Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Neurosci ; 43(43): 7149-7157, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37775302

RESUMEN

Amniotes evolved a unique postsynaptic terminal in the inner ear vestibular organs called the calyx that receives both quantal and nonquantal (NQ) synaptic inputs from Type I sensory hair cells. The nonquantal synaptic current includes an ultrafast component that has been hypothesized to underlie the exceptionally high synchronization index (vector strength) of vestibular afferent neurons in response to sound and vibration. Here, we present three lines of evidence supporting the hypothesis that nonquantal transmission is responsible for synchronized vestibular action potentials of short latency in the guinea pig utricle of either sex. First, synchronized vestibular nerve responses are unchanged after administration of the AMPA receptor antagonist CNQX, while auditory nerve responses are completely abolished. Second, stimulus evoked vestibular nerve compound action potentials (vCAP) are shown to occur without measurable synaptic delay and three times shorter than the latency of auditory nerve compound action potentials (cCAP), relative to the generation of extracellular receptor potentials. Third, paired-pulse stimuli designed to deplete the readily releasable pool (RRP) of synaptic vesicles in hair cells reveal forward masking in guinea pig auditory cCAPs, but a complete lack of forward masking in vestibular vCAPs. Results support the conclusion that the fast component of nonquantal transmission at calyceal synapses is indefatigable and responsible for ultrafast responses of vestibular organs evoked by transient stimuli.SIGNIFICANCE STATEMENT The mammalian vestibular system drives some of the fastest reflex pathways in the nervous system, ensuring stable gaze and postural control for locomotion on land. To achieve this, terrestrial amniotes evolved a large, unique calyx afferent terminal which completely envelopes one or more presynaptic vestibular hair cells, which transmits mechanosensory signals mediated by quantal and nonquantal (NQ) synaptic transmission. We present several lines of evidence in the guinea pig which reveals the most sensitive vestibular afferents are remarkably fast, much faster than their auditory nerve counterparts. Here, we present neurophysiological and pharmacological evidence that demonstrates this vestibular speed advantage arises from ultrafast NQ electrical synaptic transmission from Type I hair cells to their calyx partners.


Asunto(s)
Células Ciliadas Vestibulares , Vestíbulo del Laberinto , Animales , Cobayas , Potenciales de Acción/fisiología , Células Ciliadas Vestibulares/fisiología , Transmisión Sináptica/fisiología , Sinapsis/fisiología , Mamíferos
2.
Proc Natl Acad Sci U S A ; 117(36): 21880-21888, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32848062

RESUMEN

Cochlear outer hair cells (OHCs) are among the fastest known biological motors and are essential for high-frequency hearing in mammals. It is commonly hypothesized that OHCs amplify vibrations in the cochlea through cycle-by-cycle changes in length, but recent data suggest OHCs are low-pass filtered and unable to follow high-frequency signals. The fact that OHCs are required for high-frequency hearing but appear to be throttled by slow electromotility is the "OHC speed paradox." The present report resolves this paradox and reveals origins of ultrafast OHC function and power output in the context of the cochlear load. Results demonstrate that the speed of electromotility reflects how fast the cell can extend against the load, and does not reflect the intrinsic speed of the motor element itself or the nearly instantaneous speed at which the coulomb force is transmitted. OHC power output at auditory frequencies is revealed by emergence of an imaginary nonlinear capacitance reflecting the phase of electrical charge displacement required for the motor to overcome the viscous cochlear load.


Asunto(s)
Cóclea/fisiología , Células Ciliadas Auditivas Externas/fisiología , Línea Celular , Cóclea/química , Capacidad Eléctrica , Electrofisiología , Células Ciliadas Auditivas Externas/química , Humanos , Sonido
3.
J Neurophysiol ; 119(1): 312-325, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28978760

RESUMEN

In the mammalian vestibular periphery, electrical activation of the efferent vestibular system (EVS) has two effects on afferent activity: 1) it increases background afferent discharge and 2) decreases afferent sensitivity to rotational stimuli. Although the cellular mechanisms underlying these two contrasting afferent responses remain obscure, we postulated that the reduction in afferent sensitivity was attributed, in part, to the activation of α9- containing nicotinic acetylcholine (ACh) receptors (α9*nAChRs) and small-conductance potassium channels (SK) in vestibular type II hair cells, as demonstrated in the peripheral vestibular system of other vertebrates. To test this hypothesis, we examined the effects of the predominant EVS neurotransmitter ACh on vestibular type II hair cells from wild-type (wt) and α9-subunit nAChR knockout (α9-/-) mice. Immunostaining for choline acetyltransferase revealed there were no obvious gross morphological differences in the peripheral EVS innervation among any of these strains. ACh application onto wt type II hair cells, at resting potentials, produced a fast inward current followed by a slower outward current, resulting in membrane hyperpolarization and decreased membrane resistance. Hyperpolarization and decreased resistance were due to gating of SK channels. Consistent with activation of α9*nAChRs and SK channels, these ACh-sensitive currents were antagonized by the α9*nAChR blocker strychnine and SK blockers apamin and tamapin. Type II hair cells from α9-/- mice, however, failed to respond to ACh at all. These results confirm the critical importance of α9nAChRs in efferent modulation of mammalian type II vestibular hair cells. Application of exogenous ACh reduces electrical impedance, thereby decreasing type II hair cell sensitivity. NEW & NOTEWORTHY Expression of α9 nicotinic subunit was crucial for fast cholinergic modulation of mammalian vestibular type II hair cells. These findings show a multifaceted efferent mechanism for altering hair cell membrane potential and decreasing membrane resistance that should reduce sensitivity to hair bundle displacements.


Asunto(s)
Acetilcolina/metabolismo , Células Ciliadas Vestibulares/metabolismo , Potenciales de la Membrana , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacología , Animales , Apamina/farmacología , Femenino , Células Ciliadas Vestibulares/efectos de los fármacos , Células Ciliadas Vestibulares/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Bloqueadores de los Canales de Potasio/farmacología , Receptores Nicotínicos/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Estricnina/farmacología
4.
Biophys J ; 113(5): 1133-1149, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28877495

RESUMEN

The semicircular canals are biomechanical sensors responsible for detecting and encoding angular motion of the head in 3D space. Canal afferent neurons provide essential inputs to neural circuits responsible for representation of self-position/orientation in space, and to compensatory circuits including the vestibulo-ocular and vestibulo-collic reflex arcs. In this work we derive, to our knowledge, a new 1D mathematical model quantifying canal biomechanics based on the morphology, dynamics of the inner ear fluids, and membranous labyrinth deformability. The model takes the form of a dispersive wave equation and predicts canal responses to angular motion, sound, and mechanical stimulation. Numerical simulations were carried out for the morphology of the human lateral canal using known physical properties of the endolymph and perilymph in three diverse conditions: surgical plugging, rotation, and mechanical indentation. The model reproduces frequency-dependent attenuation and phase shift in cases of canal plugging. During rotation, duct deformability extends the frequency bandwidth and enhances the high frequency gain. Mechanical indentation of the membranous duct at high frequencies evokes traveling waves that move away from the location of indentation and at low frequencies compels endolymph displacement along the canal. These results demonstrate the importance of the conformal perilymph-filled bony labyrinth to pressure changes and to high frequency sound and vibration.


Asunto(s)
Modelos Biológicos , Canales Semicirculares/fisiología , Animales , Batrachoidiformes , Fenómenos Biomecánicos , Simulación por Computador , Movimientos de la Cabeza , Humanos , Hidrodinámica , Modelos Lineales , Movimiento (Física) , Estimulación Física , Presión , Rotación , Canales Semicirculares/cirugía , Sonido , Vibración , Viscosidad
5.
Proc Natl Acad Sci U S A ; 111(14): 5421-6, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24706862

RESUMEN

Present data support the conclusion that protons serve as an important neurotransmitter to convey excitatory stimuli from inner ear type I vestibular hair cells to postsynaptic calyx nerve terminals. Time-resolved pH imaging revealed stimulus-evoked extrusion of protons from hair cells and a subsequent buildup of [H(+)] within the confined chalice-shaped synaptic cleft (ΔpH ∼ -0.2). Whole-cell voltage-clamp recordings revealed a concomitant nonquantal excitatory postsynaptic current in the calyx terminal that was causally modulated by cleft acidification. The time course of [H(+)] buildup limits the speed of this intercellular signaling mechanism, but for tonic signals such as gravity, protonergic transmission offers a significant metabolic advantage over quantal excitatory postsynaptic currents--an advantage that may have driven the proliferation of postsynaptic calyx terminals in the inner ear vestibular organs of contemporary amniotes.


Asunto(s)
Células Ciliadas Vestibulares/metabolismo , Neurotransmisores/metabolismo , Protones
6.
J Neurophysiol ; 116(2): 825-43, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27226448

RESUMEN

In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in <3 ms and decaying with a time constant of ∼24 ms. The inhibitory component dominated whole cell currents in 50% of hair cells at -68 mV and in 67% of hair cells at -60 mV. Responses were quantified and described on the basis of first principles of thermodynamics. Results identify key molecular targets underlying heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability.


Asunto(s)
Potenciales de Acción/efectos de la radiación , Células Ciliadas Vestibulares/efectos de la radiación , Calor , Potenciales de la Membrana/fisiología , Células Receptoras Sensoriales/efectos de la radiación , Animales , Biofisica , Calcio/metabolismo , Chinchilla , Capacidad Eléctrica , Femenino , Células Ciliadas Vestibulares/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Modelos Neurológicos , Técnicas de Placa-Clamp , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales Semicirculares/citología , Células Receptoras Sensoriales/fisiología
8.
J Neurophysiol ; 113(10): 3827-35, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25878150

RESUMEN

Spontaneous and stimulus-evoked excitatory postsynaptic currents (EPSCs) were recorded in calyx nerve terminals from the turtle vestibular lagena to quantify key attributes of quantal transmission at this synapse. On average, EPSC events had a magnitude of ∼ 42 pA, a rise time constant of τ(0) ∼ 229 µs, decayed to baseline with a time constant of τ(R) ∼ 690 µs, and carried ∼ 46 fC of charge. Individual EPSCs varied in magnitude and decay time constant. Variability in the EPSC decay time constant was hair cell dependent and due in part to a slow protraction of the EPSC in some cases. Variability in EPSC size was well described by an integer summation of unitary quanta, with each quanta of glutamate gating a unitary postsynaptic current of ∼ 23 pA. The unitary charge was ∼ 26 fC for EPSCs with a simple exponential decay and increased to ∼ 48 fC for EPSCs exhibiting a slow protraction. The EPSC magnitude and the number of simultaneous unitary quanta within each event increased with presynaptic stimulus intensity. During tonic hair cell depolarization, both the EPSC magnitude and event rate exhibited adaptive run down over time. Present data from a reptilian calyx are remarkably similar to noncalyceal vestibular synaptic terminals in diverse species, indicating that the skewed EPSC size distribution and multiquantal release might be an ancestral property of inner ear ribbon synapses.


Asunto(s)
Células Ciliadas Auditivas/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Vestíbulo del Laberinto/citología , Animales , Biofisica , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Técnicas In Vitro , Técnicas de Placa-Clamp , Probabilidad , Tortugas
9.
Biophys J ; 106(8): 1570-7, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24739156

RESUMEN

Brief heat shocks delivered to cells by pulsed laser light can evoke action potentials in neurons and contraction in cardiomyocytes, but the primary biophysical mechanism has been elusive. In this report we show in the neuromuscular junction of Caenorhabditis elegans that application of a 500°C/s heat shock for 500 µs evoked ~35 pA of excitatory current and injected ~23 fC(femtocoulomb) of charge into the cell while raising the temperature only 0.25°C. The key variable driving the current was the rate of change of temperature (dT/dt heat shock), not temperature itself. The photothermal heat shock current was voltage-dependent and was from thermally driven displacement of ions near the plasma membrane. The charge movement was rapid during the heat shock and slow during thermal relaxation, thus leading to an asymmetrical capacitive current that briefly depolarized the cell. A simple quantitative model is introduced to describe modulation of the membrane potential and facilitate practical application of optical heat shock stimuli.


Asunto(s)
Caenorhabditis elegans/fisiología , Membrana Celular/fisiología , Respuesta al Choque Térmico , Animales , Caenorhabditis elegans/metabolismo , Rayos Infrarrojos , Mutación/genética , Técnicas de Placa-Clamp , Temperatura
10.
Cytoskeleton (Hoboken) ; 81(8): 393-408, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38682753

RESUMEN

The platelet integrin αIIbß3 undergoes long-range conformational transitions between bent and extended conformations to regulate platelet aggregation during hemostasis and thrombosis. However, how exactly αIIbß3 transitions between conformations remains largely elusive. Here, we studied how transitions across bent and extended-closed conformations of αIIbß3 integrin are regulated by effective interactions between its functional domains. We first carried out µs-long equilibrium molecular dynamics (MD) simulations of full-length αIIbß3 integrins in bent and intermediate conformations, the latter characterized by an extended headpiece and closed legs. Then, we built heterogeneous elastic network models, perturbed inter-domain interactions, and evaluated their relative contributions to the energy barriers between conformations. Results showed that integrin extension emerges from: (i) changes in interfaces between functional domains; (ii) allosteric coupling of the head and upper leg domains with flexible lower leg domains. Collectively, these results provide new insights into integrin conformational activation based on short- and long-range interactions between its functional domains and highlight the importance of the lower legs in the regulation of integrin allostery.


Asunto(s)
Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Dominios Proteicos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/química , Humanos , Simulación de Dinámica Molecular
11.
Proc Natl Acad Sci U S A ; 107(8): 3864-9, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20133682

RESUMEN

Sensory hair cells are the essential mechanotransducers of the inner ear, responsible not only for the transduction of sound and motion stimuli but also, remarkably, for nanomechanical amplification of sensory stimuli. Here we show that semicircular canal hair cells generate a mechanical nonlinearity in vivo that increases sensitivity to angular motion by amplification at low stimulus strengths. Sensitivity at high stimulus strengths is linear and shows no evidence of amplification. Results suggest that the mechanical work done by hair cells contributes approximately 97 zJ/cell of amplification per stimulus cycle, improving sensitivity to angular velocity stimuli below approximately 5 degrees /s (0.3-Hz sinusoidal motion). We further show that mechanical amplification can be inhibited by the brain via activation of efferent synaptic contacts on hair cells. The experimental model was the oyster toadfish, Opsanus tau. Physiological manifestation of mechanical amplification and efferent control in a teleost vestibular organ suggests the active motor process in sensory hair cells is ancestral. The biophysical basis of the motor(s) remains hypothetical, but a key discriminating question may involve how changes in somatic electrical impedance evoked by efferent synaptic action alter function of the motor(s).


Asunto(s)
Células Ciliadas Ampollares/fisiología , Mecanotransducción Celular , Canales Semicirculares/citología , Animales , Batrachoidiformes/fisiología , Movimiento (Física)
12.
J R Soc Interface ; 20(199): 20220762, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36789510

RESUMEN

The present work examines the hypothesis that cochlear outer hair cell (OHC) properties vary in precise proportions along the tonotopic map to optimize electromechanical power conversion. We tested this hypothesis using a very simple model of a single isolated OHC driving a mechanical load. Results identify three non-dimensional ratios that are predicted to optimize power conversion: the ratio of the resistive-capacitive (RC) corner to the characteristic frequency (CF), the ratio of nonlinear to linear capacitance and the ratio of OHC stiffness to cochlear load stiffness. Optimum efficiency requires all three ratios to be universal constants, independent of CF and species. The same ratios are cardinal control parameters that maximize power output by positioning the OHC operating point on the edge of a dynamic instability. Results support the hypothesis that OHC properties evolved to optimize electro-mechanical power conversion. Identification of the RC corner frequency as a control parameter reveals a powerful mechanism used by medial olivocochlear efferent system to control OHC power output. Results indicate the upper-frequency limit of OHC power output is not constrained by the speed of the motor itself but instead is probably limited by the size of the nucleus and membrane surface area available for ion-channel expression.


Asunto(s)
Cóclea , Células Ciliadas Auditivas Externas , Capacidad Eléctrica
13.
Sci Rep ; 13(1): 10204, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353559

RESUMEN

To examine mechanisms responsible for vestibular afferent sensitivity to transient bone conducted vibration, we performed simultaneous measurements of stimulus-evoked vestibular compound action potentials (vCAPs), utricular macula velocity, and vestibular microphonics (VMs) in anaesthetized guinea pigs. Results provide new insights into the kinematic variables of transient motion responsible for triggering mammalian vCAPs, revealing synchronized vestibular afferent responses are not universally sensitive to linear jerk as previously thought. For short duration stimuli (< 1 ms), the vCAP increases magnitude in close proportion to macular velocity and temporal bone (linear) acceleration, rather than other kinematic elements. For longer duration stimuli, the vCAP magnitude switches from temporal bone acceleration sensitive to linear jerk sensitive while maintaining macular velocity sensitivity. Frequency tuning curves evoked by tone-burst stimuli show vCAPs increase in proportion to onset macular velocity, while VMs increase in proportion to macular displacement across the entire frequency bandwidth tested between 0.1 and 2 kHz. The subset of vestibular afferent neurons responsible for synchronized firing and vCAPs have been shown previously to make calyceal synaptic contacts with type I hair cells in the striolar region of the epithelium and have irregularly spaced inter-spike intervals at rest. Present results provide new insight into mechanical and neural mechanisms underlying synchronized action potentials in these sensitive afferents, with clinical relevance for understanding the activation and tuning of neurons responsible for driving rapid compensatory reflex responses.


Asunto(s)
Conducción Ósea , Vestíbulo del Laberinto , Animales , Cobayas , Conducción Ósea/fisiología , Potenciales de Acción , Vestíbulo del Laberinto/fisiología , Vibración , Neuronas Aferentes/fisiología , Mamíferos
14.
Front Neurol ; 14: 1109506, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051057

RESUMEN

Introduction: Calyx bearing vestibular afferent neurons innervating type I hair cells in the striolar region of the utricle are exquisitely sensitive to auditory-frequency air conducted sound (ACS) and bone conducted vibration (BCV). Here, we present experimental data and a mathematical model of utricular mechanics and vestibular compound action potential generation (vCAP) in response to clinically relevant levels of ACS and BCV. Vibration of the otoconial layer relative to the sensory epithelium was simulated using a Newtonian two-degree-of-freedom spring-mass-damper system, action potential timing was simulated using an empirical model, and vCAPs were simulated by convolving responses of the population of sensitive neurons with an empirical extracellular voltage kernel. The model was validated by comparison to macular vibration and vCAPs recorded in the guinea pig, in vivo. Results: Transient stimuli evoked short-latency vCAPs that scaled in magnitude and timing with hair bundle mechanical shear rate for both ACS and BCV. For pulse BCV stimuli with durations <0.8 ms, the vCAP magnitude increased in proportion to temporal bone acceleration, but for pulse durations >0.9 ms the magnitude increased in proportion to temporal bone jerk. Once validated using ACS and BCV data, the model was applied to predict blast-induced hair bundle shear, with results predicting acute mechanical damage to bundles immediately upon exposure. Discussion: Results demonstrate the switch from linear acceleration to linear jerk as the adequate stimulus arises entirely from mechanical factors controlling the dynamics of sensory hair bundle deflection. The model describes the switch in terms of the mechanical natural frequencies of vibration, which vary between species based on morphology and mechanical factors.

15.
Heliyon ; 9(8): e18482, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37576248

RESUMEN

Transcranial neuromodulation methods have the potential to diagnose and treat brain disorders at their neural source in a personalized manner. However, it has been difficult to investigate the direct effects of transcranial neuromodulation on neurons in human brain tissue. Here, we show that human brain organoids provide a detailed and artifact-free window into neuromodulation-evoked electrophysiological effects. We derived human cortical organoids from induced pluripotent stem cells and implanted 32-channel electrode arrays. Each organoid was positioned in the center of the human skull and subjected to low-intensity transcranial focused ultrasound. We found that ultrasonic stimuli modulated network activity in the gamma and delta ranges of the frequency spectrum. The effects on the neural networks were a function of the ultrasound stimulation frequency. High gamma activity remained elevated for at least 20 minutes following stimulation offset. This approach is expected to provide controlled studies of the effects of ultrasound and other transcranial neuromodulation modalities on human brain tissue.

16.
J Assoc Res Otolaryngol ; 24(1): 95-106, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36539657

RESUMEN

Ménière's disease (MD) is a debilitating disorder with unclear pathophysiology whose diagnosis often relies on clinical judgment rather than objective testing. To complicate matters further, a dissociation has emerged between two vestibular function tests commonly used in patients with MD to examine the same end-organ (the semicircular canals): the caloric test and video head impulse testing (vHIT). Caloric responses are often abnormal, while vHIT results remain normal. Explaining this dissociation could reveal novel insights into MD pathophysiology. Here, we conduct a histopathological study using temporal bone specimens (N = 58, 21 MD-affected ears and 37 age-matched controls) and their clinical testing data to examine current hypotheses aimed at this dissociation. We find otolith membrane herniation into the horizontal semicircular canal in 69% of MD ears, with 90% of these ears demonstrating a diminished caloric response. No ears with a normal response had this herniation. Moreover, we evaluated the semicircular canals for endolymphatic hydrops, which had been hypothesized to contribute to the dissociation, and found no evidence of duct dilation/hydrops. We did, however, note a potentially novel morphologic finding-smaller bony labyrinth cross-sectional diameters/areas in some MD ear canals compared to controls, suggesting relative size of the membranous duct to the bony canal rather than absolute size may be of importance. Taken together, this study refines hypotheses on the vestibular test dissociation in MD, holding diagnostic implications and expanding our understanding of the mechanisms underlying this enigmatic disease.


Asunto(s)
Enfermedad de Meniere , Vestíbulo del Laberinto , Humanos , Membrana Otolítica , Dilatación , Canales Semicirculares
17.
J R Soc Interface ; 19(191): 20220139, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35673856

RESUMEN

Outer hair cells are the cellular motors in the mammalian inner ear responsible for sensitive high-frequency hearing. Motor function over the frequency range of human hearing requires expression of the protein prestin in the OHC lateral membrane, which imparts piezoelectric properties to the cell membrane. In the present report, electrical power consumption and mechanical power output of the OHC membrane-motor complex are determined using previously published voltage-clamp data from isolated OHCs and membrane patches. Results reveal that power output peaks at a best frequency much higher than implied by the low-pass character of nonlinear capacitance, and much higher than the whole-cell resistive-capacitive corner frequency. High frequency power output is enabled by a -90° shift in the phase of electrical charge displacement in the membrane, manifested electrically as emergence of imaginary-valued nonlinear capacitance.


Asunto(s)
Células Ciliadas Auditivas Externas , Audición , Animales , Membrana Celular/metabolismo , Capacidad Eléctrica , Células Ciliadas Auditivas Externas/metabolismo , Humanos , Mamíferos , Proteínas/metabolismo
18.
J Assoc Res Otolaryngol ; 23(3): 435-453, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35378621

RESUMEN

Vestibular evoked myogenic potentials (VEMPs) are routinely used to test otolith function, but which specific vestibular afferent neurons and central circuits are activated by auditory frequency VEMP stimuli remains unclear. To examine this question, we analyzed the sensitivity of individual vestibular afferents in adult Sprague-Dawley rats to tone bursts delivered at 9 frequencies (125-4000 Hz) and 3 intensity levels (60, 70, 80 dB SL re: acoustic brainstem response (ABR) threshold). Afferent neuron tone sensitivity was quantified by the cumulative probability of evoking a spike (CPE). Based on a threshold CPE of 0.1, acoustic stimuli in the present study evoked responses in 78.2 % (390/499) of otolith afferent neurons vs. 48.4 % (431/891) of canal afferent neurons. Organ-specific vestibular inputs to the central nervous system in response to tone bursts differ based on intensity and frequency content of the stimulus. At frequencies below 500 Hz, tone bursts primarily activated both otolith afferents, even at the highest intensity tested (80 dB SL re ABR threshold). At 1500 Hz, however, tone bursts activated the canal and otolith afferents at the moderate and high intensities tested (70, 80 dB SL), but activated only otolith afferents at the low intensity tested (60 dB SL). Within an end organ, diversity of sensitivity between individual afferent neurons correlated with spontaneous discharge rate and regularity. Examination of inner ear fluid mechanics in silico suggests that the frequency response and preferential activation of the otolith organs likely arise from inner ear fluid motion trapped near the oval and round windows. These results provide insight into understanding the mechanisms of sound activation of the vestibular system and developing novel discriminative VEMP testing protocols and interpretative guidelines in humans.


Asunto(s)
Membrana Otolítica , Potenciales Vestibulares Miogénicos Evocados , Estimulación Acústica/métodos , Acústica , Animales , Membrana Otolítica/fisiología , Ratas , Ratas Sprague-Dawley , Potenciales Vestibulares Miogénicos Evocados/fisiología
19.
J Physiol ; 589(Pt 6): 1295-306, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21242257

RESUMEN

Neonatal rat ventricular cardiomyocytes were used to investigate mechanisms underlying transient changes in intracellular free Ca2+ concentration ([Ca2+]i) evoked by pulsed infrared radiation (IR, 1862 nm). Fluorescence confocal microscopy revealed IR-evoked [Ca2+]i events with each IR pulse (3-4 ms pulse⁻¹, 9.1-11.6 J cm⁻² pulse⁻¹). IR-evoked [Ca2+]i events were distinct from the relatively large spontaneous [Ca2+]i transients, with IR-evoked events exhibiting smaller amplitudes (0.88 ΔF/F0 vs. 1.99 ΔF/F0) and shorter time constants (τ =0.64 s vs. 1.19 s, respectively). Both IR-evoked [Ca2+]i events and spontaneous [Ca2+]i transients could be entrained by the IR pulse (0.2-1 pulse s⁻¹), provided the IR dose was sufficient and the radiation was applied directly to the cell. Examination of IR-evoked events during peak spontaneous [Ca2+]i periods revealed a rapid drop in [Ca2+]i, often restoring the baseline [Ca2+]i concentration, followed by a transient increase in [Ca2+]i.Cardiomyocytes were challenged with pharmacological agents to examine potential contributors to the IR-evoked [Ca2+]i events. Three compounds proved to be the most potent, reversible inhibitors: (1) CGP-37157 (20 µM, n =12), an inhibitor of the mitochondrial Na+/Ca2+ exchanger (mNCX), (2) Ruthenium Red (40 µM, n =13), an inhibitor of the mitochondrial Ca2+ uniporter (mCU), and (3) 2-aminoethoxydiphenylborane (10 µM, n =6), an IP3 channel antagonist. Ryanodine blocked the spontaneous [Ca2+]i transients but did not alter the IR-evoked events in the same cells. This pharmacological array implicates mitochondria as the major intracellular store of Ca2+ involved in IR-evoked responses reported here. Results support the hypothesis that 1862 nm pulsed IR modulates mitochondrial Ca2+ transport primarily through actions on mCU and mNCX.


Asunto(s)
Calcio/metabolismo , Potenciales Evocados/fisiología , Rayos Infrarrojos , Líquido Intracelular/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Animales Recién Nacidos , Calcio/efectos de la radiación , Células Cultivadas , Potenciales Evocados/efectos de la radiación , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/efectos de la radiación , Líquido Intracelular/efectos de la radiación , Rayos Láser , Miocitos Cardíacos/efectos de la radiación , Ratas , Ratas Sprague-Dawley
20.
J Physiol ; 589(Pt 6): 1283-94, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21242259

RESUMEN

The present results show that the semicircular canal crista ampullaris of the toadfish, Opsanus tau, is sensitive to infrared radiation (IR) applied in vivo. IR pulse trains (∼1862 nm, ∼200 µs pulse⁻¹) delivered to the sensory epithelium by an optical fibre evoked profound changes in phasic and tonic discharge rates of postsynaptic afferent neurons. Phasic afferent responses to pulsed IR occurred with a latency of <8 ms while tonic responses developed with a time constant (τ) of 7 ms to 10 s following the onset or cessation of the radiation. Afferents responded to direct optical radiation of the sensory epithelium but did not respond to thermal stimuli that generated nearly equivalent temperature increases of the whole organ. A subset of afferent neurons fired an action potential in response to each IR pulse delivered to the sensory epithelium, at phase-locked rates up to 96 pulses per second. The latency between IR pulses and afferent nerve action potentials was much greater than synaptic delay and spike generation, demonstrating the presence of a signalling delay interposed between the IR pulse and the action potential. The same IR stimulus applied to afferent nerve axons failed to evoke responses of similar magnitude and failed to phase-lock afferent nerve action potentials. The present data support the hypothesis that pulsed IR activates sensory hair cells, thus leading to modulation of synaptic transmission and afferent nerve discharge reported here.


Asunto(s)
Batrachoidiformes/fisiología , Rayos Infrarrojos , Rayos Láser , Estimulación Luminosa , Conductos Semicirculares/fisiología , Conductos Semicirculares/efectos de la radiación , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de la radiación , Animales , Calcio/metabolismo , Femenino , Células Ciliadas Ampollares/fisiología , Células Ciliadas Ampollares/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Masculino , Estimulación Luminosa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA