Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Molecules ; 28(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36770983

RESUMEN

This work presents the use of a transparent 'Cross Injection Analysis' (CIA) platform as a flow system for chemiluminescence (CL) measurements. The CL-CIA flow device incorporates introduction channels for samples and reagents, and the reaction and detection channels are in one acrylic unit. A photomultiplier tube placed above the reaction channel detects the emitted luminescence. The system was applied to the analysis of (i) Co(II) via the Co(II)-catalyzed H2O2-luminol reaction and (ii) paracetamol via its inhibitory effect on the catalytic activity of Fe(CN)63- on the H2O2-luminol reaction. A linear calibration was obtained for Co(II) in the range of 0.002 to 0.025 mg L-1 Co(II) (r2 = 0.9977) for the determination of Co(II) in water samples. The linear calibration obtained for the paracetamol was 10 to 200 mg L-1 (r2 = 0.9906) for the determination of pharmaceutical products. The sample throughput was 60 samples h-1. The precision was ≤4.2% RSD. The consumption of the samples and reagents was ca. 170 µL per analysis cycle.

2.
Anal Chem ; 94(48): 16692-16700, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36409323

RESUMEN

Nanoscale imprinting significantly increases the specific surface area and recognition capabilities of a molecularly imprinted polymer by improving accessibility to analytes, binding kinetics, and template removal. Herein, we present a novel synthetic route for a dual molecularly imprinted polymer (dual-MIP) of the carcinogen oxidative stress biomarkers 3-nitrotyrosine (3-NT) and 4-nitroquinolin-N-oxide (4-NQO) as coatings on graphene quantum-dot capped gold nanoparticles (GQDs-AuNPs). The dual-MIP was successfully coated on the GQDs-AuNPs core via a (3-mercaptopropyl) trimethoxysilane (MPTMS) linkage and copolymerization with the 3-aminopropyltriethoxysilane (APTMS) functional monomer. In addition, we fabricated a facile and compact three-dimensional electrochemical paper-based analytical device (3D-ePAD) for the simultaneous determination of the dual biomarkers using a GQDs-AuNPs@dual-MIP-modified graphene electrode (GQDs-AuNPs@dual-MIP/SPGE). The developed dual-MIP device provides greatly enhanced electrochemical signal amplification due to the improved electrode-specific surface area, electrocatalytic activity, and the inclusion of large numbers of dual-imprinted sites for 3-NT and 4-NQO detection. Quantitative analysis used square wave voltammetry, with an oxidation current appearing at -0.10 V for 4-NQO and +0.78 V for 3-NT. The dual-MIP sensor revealed excellent linear dynamic ranges of 0.01 to 500 µM for 3-NT and 0.005 to 250 µM for 4-NQO, with detection limits in nanomolar levels for both biomarkers. Furthermore, the dual-MIP sensor for the simultaneous determination of 3-NT and 4-NQO provides high accuracy and precision, with no evidence of interference from urine, serum, or whole blood samples.


Asunto(s)
Grafito , Nanopartículas del Metal , Impresión Molecular , Oro , Polímeros Impresos Molecularmente , Impresión Molecular/métodos , Técnicas Electroquímicas/métodos , Carcinógenos , Límite de Detección , Electrodos , Biomarcadores , Estrés Oxidativo , Pruebas en el Punto de Atención
3.
Anal Chem ; 94(22): 7892-7900, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35609256

RESUMEN

This work presents a fully disposable microchamber for gas generation of a sample solution. The microchamber consists of a cylindrical well-reactor and a paper-based microfluidic lid (µFluidic lid), which also serves as the reagent loading and dispensing unit. The base of the reactor consists of a hydrophobic membrane covering an in-house graphene electrochemical gas sensor. Fabrication of the gas sensor and the three-layer µFluidic lid is described. The µFluidic lid is designed to provide a steady addition of the acid reagent into the sample solution instead of liquid drops from a disposable syringe. There are three steps in the procedure: (i) acidification of the sample in the reactor to generate SO2 gas by the slow dispensing of the acid reagent from the µFluidic lid, (ii) diffusion of the liberated SO2 gas through the hydrophobic membrane at the base of the reactor, and (iii) in situ detection of SO2 by cathodic reduction at the graphene electrode. The device was demonstrated for quantitation of the sulfite preservative in wine without heating or stirring. The selectivity of the analysis is ensured by the combination of the gas-diffusion membrane and the selectivity of the electrochemical sensor. The linear working range is 2-60 mg L-1 SO2, with a limit of detection (3SD of intercept/slope) of 1.5 mg L-1 SO2. This in situ method has the shortest analysis time (8 min per sample) among all voltammetric methods that detect SO2(g) via membrane gas diffusion.


Asunto(s)
Grafito , Vino , Electrodos , Grafito/análisis , Microfluídica , Sulfitos/análisis , Vino/análisis
4.
Analyst ; 146(5): 1579-1589, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33599651

RESUMEN

This work presents the first planar three-electrode electrochemical sensor comprising local gold leaf as the working electrode and printed, or hand-drawn, counter and reference electrodes, respectively. The gold leaf was mounted on a polyvinyl chloride (PVC) adhesive sheet (15 mm × 30 mm) and covered with a second PVC sheet printed with the counter and reference electrodes. This sheet has a 3 mm circle and a 2 mm × 3 mm rectangle removed to expose the gold electrode area and electrical contacts, respectively. A third shorter insulating layer with a 10 mm circular hole was placed on top to delineate the sensing area of all electrodes. The sensor displayed expected performances in various modes of operation, such as cyclic voltammetry, square wave voltammetry and anodic stripping voltammetry. For the latter mode, the limit of detection of Pb(ii) was 3.2 µg L-1, compliant with regulation for drinking water (10 µg L-1 Pb(ii)). Although designed as a disposable unit, the electrode is effective for up to 200 cycles and applicable for multiple use. The gold leaf was modified by electrodeposition of the gold network and large nano-size gold particles which significantly enhanced the sensitivity of all voltametric sensing, giving lower limits of detection. For stripping voltammetry, the electroplating structure modification improved the simultaneous detection of lead and copper, with the copper response increasing 6-fold. The device has the capability of on-site identification of copper/lead bullets from gunshot residues within 6 min.

5.
Molecules ; 26(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916065

RESUMEN

This work presents a simple and innovative protocol employing a microfluidic paper-based analytical device (µPAD) for equipment-free determination of mercury. In this method, mercury (II) forms an ionic-association complex of tetraiodomercurate (II) ion (HgI42-(aq)) using a known excess amount of iodide. The residual iodide flows by capillary action into a second region of the paper where it is converted to iodine by pre-deposited iodate to liberate I2(g) under acidic condition. Iodine vapor diffuses across the spacer region of the µPAD to form a purple colored of tri-iodide starch complex in a detection zone located in a separate layer of the µPAD. The digital image of the complex is analyzed using ImageJ software. The method has a linear calibration range of 50-350 mg L-1 Hg with the detection limit of 20 mg L-1. The method was successfully applied to the determination of mercury in contaminated soil and water samples which the results agreed well with the ICP-MS method. Three soil samples were highly contaminated with mercury above the acceptable WHO limits (0.05 mg kg-1). To the best of our knowledge, this is the first colorimetric µPAD method that is applicable for soil samples including mercury contaminated soils from gold mining areas.

6.
Anal Bioanal Chem ; 412(13): 3167-3176, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32303795

RESUMEN

This work presents a portable microfluidic paper-based analytical device (micro-PAD) card for the quantification of total ammonia nitrogen in human saliva. The amount of total ammonia nitrogen in saliva can be an indicator of the status of the oral microbiome with potential correlation to kidney health problems. The developed micro-PAD card comprises twenty units consisting of three stacked layers of circular discs: the sample layer, paper discs impregnated with sodium hydroxide solution, the PTFE membrane layer, and the detection layer, paper discs impregnated with bromothymol blue. The twenty units were aligned on transparent laminating pouches laminated to form the micro-PAD card (7.5 cm × 10.5 cm). Saliva samples can be directly dispensed onto the micro-PAD card and the detection was achieved by the BTB indicator color change, from yellow to blue, after conversion of ammonium into ammonia and diffusion of the ammonia gas through a hydrophobic layer. The determination of total ammonia nitrogen in saliva using the developed micro-PAD card intended to be very simple method and operated without the need of laboratory equipment. A quantification limit of 11.3 NH4+mg L-1 and linear application range from up to 150 NH4+mg L-1 were obtained making it suitable for the expected concentrations of total ammonia nitrogen in human saliva. It was successfully applied to saliva samples and its validation obtained by comparison against a potentiometric method. The card is stable for at least 1 month making it ideal as a portable device for point-of-care diagnosis. Graphical Abstract.


Asunto(s)
Amoníaco/análisis , Nitrógeno/análisis , Papel , Saliva/química , Humanos , Límite de Detección
7.
Molecules ; 25(10)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414012

RESUMEN

This work presents a new dual-purpose detector for photometric and conductivity measurements in flow-based analysis. The photometric detector is a paired emitter-detector diode (PEDD) device, whilst the conductivity detection employs a capacitively coupled contactless conductivity detector (C4D). The flow-through detection cell is a rectangular acrylic block (ca. 2 × 2 × 1.5 cm) with cylindrical channels in Z-configuration. For the PEDD detector, the LED light source and detector are installed inside the acrylic block. The two electrodes of the C4D are silver conducting ink painted on the PEEK inlet and outlet tubing of the Z-flow cell. The dual-purpose detector is coupled with a sequential injection analysis (SIA) system for simultaneous detection of the absorbance of the orange dye and conductivity of the dissolved oral rehydration salt powder. The detector was also used for sequential measurements of creatinine and the conductivity of human urine samples. The creatinine analysis is based on colorimetric detection of the Jaffé reaction using the PEDD detector, and the conductivity of the urine, as measured by the C4D detector, is expressed in millisiemens (mS cm-1).


Asunto(s)
Conductividad Eléctrica , Análisis de Inyección de Flujo , Colorimetría
8.
J Sep Sci ; 42(11): 2032-2043, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30938053

RESUMEN

Liquid microextraction employing solidification of the floating organic droplet, with vortexing and heating to optimize extraction efficiency, was developed for the determination of seven insecticides in fruit juice, vegetables, and agricultural runoff water. The extracts were analyzed by gas chromatography with both flame ionization and mass spectrometry detection for the determination of chlorpyrifos, prothiofos, profenofos, ethion, λ-cyhalothrin, permethrin, and cypermethrin, respectively. Using 20 µL of 1-undecanol in 10 mL of aqueous solution containing 1% w/v sodium chloride provided preconcentration factor of 500. The enrichment factor of the analytes was in the range of 355 to 509 with extraction recovery >71%. The linearity ranges were 4-200 µg/kg for gas chromatography with flame ionization detection and 1-100 µg/kg for gas chromatography with mass spectrometry, with limits of detection ranging from 0.04 to 1.2 µg/kg, which are lower than the international maximum residue limits for vegetables and fruit juice. Intra-day and inter-day precisions are less than 5.4 and 7.0% relative standard deviation, respectively. The method was successfully applied to the determination of the seven insecticides in samples of vegetables, fruit juice and agricultural runoff, with recoveries ranging from 61.7 to 120.8%. The extraction method is simple, efficient and environmentally friendly.


Asunto(s)
Cromatografía de Gases/métodos , Jugos de Frutas y Vegetales/análisis , Insecticidas/química , Insecticidas/aislamiento & purificación , Microextracción en Fase Líquida/métodos , Espectrometría de Masas/métodos , Cromatografía de Gases/instrumentación , Ionización de Llama , Contaminación de Alimentos/análisis , Nitrilos/análisis , Nitrilos/aislamiento & purificación , Piretrinas/análisis , Piretrinas/aislamiento & purificación
9.
Anal Chem ; 88(17): 8749-56, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27464645

RESUMEN

This work presents new chemical sensing devices called "membraneless gas-separation microfluidic paper-based analytical devices" (MBL-GS µPADs). MBL-GS µPADs were designed to make fabrication of the devices simple and user-friendly. MBL-GS µPADs offer direct quantitative analysis of volatile and nonvolatile compounds. Porous hydrophobic membrane is not needed for gas-separation, which makes fabrication of the device simple, rapid and low-cost. A MBL-GS µPAD consists of three layers: "donor layer", "spacer layer", and "acceptor layer". The donor and acceptor layers are made of filter paper with a printed pattern. The donor and acceptor layers are mounted together with a spacer layer in between. This spacer is a two-sided mounting tape, 0.8 mm thick, with a small disc cut out for the gas from the donor zone to diffuse to the acceptor zone. Photographic image of the color that is formed by the reagent in the acceptor layer is analyzed using the ImageJ program for quantitation. Proof of concept of the MBL-GS µPADs was demonstrated by analyzing standard solutions of ethanol, sulfide, and ammonium. Optimization of the MBL-GS µPADs was carried out for direct determination of ammonium in wastewaters and fertilizers to demonstrate the applicability of the system to real samples.

10.
Analyst ; 141(5): 1837-46, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26842266

RESUMEN

We report the first use of a paper-based device coated with nanoceria as a simple, low-cost and rapid detection platform for the analysis of organophosphate (OP) pesticides using an enzyme inhibition assay with acetylcholinesterase (AChE) and choline oxidase (ChOX). In the presence of acetylcholine, AChE and ChOX catalyze the formation of H2O2, which is detected colorimetrically by a nanoceria-coated device resulting in the formation of a yellow color. After incubation with OP pesticides, the AChE activity was inhibited, producing less H2O2, and a reduction in the yellow intensity. The assay is able to analyze OP pesticides without the use of sophisticated instruments and gives detection limits of 18 ng mL(-1) and 5.3 ng mL(-1) for methyl-paraoxon and chlorpyrifos-oxon, respectively. The developed method was successfully applied to detect methyl-paraoxon in spiked vegetables (cabbage) and a dried seafood product (dried green mussel), obtaining ∼95% recovery values for both sample types. The spiked samples were also analyzed using LC-MS/MS as a comparison to the developed method and similar values were obtained, indicating that the developed method gives accurate results and is suitable for OP analysis in real samples.


Asunto(s)
Técnicas Biosensibles/métodos , Cerio/química , Contaminantes Ambientales/análisis , Nanopartículas/química , Papel , Plaguicidas/análisis , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Animales , Técnicas Biosensibles/instrumentación , Inhibidores de la Colinesterasa/análisis , Inhibidores de la Colinesterasa/farmacología , Color , Colorimetría , Contaminantes Ambientales/farmacología , Análisis de los Alimentos , Peróxido de Hidrógeno/metabolismo , Límite de Detección , Plaguicidas/farmacología
11.
J Sep Sci ; 39(18): 3521-7, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27443792

RESUMEN

A simple and rapid method based on micro-liquid chromatography using a synthetic monolithic capillary column was developed for determination of iohexol in human serums, a marker to evaluate the glomerular filtration rate. A hydrophilic methacrylic acid-ethylene dimethacrylate monolith provided excellent selectivity and efficiency for iohexol with separation time of 3 min using a mobile phase of 40:60 v/v 50 mM phosphate buffer pH 5/methanol. Four serum protein removal, methods using perchloric acid, 50% acetonitrile, 0.1 M zinc sulfate, and centrifuge membrane filter were examined. The method of zinc sulfate was chosen due to its simplicity, compatibility with the mobile phase system, nontoxicity, and low cost. Interday calibration curves were conducted over iohexol concentrations range of 2-500 mg/L (R(2) = 0.9997 ± 0.0001) with detection limit of 0.44 mg/L. Intra- and interday precisions for peak area and retention time were less than 2.8 and 1.4%, respectively. The method was successfully applied to serum samples with percent recoveries from 102 to 104. The method was applied to monitor released iohexol from healthy subject. Compared with the commercially available reversed-phase high-performance liquid chromatography method, the presented method provided simpler chromatogram, faster separation with higher separation efficiency and much lower sample and solvent consumption.


Asunto(s)
Cromatografía Liquida/métodos , Medios de Contraste/análisis , Yohexol/análisis , Suero/química , Cromatografía Liquida/instrumentación , Humanos , Interacciones Hidrofóbicas e Hidrofílicas
12.
Analyst ; 140(1): 295-302, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25368871

RESUMEN

This work presents the first flow system for direct analysis of iodide and creatinine suitable for screening of human urine samples. The system had a mini-column packed with strong anion exchange resin for on-line extraction of iodide. After injection of a sample on the column the unretained urine sample was analyzed for creatinine in one section of the flow system using the Jaffe's reaction with spectrometric detection at 520 nm. Iodide was eluted off with 1.42 mL 5 M NaNO3. A 150 µL fraction of the eluate was analyzed in another section of the same flow system for iodide using the kinetic-spectrometric Sandell-Kolthoff reaction. At the optimum condition, the sample throughput was 12 samples per h. The linear working range covered the normal levels of iodide and creatinine in human urine: 0-200 µg I L(-1) and 50-1200 mg creatinine L(-1), respectively. Recoveries tested in 10 samples were 87-104% for iodide and 89-104% for creatinine. Bland-Altman plots (n = 50) showed that the scatter of the differences between values obtained by this method and those of reference methods, for both iodide and creatinine, was within mean ± 2SD.


Asunto(s)
Creatinina/orina , Análisis de Inyección de Flujo , Yoduros/orina , Análisis de Inyección de Flujo/instrumentación , Humanos , Resinas de Intercambio Iónico/química
13.
J Sep Sci ; 38(6): 1035-41, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25641810

RESUMEN

An in-house flow-injection capillary electrophoresis with capacitively coupled contactless conductivity detection method was developed for the direct measurement of colistin in pharmaceutical samples. The flow injection and capillary electrophoresis systems are connected by an acrylic interface. Capillary electrophoresis separation is achieved within 2 min using a background electrolyte solution of 5 mM 2-morpholinoethanesulfonic acid and 5 mM histidine (pH 6). The flow-injection section allows for convenient filling of the capillary and sample introduction without the use of a pressure/vacuum manifold. Capacitively coupled contactless conductivity detection is employed since colistin has no chromophore but is cationic at pH 6. Calibration curve is linear from 20 to 150 mg/L, with a correlation coefficient (r(2) ) of 0.997. The limit of quantitation is 20 mg/L. The developed method provides precision, simplicity, and short analysis time.


Asunto(s)
Antibacterianos/análisis , Colistina/análisis , Electroforesis Capilar/métodos , Análisis de Inyección de Flujo/métodos , Electroforesis Capilar/instrumentación
14.
Analyst ; 139(24): 6580-8, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25360590

RESUMEN

We report a simple, low-cost, one-step fabrication method for microfluidic paper-based analytical devices (µPAD) using only polystyrene and a patterned screen. The polystyrene solution applied through the screen penetrates through the paper, forming a three-dimensional hydrophobic barrier, defining a hydrophilic analysis zone. The optimal polystyrene concentration and paper types were first investigated. Adjusting polystyrene concentration allows for various types of paper to be used for successful device fabrication. Using an optimized polystyrene concentration with Whatman#4 filter paper, a linear relationship was found to exist between the design width and the printed width. The smallest hydrophilic channel and hydrophobic barrier that can be obtained are 670 ± 50 µm and 380 ± 40 µm, respectively. High device-to-device fabrication reproducibility was achieved yielding a relative standard deviation (%RSD) in the range of 1.12-2.54% (n = 64) of the measured diameter of the well-shaped fabricated test zones with a designed diameter of 5 and 7 mm. To demonstrate the significance of the fabricated µPAD, distance-based and well-based paper devices were constructed for the analysis of H2O2 and antioxidant activity, respectively. The analysis of H2O2 in real samples using distance-based measurement with CeO2 nanoparticles as the colorimetric agent produced the same results at 95% confidence level, as those obtained using KMnO4 titration. A proof-of-concept antioxidant activity determination based on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was also demonstrated. The results verify that the polymer screen-printing method can be used as an alternative method for µPAD fabrication.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Poliestirenos/química , Antioxidantes/análisis , Compuestos de Bifenilo/química , Diseño de Equipo , Filtración , Peróxido de Hidrógeno/análisis , Microtecnología/instrumentación , Papel , Picratos/química , Impresión
15.
Anal Methods ; 16(6): 817-829, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38168774

RESUMEN

An electrochemical sensor was developed based on a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNTs) and gold nanoparticles (AuNPs) for the determination of promethazine (PMZ) in 'purple drank', pharmaceutical formulations, and synthetic saliva. The oxidation of PMZ at the modified electrode occurred at a higher cathodic potential and produced a higher sensitivity compared to the unmodified GCE. The morphology of the modified electrode was characterized using field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The presence of MWCNTs and AuNPs was confirmed. The optimized parameters included the concentration and pH of the supporting electrolyte, amount of modifiers used to fabricate the electrode, deposition potential, and time. Using these optimized conditions, the method has a linear range from 0.5 to 100 µmol L-1, with a R2 value of 0.9991. The limit of detection (3SDblank/slope) was 0.13 µmol L-1. The proposed electrochemical sensor was successfully applied for the determination of PMZ in 'purple drank', pharmaceutical formulations, and spiked synthetic saliva samples. The results obtained from this sensor were in statistical agreement with the values obtained using the reference gas chromatography-flame ionization method.


Asunto(s)
Nanopartículas del Metal , Nanotubos de Carbono , Prometazina , Oro/química , Nanotubos de Carbono/química , Nanopartículas del Metal/química , Límite de Detección , Técnicas Electroquímicas/métodos , Preparaciones Farmacéuticas
16.
Talanta ; 269: 125512, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38091737

RESUMEN

Measuring the levels of the biomarkers vanillylmandelic acid (VMA) and 5-Hydroxyindole-3-acetic acid (5-HIAA) is a valuable tool for clinical diagnosis not only of neuroblastoma or carcinoid syndrome, but also of essential hypertension, depression, migraine, and Tourette's syndrome. Herein, we explore using graphene quantum dots (GQDs) coated with molecularly imprinted polymer (MIP) as novel dual-imprinted sensors for selective and simultaneous determination of VMA and 5-HIAA in urine and plasma samples. The dual-MIP was successfully coated on the GQDs core via co-polymerization of (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS), acting as functional and cross-linking monomers, respectively. In addition, we successfully created the dual imprinted VMA and 5-HIAA shell on the GQDs' core via a one-pot synthesis. We fabricated a facile and ready-to-use Origami three-dimensional electrochemical paper-based analytical device (Origami 3D-ePAD) for simultaneous determination of VMA and 5-HIAA using a GQDs@dual-MIP modified graphene electrode (GQDs@dual-MIP/SPGE). The Origami 3D-ePAD was designed to form a voltammetric cell on a three-layer foldable sheet with several advantages. For example, they were quickly assembled and enhanced the device's physical durability with the hydrophobic backup sheet. The developed dual imprinted Origami 3D-ePAD leads to substantially enhanced sensitivity and selectivity to electrochemical signal amplification generated from increasing the electrode-specific surface area, electrocatalytic activity, and the large numbers of dual imprinted sites for VMA and 5-HIAA detection. The synthetic recognition sites are highly selective for 5-HIAA and VMA molecules with an imprinting factor of 8.46 and 7.10, respectively. Quantitative analysis relying on square wave voltammetry reveals excellent linear dynamic ranges of around 0.001-25 µM, with detection limits of 0.023 nM for 5-HIAA and 0.047 nM for VMA (3Sb, n = 3). The Origami 3D-ePAD provides high accuracy and precision (i.e., recovery values of 5-HIAA ranged from 82.98 to 98.40 %, and VMA ranged from 83.28 to 104.39 %), and RSD less than 4.37 %) in urine and plasma samples without any evidence of interference. Hence, it is well suited as a facile and ready-to-use disposable device for point-of-care testing. It is straightforward, cost-effective, reproducible, and stable. Furthermore, it allows for rapid analysis (analysis time ∼20s) useful in medical diagnosis and other relevant fields.


Asunto(s)
Tumor Carcinoide , Grafito , Impresión Molecular , Puntos Cuánticos , Humanos , Puntos Cuánticos/química , Polímeros Impresos Molecularmente , Grafito/química , Ácido Vanilmandélico , Biomarcadores de Tumor , Límite de Detección , Ácido Hidroxiindolacético , Acetatos , Impresión Molecular/métodos , Técnicas Electroquímicas/métodos
17.
Talanta ; 275: 125963, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38643712

RESUMEN

This work introduces an innovative gold-leaf flow cell for electrochemical detection in flow injection (FI) analysis. The flow cell incorporates a hammered custom gold leaf electrochemical sensor. Hammered gold leaves consist of pure gold and are readily available in Thailand at affordable prices (approximately $0.085 for a sheet measuring 40 mm × 40 mm). Four sensing devices can be made from a single sheet of this gold leaf, resulting in a production cost of approximately $0.19 per sensor. Each electrochemical sensor has the gold leaf as the working electrode, together with a printed carbon strip, and a printed silver/silver chloride strip as the counter and reference electrodes, respectively. Initial investigations using cyclic voltammetry of a standard 1000 µmol L⁻1 iodide solution in 60 mmol L⁻1 phosphate buffer (PB) solution at pH 5, demonstrated performance comparable to that of a commercial screen-printed gold electrode. The hammered gold leaf electrode was then installed in a commercial flow cell as part of an FI system. A sample or standard iodide solution (100 µL) is injected into the first carrier stream of phosphate buffer (PB) solution, which then merges to mix with the second stream of the same buffer solution before flowing into the flow cell for amperometric detection of iodide. The optimized operating conditions include a fixed potential of +0.39 V (vs Ag/AgCl), and a total flow rate of 3 mL min⁻1. A linear calibration is obtained in the concentration range of 1 to 1000 µmol L⁻1 I- with a typical equation of µA = (0.00299 ± 0.00004) × (µmol L-1 I-) + (0.021 ± 0.020), and R2 = 0.9994. Analysis of iodide using this gold leaf-FI system is rapid with sample throughput of 86 samples h⁻1 and %RSD of a sample of 100 µmol L⁻1 I⁻ of 1.2 (n = 29). The limit of detection, (calculated as 2.78 × SD of regression line/slope), is 27 µmol L⁻1 I-. This method was successfully applied to determine iodide in nuclear emergency tablets.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Oro , Yoduros , Comprimidos , Yoduros/análisis , Oro/química , Comprimidos/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Análisis de Inyección de Flujo/métodos , Límite de Detección
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123076, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37392537

RESUMEN

In the period of the corona virus disease 2019 (COVID-19) outbreak, an alcohol-based hand sanitizer is one of the most in-demand products for disinfection purposes. Two major concerns are adulteration of methanol, which causes toxicity to human health, and the concentration of legal alcohol in hand sanitizers due to their effect on antivirus. In this work, the first report of the entire quality assessment of alcohol-based hand sanitizers in terms of detection of methanol adulteration and quantification of ethanol is presented. Detection of adulterated methanol is carried out based on Schiff's reagent after the oxidation of methanol to formaldehyde, giving a bluish-purple solution to detect at 591 nm. In cases where a colorless solution is observed, an iodoform reaction with turbidimetric detection is then performed for quantitative analysis of legal alcohol (ethanol or isopropanol). To comply with the regulation of quality assessment of alcohol-based hand sanitizers, a regulation chart with four safety zones is also presented, employing a combination of two developed tests. The coordinates of a point (x, y) obtained from the two tests are extrapolated to the safety zone in the regulation chart. The regulation chart also showed consistency of analytical results as compared with the gas chromatography-flame ionization detector.


Asunto(s)
COVID-19 , Desinfectantes para las Manos , Humanos , Metanol/análisis , Etanol/análisis
19.
Talanta ; 254: 124202, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549139

RESUMEN

Herein, we present a novel Origami 3D-µPAD for colorimetric carbaryl detection using a super-efficient catalyst, namely mesoporous silica-platinum nanoparticles coated with a molecularly imprinted polymer (MSN-PtNPs@MIP). Morphological and structural characterization reveals that coating MIP on the MSN-PtNPs surface significantly increases the selective area, leading to larger numbers of imprinting sites for improved sensitivity and selectivity in determining carbaryl. The as-prepared MSN-PtNPs@MIP was used for catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2. Carbaryl selectively binds to the cavities embedded on the MSN-PtNPs surface and subsequently inhibits TMB oxidation leading the color to change to light blue. The change of reaction color from dark blue to light blue depends on the concentration of carbaryl within the 3D-µPAD detection zone. This design integrates the advantages of highly efficient sample delivery through micro channels (top layer) and efficient partition/separation paths (bottom layer) of the cellulose substrate to achieve both improved detection sensitivity and selectivity. Assay on the Origami 3D-µPAD can determine carbaryl by ImageJ detection, over a dynamic range of 0.002-20.00 mg kg-1, with a very low limit of detection at 1.5 ng g-1. The developed 3D-µPAD exhibit high accuracy when applied to detect carbaryl in fruits, with satisfactory recoveries from 90.1% to 104.0% and relative differences from the reference HPLC values less than 5.0%. Furthermore, the fabricated Origami 3D-µPAD provides reliable durability and good reproducibility (3.19% RSD for fifteen devices).


Asunto(s)
Nanopartículas del Metal , Impresión Molecular , Carbaril , Polímeros Impresos Molecularmente , Dióxido de Silicio/química , Polímeros/química , Platino (Metal) , Nanopartículas del Metal/química , Peróxido de Hidrógeno , Microfluídica , Reproducibilidad de los Resultados
20.
Electrophoresis ; 33(2): 388-94, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22170109

RESUMEN

CE methods with capacitively coupled contactless conductivity detection (C(4)D) were developed for the enantiomeric separation of the following stimulants: amphetamine (AP), methamphetamine (MA), ephedrine (EP), pseudoephedrine (PE), norephedrine (NE) and norpseudoephedrine (NPE). Acetic acid (pH 2.5 and 2.8) was found to be the optimal background electrolyte for the CE-C(4)D system. The chiral selectors, carboxymethyl-ß-cyclodextrin (CMBCD), heptakis(2,6-di-O-methyl)-ß-cyclodextrin (DMBCD) and chiral crown ether (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (18C6H(4)), were investigated for their enantioseparation properties in the BGE. The use of either a single or a combination of two chiral selectors was chosen to obtain optimal condition of enantiomeric selectivity. Enantiomeric separation of AP and MA was achieved using the single chiral selector CMBCD and (hydroxypropyl)methyl cellulose (HPMC) as the modifier. A combination of the two chiral selectors, CMBCD and DMBCD and HPMC as the modifier, was required for enantiomeric separation of EP and PE. In addition, a combination of DMBCD and 18C6H(4) was successfully applied for the enantiomeric separation of NE and NPE. The detection limits of the enantiomers were found to be in the range of 2.3-5.7 µmol/L. Good precisions of migration time and peak area were obtained. The developed CE-C(4)D method was successfully applied to urine samples of athletes for the identification of enantiomers of the detected stimulants.


Asunto(s)
Anfetaminas/química , Estimulantes del Sistema Nervioso Central/química , Electroforesis Capilar/métodos , Propanolaminas/química , Ácido Acético/química , Anfetaminas/aislamiento & purificación , Anfetaminas/orina , Estimulantes del Sistema Nervioso Central/aislamiento & purificación , Estimulantes del Sistema Nervioso Central/orina , Éteres Corona/química , Conductividad Eléctrica , Electroforesis Capilar/instrumentación , Humanos , Límite de Detección , Propanolaminas/aislamiento & purificación , Propanolaminas/orina , Reproducibilidad de los Resultados , Estereoisomerismo , beta-Ciclodextrinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA