Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Genes Chromosomes Cancer ; 63(7): e23257, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031442

RESUMEN

Gene panel sequencing has become a common diagnostic tool for detecting somatically acquired mutations in myeloid neoplasms. However, many panels have restricted content, provide insufficient sensitivity levels, or lack clinically validated workflows. We here describe the development and validation of the Genomic Medicine Sweden myeloid gene panel (GMS-MGP), a capture-based 191 gene panel including mandatory genes in contemporary guidelines as well as emerging candidates. The GMS-MGP displayed uniform coverage across all targets, including recognized difficult GC-rich areas. The validation of 117 previously described somatic variants showed a 100% concordance with a limit-of-detection of a 0.5% variant allele frequency (VAF), achieved by utilizing error correction and filtering against a panel-of-normals. A national interlaboratory comparison investigating 56 somatic variants demonstrated highly concordant results in both detection rate and reported VAFs. In addition, prospective analysis of 323 patients analyzed with the GMS-MGP as part of standard-of-care identified clinically significant genes as well as recurrent mutations in less well-studied genes. In conclusion, the GMS-MGP workflow supports sensitive detection of all clinically relevant genes, facilitates novel findings, and is, based on the capture-based design, easy to update once new guidelines become available. The GMS-MGP provides an important step toward nationally harmonized precision diagnostics of myeloid malignancies.


Asunto(s)
Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Mutación , Suecia , Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Frecuencia de los Genes
2.
Semin Cancer Biol ; 84: 242-254, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34033893

RESUMEN

Over the last decades, rapid technological and scientific advances have led to a merge of molecular sciences and clinical medicine, resulting in a better understanding of disease mechanisms and the development of novel therapies that exploit specific molecular lesions or profiles driving disease. Precision oncology is here used as an example, illustrating the potential of precision/personalized medicine that also holds great promise in other medical fields. Real-world implementation can only be achieved by dedicated healthcare connected centers which amass and build up interdisciplinary expertise reflecting the complexity of precision medicine. Networks of such centers are ideally suited for a nation-wide outreach offering access to precision medicine to patients independent of their place of residence. Two of these multicentric initiatives, Genomic Medicine Sweden (GMS) and the Centers for Personalized Medicine (ZPM) initiative in Germany have teamed up to present and share their views on core concepts, potentials, challenges, and future developments in precision medicine. Together with other initiatives worldwide, GMS and ZPM aim at providing a robust and sustainable framework, covering all components from technology development to clinical trials, ethical and legal aspects as well as involvement of all relevant stakeholders, including patients and policymakers in the field.


Asunto(s)
Neoplasias , Medicina de Precisión , Europa (Continente) , Medicina Genómica , Alemania , Humanos , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisión/métodos , Suecia
3.
J Intern Med ; 294(4): 397-412, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37211972

RESUMEN

Molecular diagnostics is a cornerstone of modern precision medicine, broadly understood as tailoring an individual's treatment, follow-up, and care based on molecular data. In rare diseases (RDs), molecular diagnoses reveal valuable information about the cause of symptoms, disease progression, familial risk, and in certain cases, unlock access to targeted therapies. Due to decreasing DNA sequencing costs, genome sequencing (GS) is emerging as the primary method for precision diagnostics in RDs. Several ongoing European initiatives for precision medicine have chosen GS as their method of choice. Recent research supports the role for GS as first-line genetic investigation in individuals with suspected RD, due to its improved diagnostic yield compared to other methods. Moreover, GS can detect a broad range of genetic aberrations including those in noncoding regions, producing comprehensive data that can be periodically reanalyzed for years to come when further evidence emerges. Indeed, targeted drug development and repurposing of medicines can be accelerated as more individuals with RDs receive a molecular diagnosis. Multidisciplinary teams in which clinical specialists collaborate with geneticists, genomics education of professionals and the public, and dialogue with patient advocacy groups are essential elements for the integration of precision medicine into clinical practice worldwide. It is also paramount that large research projects share genetic data and leverage novel technologies to fully diagnose individuals with RDs. In conclusion, GS increases diagnostic yields and is a crucial step toward precision medicine for RDs. Its clinical implementation will enable better patient management, unlock targeted therapies, and guide the development of innovative treatments.


Asunto(s)
Medicina de Precisión , Enfermedades Raras , Humanos , Medicina de Precisión/métodos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Enfermedades Raras/terapia , Genómica/métodos , Análisis de Secuencia de ADN , Progresión de la Enfermedad
4.
Hum Mutat ; 43(6): 708-716, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35192731

RESUMEN

The amount of data available from genomic medicine has revolutionized the approach to identify the determinants underlying many rare diseases. The task of confirming a genotype-phenotype causality for a patient affected with a rare genetic disease is often challenging. In this context, the establishment of the Matchmaker Exchange (MME) network has assumed a pivotal role in bridging heterogeneous patient information stored on different medical and research servers. MME has made it possible to solve rare disease cases by "matching" the genotypic and phenotypic characteristics of a patient of interest with patient data available at other clinical facilities participating in the network. Here, we present PatientMatcher (https://github.com/Clinical-Genomics/patientMatcher), an open-source Python and MongoDB-based software solution developed by Clinical Genomics facility at the Science for Life Laboratory in Stockholm. PatientMatcher is designed as a standalone MME server, but can easily communicate via REST API with external applications managing genetic analyses and patient data. The MME node is being implemented in clinical routine in collaboration with the Genomic Medicine Center Karolinska at the Karolinska University Hospital. PatientMatcher is written to implement the MME API and provides several customizable settings, including a custom-fit similarity score algorithm and adjustable matching results notifications.


Asunto(s)
Enfermedades Raras , Enfermedades no Diagnosticadas , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Difusión de la Información/métodos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Programas Informáticos
5.
J Hum Genet ; 66(10): 995-1008, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33875766

RESUMEN

Skeletal ciliopathies are a heterogenous group of disorders with overlapping clinical and radiographic features including bone dysplasia and internal abnormalities. To date, pathogenic variants in at least 30 genes, coding for different structural cilia proteins, are reported to cause skeletal ciliopathies. Here, we summarize genetic and phenotypic features of 34 affected individuals from 29 families with skeletal ciliopathies. Molecular diagnostic testing was performed using massively parallel sequencing (MPS) in combination with copy number variant (CNV) analyses and in silico filtering for variants in known skeletal ciliopathy genes. We identified biallelic disease-causing variants in seven genes: DYNC2H1, KIAA0753, WDR19, C2CD3, TTC21B, EVC, and EVC2. Four variants located in non-canonical splice sites of DYNC2H1, EVC, and KIAA0753 led to aberrant splicing that was shown by sequencing of cDNA. Furthermore, CNV analyses showed an intragenic deletion of DYNC2H1 in one individual and a 6.7 Mb de novo deletion on chromosome 1q24q25 in another. In five unsolved cases, MPS was performed in family setting. In one proband we identified a de novo variant in PRKACA and in another we found a homozygous intragenic deletion of IFT74, removing the first coding exon and leading to expression of a shorter message predicted to result in loss of 40 amino acids at the N-terminus. These findings establish IFT74 as a new skeletal ciliopathy gene. In conclusion, combined single nucleotide variant, CNV and cDNA analyses lead to a high yield of genetic diagnoses (90%) in a cohort of patients with skeletal ciliopathies.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Ciliopatías/genética , Predisposición Genética a la Enfermedad , Isoformas de Proteínas/genética , Adulto , Anciano , Enfermedades del Desarrollo Óseo/epidemiología , Enfermedades del Desarrollo Óseo/patología , Ciliopatías/epidemiología , Ciliopatías/patología , Dineínas Citoplasmáticas/genética , Proteínas del Citoesqueleto/genética , Femenino , Genoma Humano/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Secuenciación Completa del Genoma
6.
PLoS Genet ; 14(11): e1007780, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30419018

RESUMEN

Clustered copy number variants (CNVs) as detected by chromosomal microarray analysis (CMA) are often reported as germline chromothripsis. However, such cases might need further investigations by massive parallel whole genome sequencing (WGS) in order to accurately define the underlying complex rearrangement, predict the occurrence mechanisms and identify additional complexities. Here, we utilized WGS to delineate the rearrangement structure of 21 clustered CNV carriers first investigated by CMA and identified a total of 83 breakpoint junctions (BPJs). The rearrangements were further sub-classified depending on the patterns observed: I) Cases with only deletions (n = 8) often had additional structural rearrangements, such as insertions and inversions typical to chromothripsis; II) cases with only duplications (n = 7) or III) combinations of deletions and duplications (n = 6) demonstrated mostly interspersed duplications and BPJs enriched with microhomology. In two cases the rearrangement mutational signatures indicated both a breakage-fusion-bridge cycle process and haltered formation of a ring chromosome. Finally, we observed two cases with Alu- and LINE-mediated rearrangements as well as two unrelated individuals with seemingly identical clustered CNVs on 2p25.3, possibly a rare European founder rearrangement. In conclusion, through detailed characterization of the derivative chromosomes we show that multiple mechanisms are likely involved in the formation of clustered CNVs and add further evidence for chromoanagenesis mechanisms in both "simple" and highly complex chromosomal rearrangements. Finally, WGS characterization adds positional information, important for a correct clinical interpretation and deciphering mechanisms involved in the formation of these rearrangements.


Asunto(s)
Variaciones en el Número de Copia de ADN , Replicación del ADN/genética , Elementos Alu , Puntos de Rotura del Cromosoma , Cromotripsis , Reordenamiento Génico , Genoma Humano , Humanos , Elementos de Nucleótido Esparcido Largo , Análisis de Secuencia por Matrices de Oligonucleótidos , Secuenciación Completa del Genoma
7.
BMC Bioinformatics ; 21(1): 273, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611382

RESUMEN

BACKGROUND: Exome and genome sequencing is becoming the method of choice for rare disease diagnostics. One of the key challenges remaining is distinguishing the disease causing variants from the benign background variation. After analysis and annotation of the sequencing data there are typically thousands of candidate variants requiring further investigation. One of the most effective and least biased ways to reduce this number is to assess the rarity of a variant in any population. Currently, there are a number of reliable sources of information for major population frequencies when considering single nucleotide variants (SNVs) and small insertion and deletions (INDELs), with gnomAD as the most prominent public resource available. However, local variation or frequencies in sub-populations may be underrepresented in these public resources. In contrast, for structural variation (SV), the background frequency in the general population is more or less unknown mostly due to challenges in calling SVs in a consistent way. Keeping track of local variation is one way to overcome these problems and significantly reduce the number of potential disease causing variants retained for manual inspection, both for SNVs and SVs. RESULTS: Here, we present loqusdb, a tool to solve the challenge of keeping track of any type of variant observations from genome sequencing data. Loqusdb was designed to handle a large flow of samples and unlike other solutions, samples can be added continuously to the database without rebuilding it, facilitating improvements and additions. We assessed the added value of a local observations database using 98 samples annotated with information from a background of 888 unrelated individuals. CONCLUSIONS: We show both how powerful SV analysis can be when filtering for population frequencies and how the number of apparently rare SNVs/INDELs can be reduced by adding local population information even after annotating the data with other large frequency databases, such as gnomAD. In conclusion, we show that a local frequency database is an attractive, and a necessary addition to the publicly available databases that facilitate the analysis of exome and genome data in a clinical setting.


Asunto(s)
Variación Genética , Interfaz Usuario-Computador , Bases de Datos Genéticas , Humanos , Mutación INDEL , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Polimorfismo de Nucleótido Simple
8.
BMC Pediatr ; 18(1): 285, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30157810

RESUMEN

BACKGROUND: A novel immunodeficiency, frequently accompanied by high serum-IgE, and caused by mutations in the PGM3 gene was described in 2014. To date there are no unique phenotype characteristics for PGM3 deficiency. PGM3 encodes a carbohydrate-modifying enzyme, phosphoglucomutase 3. Null-mutations are quite likely lethal, and to date only missense mutations or small deletions have been reported. Such mutations frequently cause a combination of reduced enzyme activity and protein instability, complicating determination of the enzyme level needed for survival. Here we present the first patient with a homozygous splice-modifying mutation in the PGM3 gene. An A > G substitution at position c.871 + 3 (transcript NM_001199917) is causing a deletion of exon 7 in the majority of PGM3 transcripts. In addition, this case further increases the clinical phenotypes of immunodeficiency caused by PGM3 mutations. CASE PRESENTATION: We describe the symptoms of a 3-year-old girl who was severely growth retarded, had vascular malformations, extensive eczema, multiple food-allergies, and was prone to infections. Unlike the majority of reported PGM3 deficient patients she lacked skeletal dysplasia and had normal neurocognitive development. In addition to the high serum-IgE, she displayed altered T cell numbers with reduced naïve CD4+ and CD8+ T-cells, increased number of activated effector memory CD8+ T cells and aberrant T-cell functions. The patient was homozygous for a new hypomorphic, splice-modifying mutation in the PGM3 gene, causing severely reduced mRNA levels. In the patient's cells, we observed 5% intact mRNA and approximately 11% of the protein levels seen in healthy controls. Treatment with allogeneic hematopoietic stem cell therapy was planned, but unfortunately the clinical condition deteriorated with multi-organ failure, which led to her death at 3 years of age. CONCLUSIONS: There is still no specific phenotype identified that distinguishes immunodeficiency caused by PGM3 mutations from other forms of immunodeficiency. The patient described here yields new information on the phenotypic variability among these patients. In addition, since all the synthesized protein is wild-type, it is possible for the first time to estimate the enzyme activity in vivo. The results suggest that1/10 of the normal PGM3 level is sufficient for survival but that it is insufficient for accurate carbohydrate processing.


Asunto(s)
Síndromes de Inmunodeficiencia/genética , Mutación , Fosfoglucomutasa/genética , Sitios de Empalme de ARN/genética , Preescolar , Resultado Fatal , Femenino , Homocigoto , Humanos , Fosfoglucomutasa/metabolismo , ARN Mensajero/metabolismo
9.
Hum Mutat ; 38(2): 180-192, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27862604

RESUMEN

Most balanced translocations are thought to result mechanistically from nonhomologous end joining or, in rare cases of recurrent events, by nonallelic homologous recombination. Here, we use low-coverage mate pair whole-genome sequencing to fine map rearrangement breakpoint junctions in both phenotypically normal and affected translocation carriers. In total, 46 junctions from 22 carriers of balanced translocations were characterized. Genes were disrupted in 48% of the breakpoints; recessive genes in four normal carriers and known dominant intellectual disability genes in three affected carriers. Finally, seven candidate disease genes were disrupted in five carriers with neurocognitive disabilities (SVOPL, SUSD1, TOX, NCALD, SLC4A10) and one XX-male carrier with Tourette syndrome (LYPD6, GPC5). Breakpoint junction analyses revealed microhomology and small templated insertions in a substantive fraction of the analyzed translocations (17.4%; n = 4); an observation that was substantiated by reanalysis of 37 previously published translocation junctions. Microhomology associated with templated insertions is a characteristic seen in the breakpoint junctions of rearrangements mediated by error-prone replication-based repair mechanisms. Our data implicate that a mechanism involving template switching might contribute to the formation of at least 15% of the interchromosomal translocation events.


Asunto(s)
Mapeo Cromosómico , Translocación Genética , Secuenciación Completa del Genoma , Secuencia de Bases , Rotura Cromosómica , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Femenino , Estudios de Asociación Genética , Genómica/métodos , Genotipo , Recombinación Homóloga , Humanos , Hibridación Fluorescente in Situ , Cariotipo , Masculino , Fenotipo
10.
J Med Genet ; 52(2): 111-22, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25473103

RESUMEN

BACKGROUND: Cytogenetically visible chromosomal translocations are highly informative as they can pinpoint strong effect genes even in complex genetic disorders. METHODS AND RESULTS: Here, we report a mother and daughter, both with borderline intelligence and learning problems within the dyslexia spectrum, and two apparently balanced reciprocal translocations: t(1;8)(p22;q24) and t(5;18)(p15;q11). By low coverage mate-pair whole-genome sequencing, we were able to pinpoint the genomic breakpoints to 2 kb intervals. By direct sequencing, we then located the chromosome 5p breakpoint to intron 9 of CTNND2. An additional case with a 163 kb microdeletion exclusively involving CTNND2 was identified with genome-wide array comparative genomic hybridisation. This microdeletion at 5p15.2 is also present in mosaic state in the patient's mother but absent from the healthy siblings. We then investigated the effect of CTNND2 polymorphisms on normal variability and identified a polymorphism (rs2561622) with significant effect on phonological ability and white matter volume in the left frontal lobe, close to cortical regions previously associated with phonological processing. Finally, given the potential role of CTNND2 in neuron motility, we used morpholino knockdown in zebrafish embryos to assess its effects on neuronal migration in vivo. Analysis of the zebrafish forebrain revealed a subpopulation of neurons misplaced between the diencephalon and telencephalon. CONCLUSIONS: Taken together, our human genetic and in vivo data suggest that defective migration of subpopulations of neuronal cells due to haploinsufficiency of CTNND2 contribute to the cognitive dysfunction in our patients.


Asunto(s)
Cateninas/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Lectura , Adolescente , Adulto , Secuencia de Bases , Niño , Puntos de Rotura del Cromosoma , Cognición , Exones/genética , Femenino , Sitios Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Intrones/genética , Masculino , Datos de Secuencia Molecular , Mutación/genética , Linaje , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Translocación Genética , Sustancia Blanca/patología , Adulto Joven , Proteínas de Pez Cebra/genética , Catenina delta
11.
BMC Genomics ; 15: 1090, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25495354

RESUMEN

BACKGROUND: Massively parallel DNA sequencing (MPS) has the potential to revolutionize diagnostics, in particular for monogenic disorders. Inborn errors of metabolism (IEM) constitute a large group of monogenic disorders with highly variable clinical presentation, often with acute, nonspecific initial symptoms. In many cases irreversible damage can be reduced by initiation of specific treatment, provided that a correct molecular diagnosis can be rapidly obtained. MPS thus has the potential to significantly improve both diagnostics and outcome for affected patients in this highly specialized area of medicine. RESULTS: We have developed a conceptually novel approach for acute MPS, by analysing pulsed whole genome sequence data in real time, using automated analysis combined with data reduction and parallelization. We applied this novel methodology to an in-house developed customized work flow enabling clinical-grade analysis of all IEM with a known genetic basis, represented by a database containing 474 disease genes which is continuously updated. As proof-of-concept, two patients were retrospectively analysed in whom diagnostics had previously been performed by conventional methods. The correct disease-causing mutations were identified and presented to the clinical team after 15 and 18 hours from start of sequencing, respectively. With this information available, correct treatment would have been possible significantly sooner, likely improving outcome. CONCLUSIONS: We have adapted MPS to fit into the dynamic, multidisciplinary work-flow of acute metabolic medicine. As the extent of irreversible damage in patients with IEM often correlates with timing and accuracy of management in early, critical disease stages, our novel methodology is predicted to improve patient outcome. All procedures have been designed such that they can be implemented in any technical setting and to any genetic disease area. The strategy conforms to international guidelines for clinical MPS, as only validated disease genes are investigated and as clinical specialists take responsibility for translation of results. As follow-up in patients without any known IEM, filters can be lifted and the full genome investigated, after genetic counselling and informed consent.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Errores Innatos del Metabolismo/diagnóstico , Biología Computacional , Bases de Datos Genéticas , Genoma Humano , Humanos , Errores Innatos del Metabolismo/genética , Piruvato Deshidrogenasa (Lipoamida)/genética , Análisis de Secuencia de ADN
12.
PLoS One ; 19(5): e0304411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38809937

RESUMEN

Next-generation sequencing (NGS) has been increasingly popular in genomics studies over the last decade and is now commonly used in clinical applications for precision diagnostics. Many disease areas typically involve different kinds of sample specimens, sample qualities and quantities. The quality of the DNA can range from intact, high molecular weight molecules to degraded, damaged and very short molecules. The differences in quality and quantity pose challenges for downstream molecular analyses. To overcome the challenge with the need of different molecular methods for different types of samples, we have developed a joint procedure for preparing enriched DNA libraries from high molecular weight DNA and DNA from formalin-fixed, paraffin-embedded tissue, fresh frozen tissue material, as well as cell-free DNA.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , ADN/genética , Biblioteca de Genes , Análisis de Secuencia de ADN/métodos , Adhesión en Parafina/métodos
13.
J Med Econ ; 27(1): 1053-1060, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101813

RESUMEN

AIMS AND BACKGROUND: Whole-genome sequencing (WGS) is increasingly applied in clinical practice and expected to replace standard-of-care (SoC) genetic diagnostics in hematological malignancies. This study aims to assess and compare the fully burdened cost ('micro-costing') per patient for Swedish laboratories using WGS and SoC, respectively, in pediatric and adult patients with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). METHODS: The resource use and cost details associated with SoC, e.g. chromosome banding analysis, fluorescent in situ hybridization, and targeted sequencing analysis, were collected via activity-based costing methods from four diagnostic laboratories. For WGS, corresponding data was collected from two of the centers. A simulation-based scenario model was developed for analyzing the WGS cost based on different annual sample throughput to evaluate economy of scale. RESULTS: The average SoC total cost per patient was €2,465 for pediatric AML and €2,201 for pediatric ALL, while in adults, the corresponding cost was €2,458 for AML and €1,207 for ALL. The average WGS cost (90x tumor/30x normal; sequenced on the Illumina NovaSeq 6000 platform) was estimated to €3,472 based on an annual throughput of 2,500 analyses, however, with an annual volume of 7,500 analyses the average cost would decrease by 23% to €2,671. CONCLUSION: In summary, WGS is currently more costly than SoC, however the cost can be reduced by utilizing laboratories with higher throughput and by the expected decline in cost of reagents. Our data provides guidance to decision-makers for the resource allocation needed when implementing WGS in diagnostics of hematological malignancies.


Asunto(s)
Pruebas Genéticas , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Secuenciación Completa del Genoma , Humanos , Suecia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Secuenciación Completa del Genoma/economía , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Pruebas Genéticas/economía , Pruebas Genéticas/métodos , Adulto , Niño , Masculino , Femenino , Costos y Análisis de Costo
14.
Sci Rep ; 14(1): 18275, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107471

RESUMEN

Formalin-fixed paraffin-embedded (FFPE) tissue represents a valuable source for translational cancer research. However, the widespread application of various downstream methods remains challenging. Here, we aimed to assess the feasibility of a genomic and gene expression analysis workflow using FFPE breast cancer (BC) tissue. We conducted a systematic literature review for the assessment of concordance between FFPE and fresh-frozen matched tissue samples derived from patients with BC for DNA and RNA downstream applications. The analytical performance of three different nucleic acid extraction kits on FFPE BC clinical samples was compared. We also applied a newly developed targeted DNA Next-Generation Sequencing (NGS) 370-gene panel and the nCounter BC360® platform on simultaneously extracted DNA and RNA, respectively, using FFPE tissue from a phase II clinical trial. Of the 3701 initial search results, 40 articles were included in the systematic review. High degree of concordance was observed in various downstream application platforms. Moreover, the performance of simultaneous DNA/RNA extraction kit was demonstrated with targeted DNA NGS and gene expression profiling. Exclusion of variants below 5% variant allele frequency was essential to overcome FFPE-induced artefacts. Targeted genomic analyses were feasible in simultaneously extracted DNA/RNA from FFPE material, providing insights for their implementation in clinical trials/cohorts.


Asunto(s)
Neoplasias de la Mama , Estudios de Factibilidad , Formaldehído , Genómica , Adhesión en Parafina , Fijación del Tejido , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Adhesión en Parafina/métodos , Femenino , Formaldehído/química , Fijación del Tejido/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Perfilación de la Expresión Génica/métodos
15.
Clin Cancer Res ; 30(12): 2647-2658, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38573684

RESUMEN

PURPOSE: Tumor classification is a key component in personalized cancer care. For soft-tissue and bone tumors, this classification is currently based primarily on morphology assessment and IHC staining. However, these standard-of-care methods can pose challenges for pathologists. We therefore assessed how whole-genome and whole-transcriptome sequencing (WGTS) impacted tumor classification and clinical management when interpreted together with histomorphology. EXPERIMENTAL DESIGN: We prospectively evaluated WGTS in routine diagnostics of 200 soft-tissue and bone tumors suspicious for malignancy, including DNA and RNA isolation from the tumor, and DNA isolation from a peripheral blood sample or any non-tumor tissue. RESULTS: On the basis of specific genomic alterations or absence of presumed findings, WGTS resulted in reclassification of 7% (13/197) of the histopathologic diagnoses. Four cases were downgraded from low-grade sarcomas to benign lesions, and two cases were reclassified as metastatic malignant melanomas. Fusion genes associated with specific tumor entities were found in 30 samples. For malignant soft-tissue and bone tumors, we identified treatment relevant variants in 15% of cases. Germline pathogenic variants associated with a hereditary cancer syndrome were found in 22 participants (11%). CONCLUSIONS: WGTS provides an important dimension of data that aids in the classification of soft-tissue and bone tumors, correcting a significant fraction of clinical diagnoses, and identifies molecular targets relevant for precision medicine. However, genetic findings need to be evaluated in their morphopathologic context, just as germline findings need to be evaluated in the context of patient phenotype and family history.


Asunto(s)
Genómica , Sarcoma , Humanos , Sarcoma/genética , Sarcoma/diagnóstico , Sarcoma/patología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Genómica/métodos , Neoplasias Óseas/genética , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/patología , Adulto Joven , Perfilación de la Expresión Génica , Anciano de 80 o más Años , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/diagnóstico , Neoplasias de los Tejidos Blandos/patología , Adolescente , Biomarcadores de Tumor/genética , Estudios Prospectivos , Niño , Secuenciación Completa del Genoma/métodos
16.
Cancer Discov ; 14(7): 1147-1153, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38870393

RESUMEN

Cancer Core Europe brings together the expertise, resources, and interests of seven leading cancer institutes committed to leveraging collective innovation and collaboration in precision oncology. Through targeted efforts addressing key medical challenges in cancer and partnerships with multiple stakeholders, the consortium seeks to advance cancer research and enhance equitable patient care.


Asunto(s)
Oncología Médica , Neoplasias , Humanos , Europa (Continente) , Oncología Médica/organización & administración , Oncología Médica/métodos , Neoplasias/terapia , Investigación Biomédica/organización & administración , Medicina de Precisión/métodos
17.
Lancet Reg Health Eur ; 39: 100881, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38803632

RESUMEN

Background: Childhood cancer predisposition (ChiCaP) syndromes are increasingly recognized as contributing factors to childhood cancer development. Yet, due to variable availability of germline testing, many children with ChiCaP might go undetected today. We report results from the nationwide and prospective ChiCaP study that investigated diagnostic yield and clinical impact of integrating germline whole-genome sequencing (gWGS) with tumor sequencing and systematic phenotyping in children with solid tumors. Methods: gWGS was performed in 309 children at diagnosis of CNS (n = 123, 40%) or extracranial (n = 186, 60%) solid tumors and analyzed for disease-causing variants in 189 known cancer predisposing genes. Tumor sequencing data were available for 74% (227/309) of patients. In addition, a standardized clinical assessment for underlying predisposition was performed in 95% (293/309) of patients. Findings: The prevalence of ChiCaP diagnoses was 11% (35/309), of which 69% (24/35) were unknown at inclusion (diagnostic yield 8%, 24/298). A second-hit and/or relevant mutational signature was observed in 19/21 (90%) tumors with informative data. ChiCaP diagnoses were more prevalent among patients with retinoblastomas (50%, 6/12) and high-grade astrocytomas (37%, 6/16), and in those with non-cancer related features (23%, 20/88), and ≥2 positive ChiCaP criteria (28%, 22/79). ChiCaP diagnoses were autosomal dominant in 80% (28/35) of patients, yet confirmed de novo in 64% (18/28). The 35 ChiCaP findings resulted in tailored surveillance (86%, 30/35) and treatment recommendations (31%, 11/35). Interpretation: Overall, our results demonstrate that systematic phenotyping, combined with genomics-based diagnostics of ChiCaP in children with solid tumors is feasible in large-scale clinical practice and critically guides personalized care in a sizable proportion of patients. Funding: The study was supported by the Swedish Childhood Cancer Fund and the Ministry of Health and Social Affairs.

18.
Cancers (Basel) ; 15(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36831507

RESUMEN

In this longitudinal study, cell-free tumour DNA (a liquid biopsy) from plasma was explored as a prognostic biomarker for gastro-oesophageal cancer. Both tumour-informed and tumour-agnostic approaches for plasma variant filtering were evaluated in 47 participants. This was possible through sequencing of DNA from tissue biopsies from all participants and cell-free DNA from plasma sampled before and after surgery (n = 42), as well as DNA from white blood cells (n = 21) using a custom gene panel with and without unique molecular identifiers (UMIs). A subset of the plasma samples (n = 12) was also assayed with targeted droplet digital PCR (ddPCR). In 17/31 (55%) diagnostic plasma samples, tissue-verified cancer-associated variants could be detected by the gene panel. In the tumour-agnostic approach, 26 participants (59%) had cancer-associated variants, and UMIs were necessary to filter the true variants from the technical artefacts. Additionally, clonal haematopoietic variants could be excluded using the matched white blood cells or follow-up plasma samples. ddPCR detected its targets in 10/12 (83%) and provided an ultra-sensitive method for follow-up. Detectable cancer-associated variants in plasma correlated to a shorter overall survival and shorter time to progression, with a significant correlation for the tumour-informed approaches. In summary, liquid biopsy gene panel sequencing using a tumour-agnostic approach can be applied to all patients regardless of the presence of a tissue biopsy, although this requires UMIs and the exclusion of clonal haematopoietic variants. However, if sequencing data from tumour biopsies are available, a tumour-informed approach improves the value of cell-free tumour DNA as a negative prognostic biomarker in gastro-oesophageal cancer patients.

19.
Front Oncol ; 13: 1217712, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664045

RESUMEN

Introduction: The suitability of whole-genome sequencing (WGS) as the sole method to detect clinically relevant genomic aberrations in B-cell acute lymphoblastic leukemia (ALL) was investigated with the aim of replacing current diagnostic methods. Methods: For this purpose, we assessed the analytical performance of 150 bp paired-end WGS (90x leukemia/30x germline). A set of 88 retrospective B-cell ALL samples were selected to represent established ALL subgroups as well as ALL lacking stratifying markers by standard-of-care (SoC), so-called B-other ALL. Results: Both the analysis of paired leukemia/germline (L/N)(n=64) as well as leukemia-only (L-only)(n=88) detected all types of aberrations mandatory in the current ALLTogether trial protocol, i.e., aneuploidies, structural variants, and focal copy-number aberrations. Moreover, comparison to SoC revealed 100% concordance and that all patients had been assigned to the correct genetic subgroup using both approaches. Notably, WGS could allocate 35 out of 39 B-other ALL samples to one of the emerging genetic subgroups considered in the most recent classifications of ALL. We further investigated the impact of high (90x; n=58) vs low (30x; n=30) coverage on the diagnostic yield and observed an equally perfect concordance with SoC; low coverage detected all relevant lesions. Discussion: The filtration of the WGS findings with a short list of genes recurrently rearranged in ALL was instrumental to extract the clinically relevant information efficiently. Nonetheless, the detection of DUX4 rearrangements required an additional customized analysis, due to multiple copies of this gene embedded in the highly repetitive D4Z4 region. We conclude that the diagnostic performance of WGS as the standalone method was remarkable and allowed detection of all clinically relevant genomic events in the diagnostic setting of B-cell ALL.

20.
Camb Prism Precis Med ; 1: e15, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38550923

RESUMEN

Precision medicine has the potential to transform healthcare by moving from one-size-fits-all to personalised treatment and care. This transition has been greatly facilitated through new high-throughput sequencing technologies that can provide the unique molecular profile of each individual patient, along with the rapid development of targeted therapies directed to the Achilles heels of each disease. To implement precision medicine approaches in healthcare, many countries have adopted national strategies and initiated genomic/precision medicine initiatives to provide equal access to all citizens. In other countries, such as Sweden, this has proven more difficult due to regionally organised healthcare. Using a bottom-up approach, key stakeholders from academia, healthcare, industry and patient organisations joined forces and formed Genomic Medicine Sweden (GMS), a national infrastructure for the implementation of precision medicine across the country. To achieve this, Genomic Medicine Centres have been established to provide regionally distributed genomic services, and a national informatics infrastructure has been built to allow secure data handling and sharing. GMS has a broad scope focusing on rare diseases, cancer, pharmacogenomics, infectious diseases and complex diseases, while also providing expertise in informatics, ethical and legal issues, health economy, industry collaboration and education. In this review, we summarise our experience in building a national infrastructure for precision medicine. We also provide key examples how precision medicine already has been successfully implemented within our focus areas. Finally, we bring up challenges and opportunities associated with precision medicine implementation, the importance of international collaboration, as well as the future perspective in the field of precision medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA