Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS Comput Biol ; 19(12): e1011660, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38060618

RESUMEN

Rotating spiral waves in the heart are associated with life-threatening cardiac arrhythmias such as ventricular tachycardia and fibrillation. These arrhythmias are treated by a process called defibrillation, which forces electrical resynchronization of the heart tissue by delivering a single global high-voltage shock directly to the heart. This method leads to immediate termination of spiral waves. However, this may not be the only mechanism underlying successful defibrillation, as certain scenarios have also been reported, where the arrhythmia terminated slowly, over a finite period of time. Here, we investigate the slow termination dynamics of an arrhythmia in optogenetically modified murine cardiac tissue both in silico and ex vivo during global illumination at low light intensities. Optical imaging of an intact mouse heart during a ventricular arrhythmia shows slow termination of the arrhythmia, which is due to action potential prolongation observed during the last rotation of the wave. Our numerical studies show that when the core of a spiral is illuminated, it begins to expand, pushing the spiral arm towards the inexcitable boundary of the domain, leading to termination of the spiral wave. We believe that these fundamental findings lead to a better understanding of arrhythmia dynamics during slow termination, which in turn has implications for the improvement and development of new cardiac defibrillation techniques.


Asunto(s)
Corazón , Optogenética , Animales , Ratones , Optogenética/métodos , Arritmias Cardíacas , Potenciales de Acción , Luz
2.
Int Wound J ; 19(2): 426-435, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34121334

RESUMEN

Skin ageing is associated with various structural alterations including a decreased strength of the dermo-epidermal adhesion increasing the risk for shear type injuries (skin tears). Topical applications of basic skin care products seem to reduce skin tear incidence. The suction blister method leads to the artificial and controlled separation of dermis and epidermis. Therefore, time to blister formation may be used as outcome measuring the strength of dermo-epidermal adhesion. We conducted an exploratory, randomised, controlled trial with a split-body design on forearms in healthy female subjects (n = 12; mean age 70.3 [SD 2.1] years). Forearms assigned to the intervention were treated twice daily with petrolatum for 8 weeks. Suction blisters were induced on forearms after 4 and 8 weeks and time to blister formation was measured. Stratum corneum and epidermal hydration were measured and epidermal thickness was assessed via optical coherence tomography. Time to blistering was longer and stratum corneum as well as epidermal hydration was consistently higher in intervention skin areas. We conclude that topical application of basic skin care products may improve mechanical adhesion of the dermo-epidermal junction and that the parameter "time to blistering" is a suitable outcome to measure dermo-epidermal adhesion strength in clinical research.


Asunto(s)
Epidermis , Piel , Anciano , Vesícula , Células Epidérmicas , Femenino , Humanos , Cuidados de la Piel
3.
Skin Pharmacol Physiol ; 34(6): 307-316, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34058738

RESUMEN

BACKGROUND AND OBJECTIVES: Gene mutations within the leptin-melanocortin signaling pathway lead to severe early-onset obesity. Recently, a phase 2 trial evaluated new pharmacological treatment options with the MC4R agonist setmelanotide in patients with mutations in the genes encoding proopiomelanocortin (POMC) and leptin receptor (LEPR). During treatment with setmelanotide, changes in skin pigmentation were observed, probably due to off-target effects on the closely related melanocortin 1 receptor (MC1R). Here, we describe in detail the findings of dermatological examinations and measurements of skin pigmentation during this treatment over time and discuss the impact of these changes on patient safety. METHODS: In an investigator-initiated, phase 2, open-label pilot study, 2 patients with loss-of-function POMC gene mutations and 3 patients with loss-of-function variants in LEPR were treated with the MC4R agonist setmelanotide. Dermatological examination, dermoscopy, whole body photographic documentation, and spectrophotometric measurements were performed at screening visit and approximately every 3 months during the course of the study. RESULTS: We report the results of a maximum treatment duration of 46 months. Skin pigmentation increased in all treated patients, as confirmed by spectrophotometry. During continuous treatment, the current results indicate that elevated tanning intensity levels may stabilize over time. Lips and nevi also darkened. In red-haired study participants, hair color changed to brown after initiation of setmelanotide treatment. DISCUSSION: Setmelanotide treatment leads to skin tanning and occasionally hair color darkening in both POMC- and LEPR-deficient patients. No malignant skin changes were observed in the patients of this study. However, the results highlight the importance of regular skin examinations before and during MC4R agonist treatment.


Asunto(s)
Melanocortinas , Receptor de Melanocortina Tipo 4 , Humanos , Leptina/genética , Mutación , Obesidad , Proyectos Piloto , Receptor de Melanocortina Tipo 4/genética , Pigmentación de la Piel/genética
4.
Electrophoresis ; 40(23-24): 3084-3091, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31663138

RESUMEN

A microfluidic system has been designed that integrates both imaged capillary isoelectric focusing (iCIEF) separations and downstream MS detection into a single assay. Along with the construction of novel instrumentation and an innovative microfluidic chip, conversion to MS-compatible separation reagents has also been established. Incorporation of 280 nm absorbance iCIEF-MS analysis not only permits photometric quantitation of separated charge isoforms but also facilitates the direct monitoring of analyte focusing and mobilization in real-time. The outcome of this effort is a device with the unique ability to allow for both the characterization and identification of protein charge and mass isoforms in under 15 min. Acquisition, quantitation, and identification of highly resolved intact mAb charge isoforms along with their critical N-linked glycan pairs clearly demonstrate analytical utility of our innovative system. In total, 33 separate molecular features were characterized by the iCIEF-MS system representing a dramatic increase in the ability to monitor multiple intact mAb critical quality attributes in a single comprehensive assay. Unlike previously reported CIEF-MS results, relatively high ampholyte concentrations, of up to 4% v/v, were employed without impacting MS sensitivity, observed to be on the order of 1% composition.


Asunto(s)
Anticuerpos Monoclonales/análisis , Electroforesis Capilar/métodos , Focalización Isoeléctrica/métodos , Espectrometría de Masas/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Anticuerpos Monoclonales/química , Biosimilares Farmacéuticos/análisis , Biosimilares Farmacéuticos/química , Diseño de Equipo , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Límite de Detección , Proteínas Recombinantes/análisis , Proteínas Recombinantes/química
5.
Inorg Chem ; 57(5): 2752-2765, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29446630

RESUMEN

Recently simulation groups have reported the lanthanide series elements as the dopants that have the strongest effect on the stabilization of the ferroelectric non-centrosymmetric orthorhombic phase in hafnium oxide. This finding confirms experimental results for lanthanum and gadolinium showing the highest remanent polarization values of all hafnia-based ferroelectric films until now. However, no comprehensive overview that links structural properties to the electrical performance of the films in detail is available for lanthanide-doped hafnia. La:HfO2 appears to be a material with a broad window of process parameters, and accordingly, by optimization of the La content in the layer, it is possible to improve the performance of the material significantly. Variations of the La concentration leads to changes in the crystallographic structure in the bulk of the films and at the interfaces to the electrode materials, which impacts the spontaneous polarization, internal bias fields, and with this the field cycling behavior of the capacitor structure. Characterization results are compared to other dopants like Si, Al, and Gd to validate the advantages of the material in applications such as semiconductor memory devices.

6.
Proc Natl Acad Sci U S A ; 112(32): E4495-504, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26204914

RESUMEN

Extrasystoles lead to several consequences, ranging from uneventful palpitations to lethal ventricular arrhythmias, in the presence of pathologies, such as myocardial ischemia. The role of working versus conducting cardiomyocytes, as well as the tissue requirements (minimal cell number) for the generation of extrasystoles, and the properties leading ectopies to become arrhythmia triggers (topology), in the normal and diseased heart, have not been determined directly in vivo. Here, we used optogenetics in transgenic mice expressing ChannelRhodopsin-2 selectively in either cardiomyocytes or the conduction system to achieve cell type-specific, noninvasive control of heart activity with high spatial and temporal resolution. By combining measurement of optogenetic tissue activation in vivo and epicardial voltage mapping in Langendorff-perfused hearts, we demonstrated that focal ectopies require, in the normal mouse heart, the simultaneous depolarization of at least 1,300-1,800 working cardiomyocytes or 90-160 Purkinje fibers. The optogenetic assay identified specific areas in the heart that were highly susceptible to forming extrasystolic foci, and such properties were correlated to the local organization of the Purkinje fiber network, which was imaged in three dimensions using optical projection tomography. Interestingly, during the acute phase of myocardial ischemia, focal ectopies arising from this location, and including both Purkinje fibers and the surrounding working cardiomyocytes, have the highest propensity to trigger sustained arrhythmias. In conclusion, we used cell-specific optogenetics to determine with high spatial resolution and cell type specificity the requirements for the generation of extrasystoles and the factors causing ectopies to be arrhythmia triggers during myocardial ischemia.


Asunto(s)
Complejos Cardíacos Prematuros/patología , Miocardio/patología , Optogenética/métodos , Especificidad de Órganos , Animales , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Complejos Cardíacos Prematuros/complicaciones , Complejos Cardíacos Prematuros/fisiopatología , Channelrhodopsins , Conexinas/metabolismo , Vasos Coronarios/patología , Vasos Coronarios/fisiopatología , Fenómenos Electrofisiológicos , Humanos , Integrasas/metabolismo , Ligadura , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/patología , Isquemia Miocárdica/fisiopatología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ramos Subendocárdicos/metabolismo , Ramos Subendocárdicos/patología , Ramos Subendocárdicos/fisiopatología , Proteína alfa-5 de Unión Comunicante
7.
Circ Res ; 117(5): 401-12, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26078285

RESUMEN

RATIONALE: Monitoring and controlling cardiac myocyte activity with optogenetic tools offer exciting possibilities for fundamental and translational cardiovascular research. Genetically encoded voltage indicators may be particularly attractive for minimal invasive and repeated assessments of cardiac excitation from the cellular to the whole heart level. OBJECTIVE: To test the hypothesis that cardiac myocyte-targeted voltage-sensitive fluorescence protein 2.3 (VSFP2.3) can be exploited as optogenetic tool for the monitoring of electric activity in isolated cardiac myocytes and the whole heart as well as function and maturity in induced pluripotent stem cell-derived cardiac myocytes. METHODS AND RESULTS: We first generated mice with cardiac myocyte-restricted expression of VSFP2.3 and demonstrated distinct localization of VSFP2.3 at the t-tubulus/junctional sarcoplasmic reticulum microdomain without any signs for associated pathologies (assessed by echocardiography, RNA-sequencing, and patch clamping). Optically recorded VSFP2.3 signals correlated well with membrane voltage measured simultaneously by patch clamping. The use of VSFP2.3 for human action potential recordings was confirmed by simulation of immature and mature action potentials in murine VSFP2.3 cardiac myocytes. Optical cardiograms could be monitored in whole hearts ex vivo and minimally invasively in vivo via fiber optics at physiological heart rate (10 Hz) and under pacing-induced arrhythmia. Finally, we reprogrammed tail-tip fibroblasts from transgenic mice and used the VSFP2.3 sensor for benchmarking functional and structural maturation in induced pluripotent stem cell-derived cardiac myocytes. CONCLUSIONS: We introduce a novel transgenic voltage-sensor model as a new method in cardiovascular research and provide proof of concept for its use in optogenetic sensing of physiological and pathological excitation in mature and immature cardiac myocytes in vitro and in vivo.


Asunto(s)
Potenciales de la Membrana/fisiología , Miocitos Cardíacos/fisiología , Optogenética/métodos , Animales , Humanos , Ratones , Ratones Transgénicos , Imagen de Colorante Sensible al Voltaje/métodos
8.
Skin Pharmacol Physiol ; 29(1): 1-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26458265

RESUMEN

BACKGROUND/AIMS: Antibiotic-induced drug resistance requires new approaches in topical acne treatment. Tyrothricin is known to produce no resistance. In this study, it was tested for the first time in topical acne treatment. The efficacy and tolerability of topical tyrothricin 0.1% was evaluated. METHODS: A randomized, active comparator-controlled, exploratory, observer-blind clinical study was conducted in 24 patients with acne papulopustulosa. Randomization on a split-face was either tyrothricin versus clindamycin + benzoyl peroxide (BPO) (n = 12) or tyrothricin versus BPO 5% (n = 12). The main outcome was change in inflammatory and noninflammatory lesion counts. RESULTS: The mean differences in inflammatory lesion counts from baseline were -12.3 (95% CI: -20.5 to -4.1) in clindamycin + BPO, -10.2 (95% CI: -15.3 to -5.0) in BPO 5%, and -7.7 (95% CI: -11.7 to -3.7) in tyrothricin. Tyrothricin reduced noninflammatory lesions (mean difference: -6.5 (95% CI: -11.6 to -1.4) and caused less product-related adverse events (n = 31) compared to BPO (n = 37) and clindamycin + BPO (n = 20). CONCLUSION: The results indicate that tyrothricin might be a candidate for treating acne and it seems to be more tolerable than both comparator treatments.


Asunto(s)
Acné Vulgar/tratamiento farmacológico , Antibacterianos/uso terapéutico , Antiinflamatorios/uso terapéutico , Tirotricina/uso terapéutico , Administración Tópica , Adolescente , Adulto , Peróxido de Benzoílo/uso terapéutico , Clindamicina/uso terapéutico , Fármacos Dermatológicos/uso terapéutico , Femenino , Humanos , Masculino , Método Simple Ciego , Resultado del Tratamiento , Adulto Joven
9.
J Dtsch Dermatol Ges ; 14(7): 698-705, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26636922

RESUMEN

BACKGROUND: Interactions between the stratum corneum and individual phases of an emulsion system depend on various factors, but primarily on the outer continuous phase of the system. While there is plenty of data on the lipophilic phase, only very little data exists on the actual penetration of the hydrophilic phase of water-in-oil emulsions into the stratum corneum. PATIENTS AND METHODS: Against this background, two comparable water-in-oil emulsions were preclinically and clinically investigated on healthy as well as on artificially damaged skin with regard to interactions of the hydrophilic phase. In preclinical studies, following epicutaneous application on ex vivo skin, the distribution of the hydrophilic phase was quantified using fluorescence tests and analyzed according to anatomic layers. Additionally, a randomized, controlled, investigator-blinded study investigated the effects of the preparations on the barrier function of healthy and artificially damaged skin over time. RESULTS: The results clearly show that water substitution using a water-in-oil emulsion can only partially be attained by the addition of hygroscopic substances (e. g. urea). These effects may primarily be explained by the occlusive properties of the lipophilic phase. CONCLUSIONS: This, the use of water-in-oil emulsions may in particular be recommended for chronic barrier impairment, as long-lasting effects are not to be expected in acutely damaged skin.


Asunto(s)
Emulsiones/farmacocinética , Enfermedades de la Piel/tratamiento farmacológico , Administración Cutánea , Disponibilidad Biológica , Humanos , Piel , Agua
10.
Hum Mol Genet ; 22(3): 508-18, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23100324

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is pathologically characterized by the formation of intranuclear aggregates which contain ataxin-3, the mutated protein in SCA3, in a specific subtype of neurons. It has been proposed that ataxin-3 is cleaved by proteolytic enzymes, in particular by calpains and caspases, eventually leading to the formation of aggregates. In our study, we examined the ability of calpains to cleave ataxin-3 in vitro and in vivo. We demonstrated in cell culture and mouse brain homogenates that cleavage of overexpressed ataxin-3 by calpains and in particular by calpain-2 occur and that polyglutamine expanded ataxin-3 is more sensitive to calpain degradation. Based on these results, we investigated the influence of calpains on the pathogenesis of SCA3 in vivo. For this purpose, we enhanced calpain activity in a SCA3 transgenic mouse model by knocking out the endogenous calpain inhibitor calpastatin. Double-mutant mice demonstrated an aggravated neurological phenotype with an increased number of nuclear aggregates and accelerated neurodegeneration in the cerebellum. This study confirms the critical importance of calcium-dependent calpain-type proteases in the pathogenesis of SCA3 and suggests that the manipulation of the ataxin-3 cleavage pathway and the regulation of intracellular calcium homeostasis may represent novel targets for therapeutic intervention in SCA3.


Asunto(s)
Calpaína/metabolismo , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Ataxina-3 , Calcio/química , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Calpaína/antagonistas & inhibidores , Cerebelo/metabolismo , Cerebelo/patología , Modelos Animales de Enfermedad , Eliminación de Gen , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Genotipo , Glicoproteínas/metabolismo , Células HEK293 , Homeostasis , Humanos , Inmunohistoquímica , Enfermedad de Machado-Joseph/metabolismo , Ratones , Ratones Noqueados , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Péptidos , Fenotipo , Proteínas Represoras/genética , Factores de Transcripción/genética
11.
Adv Mater ; 34(47): e2206237, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36210741

RESUMEN

Piezoresponse force microscopy (PFM) is widely used for characterization and exploration of the nanoscale properties of ferroelectrics. However, quantification of the PFM signal is challenging due to the convolution of various extrinsic and intrinsic contributions. Although quantification of the PFM amplitude signal has received considerable attention, quantification of the PFM phase signal has not been addressed. A properly calibrated PFM phase signal can provide valuable information on the sign of the local piezoelectric coefficient-an important and nontrivial issue for emerging ferroelectrics. In this work, two complementary methodologies to calibrate the PFM phase signal are discussed. The first approach is based on using a standard reference sample with well-known independently measured piezoelectric coefficients, while the second approach exploits the electrostatic sample-cantilever interactions to determine the parasitic phase offset. Application of these methodologies to studies of the piezoelectric behavior in ferroelectric HfO2 -based thin-film capacitors reveals intriguing variations in the sign of the longitudinal piezoelectric coefficient, d33,eff . It is shown that the piezoelectric properties of the HfO2 -based capacitors are inherently sensitive to their thickness, electrodes, as well as deposition methods, and can exhibit wide variations including a d33,eff sign change within a single device.

12.
ACS Appl Mater Interfaces ; 14(32): 36771-36780, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35929399

RESUMEN

Nanoscale polycrystalline thin-film heterostructures are central to microelectronics, for example, metals used as interconnects and high-K oxides used in dynamic random-access memories (DRAMs). The polycrystalline microstructure and overall functional response therein are often dominated by the underlying substrate or layer, which, however, is poorly understood due to the difficulty of characterizing microstructural correlations at a statistically meaningful scale. Here, an automated, high-throughput method, based on the nanobeam electron diffraction technique, is introduced to investigate orientational relations and correlations between crystallinity of materials in polycrystalline heterostructures over a length scale of microns, containing several hundred individual grains. This technique is employed to perform an atomic-scale investigation of the prevalent near-coincident site epitaxy in nanocrystalline ZrO2 heterostructures, the workhorse system in DRAM technology. The power of this analysis is demonstrated by answering a puzzling question: why does polycrystalline ZrO2 transform dramatically from being antiferroelectric on polycrystalline TiN/Si to ferroelectric on amorphous SiO2/Si?

13.
Front Cardiovasc Med ; 8: 703355, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368257

RESUMEN

Diabetes and the often accompanying cardiovascular diseases including cardiomyopathy represent a complex disease, that is reluctant to reveal the molecular mechanisms and underlying cellular responses. Current research projects on diabetic cardiomyopathy are predominantly based on animal models, in which there are not only obvious advantages, such as genetics that can be traced over generations and the directly measurable influence of dietary types, but also not despisable disadvantages. Thus, many studies are built up on transgenic rodent models, which are partly comparable to symptoms in humans due to their genetic alterations, but on the other hand are also under discussion regarding their clinical relevance in the translation of biomedical therapeutic approaches. Furthermore, a focus on transgenic rodent models ignores spontaneously occurring diabetes in larger mammals (such as dogs or pigs), which represent with their anatomical similarity to humans regarding their cardiovascular situation appealing models for testing translational approaches. With this in mind, we aim to shed light on the currently most popular animal models for diabetic cardiomyopathy and, by weighing the advantages and disadvantages, provide decision support for future animal experimental work in the field, hence advancing the biomedical translation of promising approaches into clinical application.

14.
Front Physiol ; 12: 750535, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087413

RESUMEN

Much has been reported about optogenetic based cardiac arrhythmia treatment and the corresponding characterization of photostimulation parameters, but still, our capacity to interact with the underlying spatiotemporal excitation patterns relies mainly on electrical and/or pharmacological approaches. However, these well-established treatments have always been an object of somehow heated discussions. Though being acutely life-saving, they often come with potential side-effects leading to a decreased functionality of the complex cardiac system. Recent optogenetic studies showed the feasibility of the usage of photostimulation as a defibrillation method with comparatively high success rates. Although, these studies mainly concentrated on the description as well as on the comparison of single photodefibrillation approaches, such as locally focused light application and global illumination, less effort was spent on the description of excitation patterns during actual photostimulation. In this study, the authors implemented a multi-site photodefibrillation technique in combination with Multi-Lead electrocardiograms (ECGs). The technical connection of real-time heart rhythm measurements and the arrhythmia counteracting light control provides a further step toward automated arrhythmia classification, which can lead to adaptive photodefibrillation methods. In order to show the power effectiveness of the new approach, transgenic murine hearts expressing channelrhodopsin-2 ex vivo were investigated using circumferential micro-LED and ECG arrays. Thus, combining the best of two methods by giving the possibility to illuminate either locally or globally with differing pulse parameters. The optical technique presented here addresses a number of challenges of technical cardiac optogenetics and is discussed in the context of arrhythmic development during photostimulation.

15.
J Vis Exp ; (174)2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34515679

RESUMEN

Ventricular tachyarrhythmias are a major cause of mortality and morbidity worldwide. Electrical defibrillation using high-energy electric shocks is currently the only treatment for life-threatening ventricular fibrillation. However, defibrillation may have side-effects, including intolerable pain, tissue damage, and worsening of prognosis, indicating a significant medical need for the development of more gentle cardiac rhythm management strategies. Besides energy-reducing electrical approaches, cardiac optogenetics was introduced as a powerful tool to influence cardiac activity using light-sensitive membrane ion channels and light pulses. In the present study, a robust and valid method for successful photostimulation of Langendorff perfused intact murine hearts will be described based on multi-site pacing applying a 3 x 3 array of micro light-emitting diodes (micro-LED). Simultaneous optical mapping of epicardial membrane voltage waves allows the investigation of the effects of region-specific stimulation and evaluates the newly induced cardiac activity directly on-site. The obtained results show that the efficacy of defibrillation is strongly dependent on the parameters chosen for photostimulation during a cardiac arrhythmia. It will be demonstrated that the illuminated area of the heart plays a crucial role for termination success as well as how the targeted control of cardiac activity during illumination for modifying arrhythmia patterns can be achieved. In summary, this technique provides a possibility to optimize the on-site mechanism manipulation on the way to real-time feedback control of cardiac rhythm and, regarding the region specificity, new approaches in reducing the potential harm to the cardiac system compared to the usage of non-specific electrical shock applications.


Asunto(s)
Optogenética , Taquicardia Ventricular , Animales , Arritmias Cardíacas , Corazón , Ratones , Fibrilación Ventricular
16.
Nat Commun ; 12(1): 7301, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911930

RESUMEN

Because of its compatibility with semiconductor-based technologies, hafnia (HfO2) is today's most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO2 has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO3) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO2 thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material.

17.
Elife ; 102021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33502313

RESUMEN

The development of new approaches to control cardiac arrhythmias requires a deep understanding of spiral wave dynamics. Optogenetics offers new possibilities for this. Preliminary experiments show that sub-threshold illumination affects electrical wave propagation in the mouse heart. However, a systematic exploration of these effects is technically challenging. Here, we use state-of-the-art computer models to study the dynamic control of spiral waves in a two-dimensional model of the adult mouse ventricle, using stationary and non-stationary patterns of sub-threshold illumination. Our results indicate a light-intensity-dependent increase in cellular resting membrane potentials, which together with diffusive cell-cell coupling leads to the development of spatial voltage gradients over differently illuminated areas. A spiral wave drifts along the positive gradient. These gradients can be strategically applied to ensure drift-induced termination of a spiral wave, both in optogenetics and in conventional methods of electrical defibrillation.


Asunto(s)
Arritmias Cardíacas/prevención & control , Ventrículos Cardíacos/efectos de la radiación , Luz , Iluminación , Modelos Cardiovasculares , Optogenética , Animales , Simulación por Computador , Ventrículos Cardíacos/fisiopatología , Ratones
18.
Eur J Dermatol ; 31(1): 22-31, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33586659

RESUMEN

BACKGROUND: The upper follicular compartment, a well-known reservoir of cutaneous microbiota, constitutes a space for intensive cross-barrier dialogue. The lower follicle comprises the bulb and bulge, structures with relative immune-privileged status, crucial for physiological cycling, and widely considered to be microbial-free. OBJECTIVES: Following our initial immunohistochemical screening for regulatory cytokines and defensin expression in anagen hair follicles, we aimed to confirm our results with a follow-up ELISA investigation. We postulated that exposure to microbial components may trigger expression, and thus opted to investigate microbial presence in this area. MATERIALS & METHODS: We performed immunohistochemical staining for selected cytokines and antimicrobial peptides, and Gram and Giemsa staining on tissue sections from healthy individuals. Based on ELISA analyses, we confirmed a marked presence of IL-17A- and HBD2 in infrainfundibular compartments from plucked anagen hair follicles of 12 individuals (six females, six males; frontal and occipital scalp sites). 16S rRNA sequencing on microbial DNA extracted from lower follicles, as well as fluorescence in situ hybridization (FISH) were applied to explore bacterial presence in the infrainfundibular compartments. RESULTS: 16S rRNA sequencing yielded reproducible data of bacterial presence in infrainfundibular compartments of plucked scalp follicles; Lawsonella clevelandensis, Staphylococcaceae and Propionibacteriaceae were the most abundant bacteria. Also, FISH revealed biofilm structures formed by Cutibacterium acnes (formerly Propionibacterium acnes) and Staphylococcus sp. below the infundibulum. CONCLUSION: As the skin microbiome largely influences the local immune system, the presence of bacteria in proximity to follicular immune-privileged areas may be of relevance to hair cycling in health and disease.


Asunto(s)
ADN Bacteriano/análisis , Folículo Piloso/química , Proteínas Citotóxicas Formadoras de Poros/análisis , Adulto , Femenino , Humanos , Masculino , Cuero Cabelludo , Adulto Joven
19.
Front Physiol ; 12: 769586, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867476

RESUMEN

Optical techniques for recording and manipulating cellular electrophysiology have advanced rapidly in just a few decades. These developments allow for the analysis of cardiac cellular dynamics at multiple scales while largely overcoming the drawbacks associated with the use of electrodes. The recent advent of optogenetics opens up new possibilities for regional and tissue-level electrophysiological control and hold promise for future novel clinical applications. This article, which emerged from the international NOTICE workshop in 2018, reviews the state-of-the-art optical techniques used for cardiac electrophysiological research and the underlying biophysics. The design and performance of optical reporters and optogenetic actuators are reviewed along with limitations of current probes. The physics of light interaction with cardiac tissue is detailed and associated challenges with the use of optical sensors and actuators are presented. Case studies include the use of fluorescence recovery after photobleaching and super-resolution microscopy to explore the micro-structure of cardiac cells and a review of two photon and light sheet technologies applied to cardiac tissue. The emergence of cardiac optogenetics is reviewed and the current work exploring the potential clinical use of optogenetics is also described. Approaches which combine optogenetic manipulation and optical voltage measurement are discussed, in terms of platforms that allow real-time manipulation of whole heart electrophysiology in open and closed-loop systems to study optimal ways to terminate spiral arrhythmias. The design and operation of optics-based approaches that allow high-throughput cardiac electrophysiological assays is presented. Finally, emerging techniques of photo-acoustic imaging and stress sensors are described along with strategies for future development and establishment of these techniques in mainstream electrophysiological research.

20.
Prog Biophys Mol Biol ; 154: 39-50, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31515056

RESUMEN

Over the last decade, optogenetic stimulation of the heart and its translational potential for rhythm control attracted more and more interest. Optogenetics allows to stimulate cardiomyocytes expressing the light-gated cation channel Channelrhodopsin 2 (ChR2) with light and thus high spatio-temporal precision. Therefore this new approach can overcome the technical limitations of electrical stimulation. In regard of translational approaches, the prospect of pain-free stimulation, if ChR2 expression is restricted to cardiomyocytes, is especially intriguing and could be highly beneficial for cardioversion and defibrillation. However, there is no light without shadow and cardiac optogenetics has to surmount critical hurdles, namely "how" to inscribe light-sensitivity by expressing ChR2 in a native heart and how to avoid side effects such as possible immune responses against the gene transfer. Furthermore, implantable light devices have to be developed which ensure sufficient illumination in a highly contractile environment. Therefore this article reviews recent advantages in the field of cardiac optogenetics with a special focus on the hindrances for the potential translation of this new approach into clinics and provides an outlook how these have to be carefully investigated and could be solved step by step.


Asunto(s)
Oscuridad , Corazón/fisiología , Corazón/efectos de la radiación , Optogenética/métodos , Animales , Humanos , Optogenética/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA