Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; 63(19): 3867-3894, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34709089

RESUMEN

Pigmented rice has attracted considerable attention due to its nutritional value, which is in large conferred by its abundant content of phenolic compounds, considerable micronutrient concentrations, as well as its higher resistant starch and thereby slower digestibility properties. A wide range of phenolic compounds identified in pigmented rice exhibit biological activities such as antioxidant activity, anti-inflammatory, anticancer, and antidiabetic properties. Post-harvest processes significantly reduce the levels of these phytochemicals, but recent developments in processing methods have allowed greater retention of their contents. Pigmented rice has also been converted to different products for food preservation and to derive functional foods. Profiling a large set of pigmented rice cultivars will thus not only provide new insights into the phytochemical diversity of rice and the genes underlying the vast array of secondary metabolites present in this species but also provide information concerning their nutritional benefits, which will be instrumental in breeding healthier rice. The present review mainly focuses on the nutritional composition of pigmented rice and how it can impact human health alongside the effects of post-harvest processes and product development methods to retain the ambient level of phytochemicals in the final processed form in which it is consumed.


Asunto(s)
Oryza , Humanos , Oryza/química , Antioxidantes/análisis , Fenoles/análisis , Valor Nutritivo , Fitoquímicos/metabolismo
2.
Plant J ; 106(2): 507-525, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33529453

RESUMEN

Brown rice (Oryza sativa) possesses various nutritionally dense bioactive phytochemicals exhibiting a wide range of antioxidant, anti-cancer, and anti-diabetic properties known to promote various human health benefits. However, despite the wide claims made about the importance of brown rice for human nutrition the underlying metabolic diversity has not been systematically explored. Non-targeted metabolite profiling of developing and mature seeds of a diverse genetic panel of 320 rice cultivars allowed quantification of 117 metabolites. The metabolite genome-wide association study (mGWAS) detected genetic variants influencing diverse metabolic targets in developing and mature seeds. We further interlinked genetic variants on chromosome 7 (6.06-6.43 Mb region) with complex epistatic genetic interactions impacting multi-dimensional nutritional targets, including complex carbohydrate starch quality, the glycemic index, antioxidant catechin, and rice grain color. Through this nutrigenomics approach rare gene bank accessions possessing genetic variants in bHLH and IPT5 genes were identified through haplotype enrichment. These variants were associated with a low glycemic index, higher catechin levels, elevated total flavonoid contents, and heightened antioxidant activity in the whole grain with elevated anti-cancer properties being confirmed in cancer cell lines. This multi-disciplinary nutrigenomics approach thus allowed us to discover the genetic basis of human health-conferring diversity in the metabolome of brown rice.


Asunto(s)
Valor Nutritivo/genética , Oryza/genética , Antioxidantes/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Flavonoides/metabolismo , Genes de Plantas/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Índice Glucémico/genética , Metaboloma/genética , Oryza/metabolismo , Metabolismo Secundario/genética
3.
Trends Food Sci Technol ; 127: 14-25, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36090468

RESUMEN

Background: Whole grain cereals are a good source of nutrients. Several cutting-edge metabolomic platforms have been deployed to identify various phenolic compounds and enhance cereal bioactive bioavailability. A diet rich in cereal phenolics may modify the microbial composition, support gut homeostasis, and increase gut health, thereby lowering the risk of non-communicable illness. Scope and approach: In this work, we reviewed current metabolomic breakthroughs in cereal phenolic profiling and their effects on human health via gut microbiota modulation. We argue that the information presented in this paper will assist in the development of nutritionally superior cereal breeds and functional foods. Key findings and conclusion: Most cereal grains contain ferulic acid derivatives, caffeoyl glycerides, and feruloyl and coumaroyl esters. While there has been significant progress in discovering novel phenolic compounds in cereals, quantifying these molecules, and translating their therapeutic effects from animal model systems to humans remains a challenge. To this end, metabolomics, and other high-throughput-omics-based platforms must be integrated to further examine the structure and functionality of phenolic metabolites to breed nutritionally rich cereals as well as map their influence on human health benefits. Rare alleles must be introduced to improve bioactive content in cereal grains while maintaining yield. Following that, these exceptional varieties must be effectively processed to maximize phenolic bioavailability.

4.
J Plant Physiol ; 285: 153980, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37086697

RESUMEN

In the past decade, research on resistant starch has evoked interest due to the prevention and inhibition of chronic human diseases, such as diabetes, cancer, and obesity. Increasing the amylose content (AC) and resistant starch (RS) has been pivotal in improving the nutritional benefit of rice. However, the exact mechanism of RS formation is complex due to interconnected genetic factors regulating amylose-amylopectin variation. In this review, we discussed the regulatory factors influencing the RS formation centered on the transcription, post-transcriptional, and post-translational processes. Furthermore, we described the developments in RS and AC levels in rice compared with other high RS cereals. Briefly, we enumerated potential applications of high RS mutants in health, medical, and other industries. We contest that the information captured herein can be deployed for marker-assisted breeding and precision breeding techniques through genome editing to improve rice varieties with enhanced RS content.


Asunto(s)
Endospermo , Oryza , Humanos , Endospermo/genética , Endospermo/química , Amilosa , Almidón Resistente/análisis , Oryza/genética , Oryza/química , Amilopectina , Almidón/análisis
5.
Annu Rev Food Sci Technol ; 14: 183-202, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36623924

RESUMEN

Despite the almost universal acceptance of the phrase "you are what you eat," investment in understanding diet-based nutrition to address human health has been dwarfed compared to that for medicine-based interventions. Moreover, traditional breeding has focused on yield to the detriment of nutritional quality, meaning that although caloric content has remained high, the incidence of nutritional deficiencies and accompanying diseases (so-called hidden hunger) has risen dramatically. We review how genome sequencing coupled with metabolomics can facilitate the screening of genebank collections in the search for superior alleles related to the nutritional quality of crops. We argue that the first examples are very promising, suggesting that this approach could benefit broader ranges of crops and compounds with known relevance for human health. We argue that this represents anapproach complementary to metabolic engineering by transgenesis or gene editing that could be used to reverse some of the losses incurred through a recent focus on breeding for yield, although we caution that ensuring such approaches are not (re)introducing antinutrients is also necessary.


Asunto(s)
Productos Agrícolas , Fitomejoramiento , Humanos , Productos Agrícolas/genética , Valor Nutritivo , Ingeniería Metabólica , Metabolómica
6.
Commun Biol ; 6(1): 1000, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783812

RESUMEN

Enhancing the dietary properties of rice is crucial to contribute to alleviating hidden hunger and non-communicable diseases in rice-consuming countries. Germination is a bioprocessing approach to increase the bioavailability of nutrients in rice. However, there is a scarce information on how germination impacts the overall nutritional profile of pigmented rice sprouts (PRS). Herein, we demonstrated that germination resulted to increase levels of certain dietary compounds, such as free phenolics and micronutrients (Ca, Na, Fe, Zn, riboflavin, and biotin). Metabolomic analysis revealed the preferential accumulation of dipeptides, GABA, and flavonoids in the germination process. Genome-wide association studies of the PRS suggested the activation of specific genes such as CHS1 and UGT genes responsible for increasing certain flavonoid compounds. Haplotype analyses showed a significant difference (P < 0.05) between alleles associated with these genes. Genetic markers associated with these flavonoids were incorporated into the random forest model, improving the accuracy of prediction of multi-nutritional properties from 89.7% to 97.7%. Deploying this knowledge to breed rice with multi-nutritional properties will be timely to address double burden nutritional challenges.


Asunto(s)
Oryza , Oryza/genética , Oryza/química , Estudio de Asociación del Genoma Completo/métodos , Fitomejoramiento , Marcadores Genéticos , Flavonoides
7.
Plant Commun ; 3(3): 100271, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35576153

RESUMEN

The eating and cooking quality (ECQ) of rice is critical for determining its economic value in the marketplace and promoting consumer acceptance. It has therefore been of paramount importance in rice breeding programs. Here, we highlight advances in genetic studies of ECQ and discuss prospects for further enhancement of ECQ in rice. Innovations in gene- and genome-editing techniques have enabled improvements in rice ECQ. Significant genes and quantitative trait loci (QTLs) have been shown to regulate starch composition, thereby affecting amylose content and thermal and pasting properties. A limited number of genes/QTLs have been identified for other ECQ properties such as protein content and aroma. Marker-assisted breeding has identified rare alleles in diverse genetic resources that are associated with superior ECQ properties. The post-genomics-driven information summarized in this review is relevant for augmenting current breeding strategies to meet consumer preferences and growing population demands.


Asunto(s)
Oryza , Amilosa/genética , Amilosa/metabolismo , Genómica , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Almidón/genética , Almidón/metabolismo
8.
Trends Plant Sci ; 27(12): 1283-1295, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36100537

RESUMEN

Abscisic acid (ABA) is known to confer stress tolerance; however, at elevated levels it impairs plant growth under prolonged stress. Paradoxically, at its basal level, ABA plays many vital roles in promoting plant growth and development, including modulation of tillering, flowering, and seed development, as well as seed maturation. In this review, we provide insight into novel discoveries of ABA fluxes, ABA signaling responses, and their impact on yield stability. We discuss ABA homeostasis implicated under pre- and postanthesis drought and its impact on productive tillers, grain number determination, and seed development to address yield stability in cereal crops while considering the new knowledge that emerged from the model plant systems.


Asunto(s)
Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Sequías , Semillas
9.
Food Chem Adv ; 1: None, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36570628

RESUMEN

Over half the world population relies on rice for energy, but being a carbohydrate-based crop, it offers limited nutritional benefits. To achieve nutritional security targets in Asia, we must understand the genetic variation in multi-nutritional properties with therapeutic properties and deploy this knowledge to future rice breeding. High throughput, VideometerLAB spectral imaging data has been effective in estimating total anthocyanin content, particularly bound anthocyanin content, using the high prediction power of partial least square (PLS) regression models. Multi-pronged nutritional properties of phenolic compounds and minerals, together with videometerLAB features, were utilized to develop models to classify a collection of black rice varieties into three distinct nutritional quality ideotypes. These derived models for black rice diversity panels were created utilizing videometerLAB data (L, A, B parameters), selected phenolic types (total phenolics, total anthocyanins, and bound flavonoids), and minerals (Molybdenum and Phosphorous). Random forest and artificial neural network models depicted the multi-nutritional features of black rice with 85.35 and 99.9% accuracy, respectively. These prediction algorithms would help rice breeders strategically breed nutritionally valuable genotypes based on simple, high-through-put videometerLAB readings and a small number of nutritional assays.

10.
Int J Biol Macromol ; 192: 100-117, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34619270

RESUMEN

Rice starch has been used in various agri-food products due to its hypoallergenic properties. However, rice starch has poor solubility, lower resistant starch content with reduced retrogradation and poor functional properties. Hence, its industrial applications are rather limited. The lack of comprehensive information and a holistic understanding of the interaction between rice starch and endo/exogenous constituents to improve physico-chemical properties is a prerequisite in designing industrial products with enhanced functional attributes. In this comprehensive review, we highlight the potentials of physically mixing of biopolymers in upgrading the functional characteristics of rice starch as a raw material for industrial applications. Specifically, this review tackles rice starch modifications by adding natural/synthetic polymers and plasticizers, leading to functional blends or composites in developing sustainable packaging materials, pharma- and nutraceutical products. Moreover, a brief discussion on rice starch chemical and genetic modifications to alter starch quality for the deployment of rice starch industrial application is also highlighted.


Asunto(s)
Biopolímeros/química , Oryza/química , Almidón/química , Materiales Biocompatibles/química , Biopolímeros/aislamiento & purificación , Biotecnología , Celulosa/química , Fraccionamiento Químico , Quitosano , Suplementos Dietéticos , Estructura Molecular , Pectinas/química , Algas Marinas/química , Almidón/aislamiento & purificación
11.
Ultrason Sonochem ; 71: 105383, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33227580

RESUMEN

As a green, nonthermal, and innovative technology, ultrasonication generates acoustic cavitation in an aqueous medium, developing physical forces that affect the starch chemistry and rice grain characteristics. This review describes the current information on the effect of ultrasonication on the morphological, textural, and physicochemical properties of rice starch and grain. In a biphasic system, ultrasonication introduced fissures and cracks, which facilitated higher uptake of water and altered the rice starch characteristics impacting textural properties. In wholegrain rice, ultrasonic treatment stimulated the production of health-related metabolites, facilitated the higher uptake of micronutrient fortificants, and enhanced the palatability by softening the rice texture. This review provides insights into the future direction on the utilization of ultrasonication for the applications towards the improvement of rice functional properties.


Asunto(s)
Fenómenos Químicos , Manipulación de Alimentos/métodos , Oryza/química , Sonicación , Almidón/química
12.
Food Chem ; 335: 127629, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32736156

RESUMEN

Folate deficiencies are prevalent in countries with insufficient food diversity. Rice fortification is seen as a viable way to improve the daily intake of folates. This work reports an efficient process of rice fortification involving ultrasonic treatment and absorption of the folic acid fortificant. Increased porosity due to sonication allowed the efficient absorption of folic acid into the brown rice kernel up to 5.195 × 104 µg/100 g, a 1,982-fold increase from its inherent content. The absorbed folic acid in brown rice has 93.53% retention after washing and cooking. Fortification of ultrasound-treated milled rice with folic acid was also efficient affording 6.559 × 104 µg/100 g, a 4,054-fold increase from its basal content. The effect of fortification caused a decrease in the thermal and pasting temperatures. The fortification also caused yellow coloration, decrease in hardness, and increase in the adhesiveness of the rice. The resulting fortified brown rice showed improved textural properties favorable for consumers.


Asunto(s)
Absorción Fisicoquímica , Ácido Fólico/química , Alimentos Fortificados/análisis , Oryza/química , Ondas Ultrasónicas , Adhesividad , Color , Dureza
13.
Front Plant Sci ; 12: 771276, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917106

RESUMEN

Cereal grains and products provide calories globally. The health benefits of cereals attributed to their diverse phenolic constituents have not been systematically explored. Post-harvest processing, such as drying, storing, and milling cereals, can alter the phenolic concentration and influence the antioxidant activity. Furthermore, cooking has been shown to degrade thermo-labile compounds. This review covers several methods for retaining and enhancing the phenolic content of cereals to develop functional foods. These include using bioprocesses such as germination, enzymatic, and fermentation treatments designed to enhance the phenolics in cereals. In addition, physical processes like extrusion, nixtamalization, and parboiling are discussed to improve the bioavailability of phenolics. Recent technologies utilizing ultrasound, micro- or nano-capsule polymers, and infrared utilizing processes are also evaluated for their effectiveness in improving the phenolics content and bio-accessibility. We also present contemporary products made from pigmented cereals that contain phenolics.

14.
Data Brief ; 32: 106198, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32904351

RESUMEN

The data included in this article are related to research paper entitled "Efficient fortification of folic acid in rice through ultrasonic treatment and absorption". These datasets compile the folic acid uptake expressed in concentration and the effects of folic acid fortification on the physical properties of brown and milled rice. We reported the folic acid uptake of rice in increasing fortificant concentration through soaking, one-step, and stepwise fortification protocols. In addition, the data on the effects of fortification on the color, pasting, and textural properties of brown and milled rice were also presented.

15.
Ultrason Sonochem ; 68: 105234, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32593147

RESUMEN

This work investigates the effect of sonication on brown and milled rice grains of both waxy and non-waxy varieties. We report herein the microstructural analysis of uncooked rice kernels under sonication and its effect on the textural properties. X-ray computed tomography results showed the formation of microporous surfaces and the creation of cracks and fissures. Sonication increased the % porosity of the rice samples allowing for easy penetration of water during the cooking process and promotes softer texture. Moreover, the effect of sonication in brown rice resulted to the decrease in endogenous iron and phosphorus contents but increased its capacity for iron uptake through fortification when sonicated rice is soaked in the mineral solution.


Asunto(s)
Nutrientes/análisis , Oryza/química , Sonicación , Absorción Fisicoquímica , Culinaria , Dureza , Hierro/química , Porosidad , Reología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA