Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 1974, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29386664

RESUMEN

The generation of spin-polarised carriers in a non-magnetic material holds the key to realise highly efficient spintronic devices. Recently, it has been shown that the large spin-orbit coupling can generate spin-polarised currents in noble metals such as tungsten and platinum. Especially, if small samples of such metals are rotated on a plane disc in the presence of a perpendicular magnetic field, the orbital angular momentum is altered leading to a segregation of spin up and spin down electrons, i.e., a spin current in the samples. This is manifested via an induced magnetic moment on the metal. In this letter, magneto-optical Kerr effect (MOKE) is used to detect induced magnetic moments which allows remote measurements on metal samples rotating at 100~210 Hz. Our results confirm the mechanical generation of spin-polarised currents via optical detection of spin accumulation.

2.
Sci Rep ; 6: 37398, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27869213

RESUMEN

An all-metal lateral spin-valve structure has been fabricated with a medial Copper nano-ring to split the diffusive spin-current path. We have demonstrated significant modulation of the non-local signal by the application of a magnetic field gradient across the nano-ring, which is up to 30% more efficient than the conventional Hanle configuration at room temperature. This was achieved by passing a dc current through a current-carrying bar to provide a locally induced Ampère field. We have shown that in this manner a lateral spin-valve gains an additional functionality in the form of three-terminal gate operation for future spintronic logic.

3.
Nat Commun ; 7: 12701, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27586090

RESUMEN

Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA