Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nucleic Acids Res ; 52(10): 5423-5437, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38742636

RESUMEN

Oral delivery is the most widely used and convenient route of administration of medicine. However, oral administration of hydrophilic macromolecules is commonly limited by low intestinal permeability and pre-systemic degradation in the gastrointestinal (GI) tract. Overcoming some of these challenges allowed emergence of oral dosage forms of peptide-based drugs in clinical settings. Antisense oligonucleotides (ASOs) have also been investigated for oral administration but despite the recent progress, the bioavailability remains low. Given the advancement with highly potent and durable trivalent N-acetylgalactosamine (GalNAc)-conjugated small interfering RNAs (siRNAs) via subcutaneous (s.c.) injection, we explored their activities after oral administration. We report robust RNA interference (RNAi) activity of orally administrated GalNAc-siRNAs co-formulated with permeation enhancers (PEs) in rodents and non-human primates (NHPs). The relative bioavailability calculated from NHP liver exposure was <2.0% despite minimal enzymatic degradation in the GI. To investigate the impact of oligonucleotide size on oral delivery, highly specific GalNAc-conjugated single-stranded oligonucleotides known as REVERSIRs with different lengths were employed and their activities for reversal of RNAi effect were monitored. Our data suggests that intestinal permeability is highly influenced by the size of oligonucleotides. Further improvements in the potency of siRNA and PE could make oral delivery of GalNAc-siRNAs as a practical solution.


Asunto(s)
Acetilgalactosamina , ARN Interferente Pequeño , Animales , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacocinética , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Administración Oral , Ratones , Ratas , Interferencia de ARN , Masculino , Disponibilidad Biológica , Humanos , Ratas Sprague-Dawley , Macaca fascicularis , Hígado/metabolismo , Macaca mulatta
2.
J Am Chem Soc ; 145(36): 19691-19706, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37638886

RESUMEN

Chemical modifications are necessary to ensure the metabolic stability and efficacy of oligonucleotide-based therapeutics. Here, we describe analyses of the α-(l)-threofuranosyl nucleic acid (TNA) modification, which has a shorter 3'-2' internucleotide linkage than the natural DNA and RNA, in the context of small interfering RNAs (siRNAs). The TNA modification enhanced nuclease resistance more than 2'-O-methyl or 2'-fluoro ribose modifications. TNA-containing siRNAs were prepared as triantennary N-acetylgalactosamine conjugates and were tested in cultured cells and mice. With the exceptions of position 2 of the antisense strand and position 11 of the sense strand, the TNA modification did not inhibit the activity of the RNA interference machinery. In a rat toxicology study, TNA placed at position 7 of the antisense strand of the siRNA mitigated off-target effects, likely due to the decrease in the thermodynamic binding affinity relative to the 2'-O-methyl residue. Analysis of the crystal structure of an RNA octamer with a single TNA on each strand showed that the tetrose sugar adopts a C4'-exo pucker. Computational models of siRNA antisense strands containing TNA bound to Argonaute 2 suggest that TNA is well accommodated in the region kinked by the enzyme. The combined data indicate that the TNA nucleotides are promising modifications expected to increase the potency, duration of action, and safety of siRNAs.


Asunto(s)
Ácidos Nucleicos , Animales , Ratones , Ratas , ARN Interferente Pequeño , Nucleótidos , Interferencia de ARN , Acetilgalactosamina
3.
Drug Metab Dispos ; 50(6): 781-797, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34154993

RESUMEN

Conjugation of oligonucleotide therapeutics, including small interfering RNAs (siRNAs) or antisense oligonucleotides, to N-acetylgalactosamine (GalNAc) ligands has become the primary strategy for hepatocyte-targeted delivery, and with the recent approvals of GIVLAARI (givosiran) for the treatment of acute hepatic porphyria, OXLUMO (lumasiran) for the treatment of primary hyperoxaluria, and Leqvio (inclisiran) for the treatment of hypercholesterolemia, the technology has been well validated clinically. Although much knowledge has been gained over decades of development, there is a paucity of published literature on the drug metabolism and pharmacokinetic properties of GalNAc-siRNA. With this in mind, the goals of this minireview are to provide an aggregate analysis of these nonclinical absorption, distribution, metabolism, and excretion (ADME) data to build confidence on the translation of these properties to human. Upon subcutaneous administration, GalNAc-conjugated siRNAs are quickly distributed to the liver, resulting in plasma pharmacokinetic (PK) properties that reflect rapid elimination through asialoglycoprotein receptor-mediated uptake from circulation into hepatocytes. These studies confirm that liver PK, including half-life and, most importantly, siRNA levels in RNA-induced silencing complex in hepatocytes, are better predictors of pharmacodynamics (PD) than plasma PK. Several in vitro and in vivo nonclinical studies were conducted to characterize the ADME properties of GalNAc-conjugated siRNAs. These studies demonstrate that the PK/PD and ADME properties of GalNAc-conjugated siRNAs are highly conserved across species, are largely predictable, and can be accurately scaled to human, allowing us to identify efficacious and safe clinical dosing regimens in the absence of human liver PK profiles. SIGNIFICANCE STATEMENT: Several nonclinical ADME studies have been conducted in order to provide a comprehensive overview of the disposition and elimination of GalNAc-conjugated siRNAs and the pharmacokinetic/pharmacodynamic translation between species. These studies demonstrate that the ADME properties of GalNAc-conjugated siRNAs are well correlated and predictable across species, building confidence in the ability to extrapolate to human.


Asunto(s)
Acetilgalactosamina , Porfirias Hepáticas , Acetilgalactosamina/farmacocinética , Receptor de Asialoglicoproteína/metabolismo , Hepatocitos/metabolismo , Humanos , Porfirias Hepáticas/metabolismo , ARN Interferente Pequeño/genética
4.
Mol Ther ; 29(6): 2053-2066, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33601052

RESUMEN

RNA interference (RNAi) offers the potential to treat disease at the earliest onset by selectively turning off the expression of target genes, such as intracellular oncogenes that drive cancer growth. However, the development of RNAi therapeutics as anti-cancer drugs has been limited by both a lack of efficient and target cell-specific delivery systems and the necessity to overcome numerous intracellular barriers, including serum/lysosomal instability, cell membrane impermeability, and limited endosomal escape. Here, we combine two technologies to achieve posttranscriptional gene silencing in tumor cells: Centyrins, alternative scaffold proteins binding plasma membrane receptors for targeted delivery, and small interfering RNAs (siRNAs), chemically modified for high metabolic stability and potency. An EGFR Centyrin known to internalize in EGFR-positive tumor cells was site-specifically conjugated to a beta-catenin (CTNNb1) siRNA and found to drive potent and specific target knockdown by free uptake in cell culture and in mice inoculated with A431 tumor xenografts (EGFR amplified). The generalizability of this approach was further demonstrated with Centyrins targeting multiple receptors (e.g., BCMA, PSMA, and EpCAM) and siRNAs targeting multiple genes (e.g., CD68, KLKb1, and SSB1). Moreover, by installing multiple conjugation handles, two different siRNAs were fused to a single Centyrin, and the conjugate was shown to simultaneously silence two different targets. Finally, by specifically pairing EpCAM-binding Centyrins that exhibited optimized internalization profiles, we present data showing that an EpCAM Centyrin CTNNb1 siRNA conjugate suppressed tumor cell growth of a colorectal cancer cell line containing an APC mutation but not cells with normal CTNNb1 signaling. Overall, these data demonstrate the potential of Centyrin-siRNA conjugates to target cancer cells and silence oncogenes, paving the way to a new class of anticancer drugs.


Asunto(s)
Técnicas de Transferencia de Gen , Interferencia de ARN , ARN Interferente Pequeño/genética , Animales , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Genes erbB-1 , Terapia Genética , Humanos , Ligandos , Ratones , ARN Mensajero , ARN Interferente Pequeño/administración & dosificación , Tenascina/genética , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/genética
5.
Nucleic Acids Res ; 48(10): 5281-5293, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32347936

RESUMEN

Gene silencing by RNA interference (RNAi) has emerged as a powerful treatment strategy across a potentially broad range of diseases. Tailoring siRNAs to silence genes vital for cancer cell growth and function could be an effective treatment, but there are several challenges which must be overcome to enable their use as a therapeutic modality, among which efficient and selective delivery to cancer cells remains paramount. Attempts to use antibodies for siRNA delivery have been reported but these strategies use either nonspecific conjugation resulting in mixtures, or site-specific methods that require multiple steps, introduction of mutations, or use of enzymes. Here, we report a method to generate antibody-siRNA (1:2) conjugates (ARCs) that are structurally defined and easy to assemble. This ARC platform is based on engineered dual variable domain (DVD) antibodies containing a natural uniquely reactive lysine residue for site-specific conjugation to ß-lactam linker-functionalized siRNA. The conjugation is efficient, does not compromise the affinity of the parental antibody, and utilizes chemically stabilized siRNA. For proof-of-concept, we generated DVD-ARCs targeting various cell surface antigens on multiple myeloma cells for the selective delivery of siRNA targeting ß-catenin (CTNNB1). A set of BCMA-targeting DVD-ARCs at concentrations as low as 10 nM revealed significant CTNNB1 mRNA and protein knockdown.


Asunto(s)
Región Variable de Inmunoglobulina/química , Interferencia de ARN , ARN Interferente Pequeño/química , Anticuerpos/química , Línea Celular Tumoral , Humanos , ARN Interferente Pequeño/farmacocinética , beta Catenina/genética
6.
Nucleic Acids Res ; 48(21): 11827-11844, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-32808038

RESUMEN

One hallmark of trivalent N-acetylgalactosamine (GalNAc)-conjugated siRNAs is the remarkable durability of silencing that can persist for months in preclinical species and humans. Here, we investigated the underlying biology supporting this extended duration of pharmacological activity. We found that siRNA accumulation and stability in acidic intracellular compartments is critical for long-term activity. We show that functional siRNA can be liberated from these compartments and loaded into newly generated Argonaute 2 protein complexes weeks after dosing, enabling continuous RNAi activity over time. Identical siRNAs delivered in lipid nanoparticles or as GalNAc conjugates were dose-adjusted to achieve similar knockdown, but only GalNAc-siRNAs supported an extended duration of activity, illustrating the importance of receptor-mediated siRNA trafficking in the process. Taken together, we provide several lines of evidence that acidic intracellular compartments serve as a long-term depot for GalNAc-siRNA conjugates and are the major contributor to the extended duration of activity observed in vivo.


Asunto(s)
Acetilgalactosamina/metabolismo , Receptor de Asialoglicoproteína/metabolismo , Portadores de Fármacos , Silenciador del Gen , Prealbúmina/genética , ARN Interferente Pequeño/metabolismo , Acetilgalactosamina/química , Animales , Proteínas Argonautas/genética , Receptor de Asialoglicoproteína/genética , Transporte Biológico , Estabilidad de Medicamentos , Femenino , Glicoconjugados/química , Glicoconjugados/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Hígado/citología , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Nanopartículas/metabolismo , Prealbúmina/antagonistas & inhibidores , Prealbúmina/metabolismo , ARN Interferente Pequeño/genética , Factores de Tiempo
7.
J Biol Chem ; 295(40): 13769-13783, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32732284

RESUMEN

Single-stranded, positive-sense RNA viruses assemble their replication complexes in infected cells from a multidomain replication polyprotein. This polyprotein usually contains at least one protease, the primary function of which is to process the polyprotein into mature proteins. Such proteases also may have other functions in the replication cycle. For instance, cysteine proteases (PRO) frequently double up as ubiquitin hydrolases (DUB), thus interfering with cellular processes critical for virus replication. We previously reported the crystal structures of such a PRO/DUB from Turnip yellow mosaic virus (TYMV) and of its complex with one of its PRO substrates. Here we report the crystal structure of TYMV PRO/DUB in complex with ubiquitin. We find that PRO/DUB recognizes ubiquitin in an unorthodox way: It interacts with the body of ubiquitin through a split recognition motif engaging both the major and the secondary recognition patches of ubiquitin (Ile44 patch and Ile36 patch, respectively, including Leu8, which is part of the two patches). However, the contacts are suboptimal on both sides. Introducing a single-point mutation in TYMV PRO/DUB aimed at improving ubiquitin-binding led to a much more active DUB. Comparison with other PRO/DUBs from other viral families, particularly coronaviruses, suggests that low DUB activities of viral PRO/DUBs may generally be fine-tuned features of interaction with host factors.


Asunto(s)
Enzimas Desubicuitinizantes/química , Péptido Hidrolasas/química , Tymovirus/enzimología , Ubiquitina/química , Proteínas Virales/química , Cristalografía por Rayos X , Enzimas Desubicuitinizantes/genética , Péptido Hidrolasas/genética , Tymovirus/genética , Ubiquitina/genética , Proteínas Virales/genética
8.
Nucleic Acids Res ; 45(6): 3528-3536, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-27903888

RESUMEN

Efficient gene silencing by RNA interference (RNAi) in vivo requires the recognition and binding of the 5΄- phosphate of the guide strand of an siRNA by the Argonaute protein. However, for exogenous siRNAs it is limited by the rapid removal of the 5΄- phosphate of the guide strand by metabolic enzymes. Here, we have determined the crystal structure of human Argonaute-2 in complex with the metabolically stable 5΄-(E)-vinylphosphonate (5΄-E-VP) guide RNA at 2.5-Šresolution. The structure demonstrates how the 5΄ binding site in the Mid domain of human Argonaute-2 is able to adjust the key residues in the 5΄-nucleotide binding pocket to compensate for the change introduced by the modified nucleotide. This observation also explains improved binding affinity of the 5΄-E-VP -modified siRNA to human Argonaute-2 in-vitro, as well as the enhanced silencing in the context of the trivalent N-acetylgalactosamine (GalNAc)-conjugated siRNA in mice relative to the un-modified siRNA.


Asunto(s)
Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Organofosfonatos/química , Interferencia de ARN , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Compuestos de Vinilo/química , Animales , Sitios de Unión , Humanos , Ratones , Modelos Moleculares , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/metabolismo , Receptores de Albúmina/genética , Receptores de Albúmina/metabolismo
9.
Proc Natl Acad Sci U S A ; 113(6): E705-14, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26811477

RESUMEN

Posttranslational modifications are central to the spatial and temporal regulation of protein function. Among others, phosphorylation and ubiquitylation are known to regulate proximal T-cell receptor (TCR) signaling. Here we used a systematic and unbiased approach to uncover deubiquitylating enzymes (DUBs) that participate during TCR signaling in primary mouse T lymphocytes. Using a C-terminally modified vinyl methyl ester variant of ubiquitin (HA-Ub-VME), we captured DUBs that are differentially recruited to the cytosol on TCR activation. We identified ubiquitin-specific peptidase (Usp) 12 and Usp46, which had not been previously described in this pathway. Stimulation with anti-CD3 resulted in phosphorylation and time-dependent translocation of Usp12 from the nucleus to the cytosol. Usp12(-/-) Jurkat cells displayed defective NFκB, NFAT, and MAPK activities owing to attenuated surface expression of TCR, which were rescued on reconstitution of wild type Usp12. Proximity-based labeling with BirA-Usp12 revealed several TCR adaptor proteins acting as interactors in stimulated cells, of which LAT and Trat1 displayed reduced expression in Usp12(-/-) cells. We demonstrate that Usp12 deubiquitylates and prevents lysosomal degradation of LAT and Trat1 to maintain the proximal TCR complex for the duration of signaling. Our approach benefits from the use of activity-based probes in primary cells without any previous genome modification, and underscores the importance of ubiquitin-mediated regulation to refine signaling cascades.


Asunto(s)
Membrana Celular/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Ubiquitina Tiolesterasa/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Núcleo Celular/metabolismo , Separación Celular , Citosol/metabolismo , Endopeptidasas/metabolismo , Ácidos Grasos Insaturados/farmacología , Humanos , Células Jurkat , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Transporte de Proteínas , Reproducibilidad de los Resultados , Especificidad por Sustrato/efectos de los fármacos , Linfocitos T/metabolismo , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/deficiencia , Proteasas Ubiquitina-Específicas/metabolismo
10.
Chembiochem ; 17(11): 985-9, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27121751

RESUMEN

Small interfering RNA (siRNA)-mediated silencing requires siRNA loading into the RNA-induced silencing complex (RISC). Presence of 5'-phosphate (5'-P) is reported to be critical for efficient RISC loading of the antisense strand (AS) by anchoring it to the mid-domain of the Argonaute2 (Ago2) protein. Phosphorylation of exogenous duplex siRNAs is thought to be accomplished by cytosolic Clp1 kinase. However, although extensive chemical modifications are essential for siRNA-GalNAc conjugate activity, they can significantly impair Clp1 kinase activity. Here, we further elucidated the effect of 5'-P on the activity of siRNA-GalNAc conjugates. Our results demonstrate that a subset of sequences benefit from the presence of exogenous 5'-P. For those that do, incorporation of 5'-(E)-vinylphosphonate (5'-VP), a metabolically stable phosphate mimic, results in up to 20-fold improved in vitro potency and up to a threefold benefit in in vivo activity by promoting Ago2 loading and enhancing metabolic stability.


Asunto(s)
Acetilgalactosamina/química , Organofosfonatos/química , Interferencia de ARN , ARN Interferente Pequeño/química , Compuestos de Vinilo/química , Animales , Apolipoproteínas B/antagonistas & inhibidores , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Proteínas Argonautas/antagonistas & inhibidores , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Células Cultivadas , Factor IX/antagonistas & inhibidores , Factor IX/genética , Factor IX/metabolismo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Lipoproteínas LDL/sangre , Ratones , Ratones Endogámicos C57BL , Organofosfonatos/farmacología , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN , Complejo Silenciador Inducido por ARN/química , Complejo Silenciador Inducido por ARN/metabolismo , Factores de Transcripción/metabolismo , Compuestos de Vinilo/farmacología
11.
Chemistry ; 21(48): 17178-83, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26472062

RESUMEN

Peripheral blood can provide valuable information on an individual's immune status. Cell-based assays typically target leukocytes and their products. Characterization of leukocytes from whole blood requires their separation from the far more numerous red blood cells.1 Current methods to classify leukocytes, such as recovery on antibody-coated beads or fluorescence-activated cell sorting require long sample preparation times and relatively large sample volumes.2 A simple method that enables the characterization of cells from a small peripheral whole blood sample could overcome limitations of current analytical techniques. We describe the development of a simple graphene oxide surface coated with single-domain antibody fragments. This format allows quick and efficient capture of distinct WBC subpopulations from small samples (∼30 µL) of whole blood in a geometry that does not require any specialized equipment such as cell sorters or microfluidic devices.


Asunto(s)
Grafito/química , Nanoestructuras/química , Anticuerpos de Dominio Único/inmunología , Grafito/sangre , Humanos , Anticuerpos de Dominio Único/sangre
12.
Angew Chem Int Ed Engl ; 54(40): 11706-10, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26252716

RESUMEN

The site-specific modification of proteins with fluorophores can render a protein fluorescent without compromising its function. To avoid self-quenching from multiple fluorophores installed in close proximity, we used Holliday junctions to label proteins site-specifically. Holliday junctions enable modification with multiple fluorophores at reasonably precise spacing. We designed a Holliday junction with three of its four arms modified with a fluorophore of choice and the remaining arm equipped with a dibenzocyclooctyne substituent to render it reactive with an azide-modified fluorescent single-domain antibody fragment or an intact immunoglobulin produced in a sortase-catalyzed reaction. These fluorescent Holliday junctions improve fluorescence yields for both single-domain and full-sized antibodies without deleterious effects on antigen binding.


Asunto(s)
Alquinos/química , Anticuerpos/análisis , Anticuerpos/química , Azidas/química , ADN Cruciforme/química , Colorantes Fluorescentes/química
13.
J Physiol ; 592(4): 571-86, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24218545

RESUMEN

The ubiquitin proteasome system is required for the rapid and precise control of protein abundance that is essential for synaptic function. USP14 is a proteasome-bound deubiquitinating enzyme that recycles ubiquitin and regulates synaptic short-term synaptic plasticity. We previously reported that loss of USP14 in ax(J) mice causes a deficit in paired pulse facilitation (PPF) at hippocampal synapses. Here we report that USP14 regulates synaptic function through a novel, deubiquitination-independent mechanism. Although PPF is usually inversely related to release probability, USP14 deficiency impairs PPF without altering basal release probability. Instead, the loss of USP14 causes a large reduction in the number of synaptic vesicles. Over-expression of a catalytically inactive form of USP14 rescues the PPF deficit and restores synaptic vesicle number, indicating that USP14 regulates presynaptic structure and function independently of its role in deubiquitination. Finally, the PPF deficit caused by loss of USP14 can be rescued by pharmacological inhibition of proteasome activity, suggesting that inappropriate protein degradation underlies the PPF impairment. Overall, we demonstrate a novel, deubiquitination-independent function for USP14 in influencing synaptic architecture and plasticity.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Plasticidad Neuronal , Vesículas Sinápticas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Sinapsis/metabolismo , Sinapsis/fisiología , Transmisión Sináptica , Ubiquitina Tiolesterasa/genética
15.
Chem Commun (Camb) ; 59(42): 6347-6350, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37144553

RESUMEN

To ensure specificity of small interfering RNAs (siRNAs), the antisense strand must be selected by the RNA-induced silencing complex (RISC). We have previously demonstrated that a 5'-morpholino-modified nucleotide at the 5'-end of the sense strand inhibits its interaction with RISC ensuring selection of the desired antisense strand. To improve this antagonizing binding property even further, a new set of morpholino-based analogues, Mo2 and Mo3, and a piperidine analogue, Pip, were designed based on the known structure of Argonaute2, the slicer enzyme component of RISC. Sense strands of siRNAs were modified with these new analogues, and the siRNAs were evaluated in vitro and in mice for RNAi activity. Our data demonstrated that Mo2 is the best RISC inhibitor among the modifications tested and that it effectively mitigates sense strand-based off-target activity of siRNA.


Asunto(s)
ARN Interferente Pequeño , Complejo Silenciador Inducido por ARN , Animales , Ratones , ARN Interferente Pequeño/química , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Morfolinos/química
16.
J Biol Chem ; 286(33): 29146-29157, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21697085

RESUMEN

DNA polymerases catalyze the 3'-5'-pyrophosphorolysis of a DNA primer annealed to a DNA template in the presence of pyrophosphate (PP(i)). In this reversal of the polymerization reaction, deoxynucleotides in DNA are converted to deoxynucleoside 5'-triphosphates. Based on the charge, size, and geometry of the oxygen connecting the two phosphorus atoms of PP(i), a variety of compounds was examined for their ability to carry out a reaction similar to pyrophosphorolysis. We describe a manganese-mediated pyrophosphorolysis-like activity using pyrovanadate (VV) catalyzed by the DNA polymerase of bacteriophage T7. We designate this reaction pyrovanadolysis. X-ray absorption spectroscopy reveals a shorter Mn-V distance of the polymerase-VV complex than the Mn-P distance of the polymerase-PP(i) complex. This structural arrangement at the active site accounts for the enzymatic activation by Mn-VV. We propose that the Mn(2+), larger than Mg(2+), fits the polymerase active site to mediate binding of VV into the active site of the polymerase. Our results may be the first documentation that vanadium can substitute for phosphorus in biological processes.


Asunto(s)
Bacteriófago T7/enzimología , ADN Polimerasa Dirigida por ADN/química , Difosfatos/química , Manganeso/química , Dominio Catalítico , Vanadatos/química
17.
Nat Biotechnol ; 40(10): 1500-1508, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35654979

RESUMEN

Therapeutics based on short interfering RNAs (siRNAs) delivered to hepatocytes have been approved, but new delivery solutions are needed to target additional organs. Here we show that conjugation of 2'-O-hexadecyl (C16) to siRNAs enables safe, potent and durable silencing in the central nervous system (CNS), eye and lung in rodents and non-human primates with broad cell type specificity. We show that intrathecally or intracerebroventricularly delivered C16-siRNAs were active across CNS regions and cell types, with sustained RNA interference (RNAi) activity for at least 3 months. Similarly, intravitreal administration to the eye or intranasal administration to the lung resulted in a potent and durable knockdown. The preclinical efficacy of an siRNA targeting the amyloid precursor protein was evaluated through intracerebroventricular dosing in a mouse model of Alzheimer's disease, resulting in amelioration of physiological and behavioral deficits. Altogether, C16 conjugation of siRNAs has the potential for safe therapeutic silencing of target genes outside the liver with infrequent dosing.


Asunto(s)
Precursor de Proteína beta-Amiloide , Tratamiento con ARN de Interferencia , Animales , Ratones , Primates/genética , Primates/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico
18.
J Med Chem ; 61(3): 734-744, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29376650

RESUMEN

(E)-Vinylphosphonate ((E)-VP), a metabolically stable phosphate mimic at the 5'-end of the antisense strand, enhances the in vivo potency of siRNA. Here we describe a straightforward synthetic approach to incorporate a nucleotide carrying a vinylphosphonate (VP) moiety at the 5'-end of oligonucleotides under standard solid-phase synthesis and deprotection conditions by utilizing pivaloyloxymethyl (POM) protected VP-nucleoside phosphoramidites. The POM protection enhances scope and scalability of 5'-VP-modified oligonucleotides and, in a broader sense, the synthesis of oligonucleotides modified with phosphonate moieties. Trivalent N-acetylgalactosamine-conjugated small interfering RNA (GalNAc-siRNA) comprising (E)-geometrical isomer of VP showed improved RISC loading with robust RNAi-mediated gene silencing in mice compared to the corresponding (Z)-isomer despite similar tissue accumulation. We also obtained structural insights into why bulkier 2'-ribosugar substitutions such as 2'-O-[2-(methylamino)-2-oxoethyl] are well tolerated only when combined with 5'-(E)-VP.


Asunto(s)
Organofosfonatos/química , Organofosfonatos/síntesis química , ARN Interferente Pequeño/química , Animales , Proteínas Argonautas/química , Proteínas Argonautas/deficiencia , Proteínas Argonautas/genética , Secuencia de Bases , Técnicas de Química Sintética , Silenciador del Gen , Ratones , Modelos Moleculares , Dominios Proteicos , ARN Interferente Pequeño/genética , Estereoisomerismo
19.
Biosens Bioelectron ; 89(Pt 2): 789-794, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-27816596

RESUMEN

Current techniques to characterize leukocyte subgroups in blood require long sample preparation times and sizable sample volumes. A simplified method for leukocyte characterization using smaller blood volumes would thus be useful in diagnostic settings. Here we describe a flow system comprised of two functionalized graphene oxide (GO) surfaces that allow the capture of distinct leukocyte populations from small volumes blood using camelid single-domain antibodyfragments (VHHs) as capture agents. We used site-specifically labeled leukocytes to detect and identify cells exposed to fungal challenge. Combining the chemical and optical properties of GO with the versatility of the VHH scaffold in the context of a flow system provides a quick and efficient method for the capture and characterization of functional leukocytes.


Asunto(s)
Anticuerpos Inmovilizados/química , Candida albicans/aislamiento & purificación , Separación Celular/métodos , Grafito/química , Leucocitos/citología , Leucocitos/microbiología , Anticuerpos de Dominio Único/química , Aminoaciltransferasas/análisis , Animales , Proteínas Bacterianas/análisis , Candidiasis/sangre , Cisteína Endopeptidasas/análisis , Femenino , Citometría de Flujo , Ratones Endogámicos C57BL , Ratones Transgénicos , Nanoestructuras/química
20.
Nat Protoc ; 10(3): 508-16, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25719269

RESUMEN

Transpeptidation catalyzed by sortase A allows the preparation of proteins that are site-specifically and homogeneously modified with a wide variety of functional groups, such as fluorophores, PEG moieties, lipids, glycans, bio-orthogonal reactive groups and affinity handles. This protocol describes immobilization of sortase A on a solid support (Sepharose beads). Immobilization of sortase A simplifies downstream purification of a protein of interest after labeling of its N or C terminus. Smaller batch and larger-scale continuous-flow reactions require only a limited amount of enzyme. The immobilized enzyme can be reused for multiple cycles of protein modification reactions. The described protocol also works with a Ca(2+)-independent variant of sortase A with increased catalytic activity. This heptamutant variant of sortase A (7M) was generated by combining previously published mutations, and this immobilized enzyme can be used for the modification of calcium-senstive substrates or in instances in which low temperatures are needed. Preparation of immobilized sortase A takes 1-2 d. Batch reactions take 3-12 h and flow reactions proceed at 0.5 ml h(-1), depending on the geometry of the reactor used.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Enzimas Inmovilizadas/metabolismo , Peptidil Transferasas/metabolismo , Ingeniería de Proteínas/métodos , Proteínas/metabolismo , Aminoaciltransferasas/genética , Proteínas Bacterianas/genética , Catálisis , Cisteína Endopeptidasas/genética , Mutación/genética , Sefarosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA