, 168 and 133 µm respectively for nZVI, nZVICPAM, nZVINPAM, and nZVIAPAM. Under quiescent conditions, bare nZVI needed 5 min to reach sedimentation equilibrium, while nZVIPAM just within 1 min nZVICPAM settled more quickly and completely than nZVINPAM and nZVIAPAM. The Fe concentration in the dynamic flow NIR effluent could keep a low level for 8 h for nZVIPAM, while bare nZVI for 6 h. Iron concentration was 3.11, 0.037, 0.93, and 1.20 mg·L-1 for nZVI, nZVICPAM, nZVINPAM, and nZVIAPAM after 8-h-reaction. Meanwhile, the reactivity of nZVIPAM was kept much longer for lead removal in the NIR. Results demonstrated PAM modifications (especially CPAM) provided a reliable solution for nZVI aggregation and sedimentation in wastewater treatment.


Asunto(s)
Nanopartículas del Metal , Contaminantes Químicos del Agua , Resinas Acrílicas , Hierro , Contaminantes Químicos del Agua/análisis
19.
Materials (Basel) ; 14(8)2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920651

RESUMEN

In this paper, we present an analytical prediction for nonlinear buckling of elastically supported functionally graded graphene platelet reinforced composite (FG-GPLRC) arches with asymmetrically distributed graphene platelets (GPLs). The effective material properties of the FG-GPLRC arch are formulated by the modified Halpin-Tsai micromechanical model. By using the principle of virtual work, analytical solutions are derived for the limit point buckling and bifurcation buckling of the FG-GPLRC arch subjected to a central point load (CPL). Subsequently, the buckling mode switching phenomenon of the FG-GPLRC arch is presented and discussed. We found that the buckling modes of the FG-GPLRC arch are governed by the GPL distribution pattern, rotational restraint stiffness, and arch geometry. In addition, the number of limit points in the nonlinear equilibrium path of the FG-GPLRC arch under a CPL can be determined according to the bounds of successive inflexion points. The effects of GPL distribution patterns, weight fractions, and geometric configurations on the nonlinear buckling behavior of elastically supported FG-GPLRC arches are also comprehensively discussed.

20.
J Hazard Mater ; 414: 125505, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33689995

RESUMEN

Given high selectivity and excellent stability, zirconium oxides are very promising in selective removal of arsenic, fluorine, and phosphorus from water. Nevertheless, it remains challenging to prepare sub-10 nm zirconium oxides of ultra-high adsorptive reactivity. Herein, we prepared hydrated zirconium oxides (HZO) of 4.88 ± 1.02 nm by conducting in-situ precipitation of nanoparticles (NPs) inside the gel-type anion exchanger (GAE). GAE was swollen in water and contained lots of < 10 nm swollen pores, restricting excess growth of HZO NPs. In comparison, the NPs formed inside the macroporous anion exchanger (MAE) possessed an average diameter of 30.91 ± 8.98 nm. XPS O1s analysis indicated that the oxygen sites in the gel-type nanocomposite (HZO@GAE) possessed a much higher proportion (48.9%) of reactive terminal oxygen (-OH) than the macroporous nanocomposite (HZO@MAE, 21.2%). Thus, HZO@GAE exhibited significantly enhanced adsorption reactivity toward As(V)/As(III) than HZO@MAE. The exhausted HZO@GAE could be fully regenerated by alkali treatment for repeated use without any loss in decontamination efficiency. In column assays, the HZO@GAE column successively produced ~2400 bed volume (BV) clean water ([As]<10 µg/L) from synthetic groundwater, exceeding twice the amount produced by the HZO@MAE column. This study may shed new light on developing highly efficient nanocomposites for water decontamination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA