Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(48): 24359-24365, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31719194

RESUMEN

Thermosensitive transient receptor potential (TRP) ion channels detect changes in ambient temperature to regulate body temperature and temperature-dependent cellular activity. Rodent orthologs of TRP vanilloid 2 (TRPV2) are activated by nonphysiological heat exceeding 50 °C, and human TRPV2 is heat-insensitive. TRPV2 is required for phagocytic activity of macrophages which are rarely exposed to excessive heat, but what activates TRPV2 in vivo remains elusive. Here we describe the molecular mechanism of an oxidation-induced temperature-dependent gating of TRPV2. While high concentrations of H2O2 induce a modest sensitization of heat-induced inward currents, the oxidant chloramine-T (ChT), ultraviolet A light, and photosensitizing agents producing reactive oxygen species (ROS) activate and sensitize TRPV2. This oxidation-induced activation also occurs in excised inside-out membrane patches, indicating a direct effect on TRPV2. The reducing agent dithiothreitol (DTT) in combination with methionine sulfoxide reductase partially reverses ChT-induced sensitization, and the substitution of the methionine (M) residues M528 and M607 to isoleucine almost abolishes oxidation-induced gating of rat TRPV2. Mass spectrometry on purified rat TRPV2 protein confirms oxidation of these residues. Finally, macrophages generate TRPV2-like heat-induced inward currents upon oxidation and exhibit reduced phagocytosis when exposed to the TRP channel inhibitor ruthenium red (RR) or to DTT. In summary, our data reveal a methionine-dependent redox sensitivity of TRPV2 which may be an important endogenous mechanism for regulation of TRPV2 activity and account for its pivotal role for phagocytosis in macrophages.


Asunto(s)
Metionina/metabolismo , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Canales de Calcio/química , Canales de Calcio/genética , Canales de Calcio/metabolismo , Cloraminas/química , Escherichia coli/genética , Calor , Humanos , Peróxido de Hidrógeno/química , Macrófagos , Metionina/química , Mutación , Oxidantes/química , Oxidación-Reducción , Técnicas de Placa-Clamp , Fagocitosis , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/genética , Compuestos de Tosilo/química
2.
Int J Mol Sci ; 21(18)2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32933054

RESUMEN

The human Transient Receptor Potential A1 (hTRPA1) ion channel, also known as the wasabi receptor, acts as a biosensor of various potentially harmful stimuli. It is activated by a wide range of chemicals, including the electrophilic compound N-methylmaleimide (NMM), but the mechanism of activation is not fully understood. Here, we used mass spectrometry to map and quantify the covalent labeling in hTRPA1 at three different concentrations of NMM. A functional truncated version of hTRPA1 (Δ1-688 hTRPA1), lacking the large N-terminal ankyrin repeat domain (ARD), was also assessed in the same way. In the full length hTRPA1, the labeling of different cysteines ranged from nil up to 95% already at the lowest concentration of NMM, suggesting large differences in reactivity of the thiols. Most important, the labeling of some cysteine residues increased while others decreased with the concentration of NMM, both in the full length and the truncated protein. These findings indicate a conformational switch of the proteins, possibly associated with activation or desensitization of the ion channel. In addition, several lysines in the transmembrane domain and the proximal N-terminal region were labeled by NMM, raising the possibility that lysines are also key targets for electrophilic activation of hTRPA1.


Asunto(s)
Canal Catiónico TRPA1/metabolismo , Repetición de Anquirina/fisiología , Cisteína/metabolismo , Humanos , Activación del Canal Iónico/fisiología , Lisina/metabolismo , Espectrometría de Masas/métodos , Dominios Proteicos/fisiología , Compuestos de Sulfhidrilo/metabolismo
3.
FASEB J ; 32(10): 5751-5759, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29738273

RESUMEN

The mode of action of paracetamol (acetaminophen), which is widely used for treating pain and fever, has remained obscure, but may involve several distinct mechanisms, including cyclooxygenase inhibition and transient receptor potential ankyrin 1 (TRPA1) channel activation, the latter being recently associated with paracetamol's propensity to elicit hypothermia at higher doses. Here, we examined whether the antipyretic effect of paracetamol was due to TRPA1 activation or cyclooxygenase inhibition. Treatment of wild-type and TRPA1 knockout mice rendered febrile by immune challenge with LPS with a dose of paracetamol that did not produce hypothermia (150 mg/kg) but is known to be analgetic, abolished fever in both genotypes. Paracetamol completely suppressed the LPS-induced elevation of prostaglandin E2 in the brain and also reduced the levels of several other prostanoids. The hypothermia induced by paracetamol was abolished in mice treated with the electrophile-scavenger N-acetyl cysteine. We conclude that paracetamol's antipyretic effect in mice is dependent on inhibition of cyclooxygenase activity, including the formation of pyrogenic prostaglandin E2, whereas paracetamol-induced hypothermia likely is mediated by the activation of TRPA1 by electrophilic metabolites of paracetamol, similar to its analgesic effect in some experimental paradigms.-Mirrasekhian, E., Nilsson, J. L. Å., Shionoya, K., Blomgren, A., Zygmunt, P. M., Engblom, D., Högestätt, E. D., Blomqvist, A. The antipyretic effect of paracetamol occurs independent of transient receptor potential ankyrin 1-mediated hypothermia and is associated with prostaglandin inhibition in the brain.


Asunto(s)
Acetaminofén/efectos adversos , Antipiréticos/efectos adversos , Encéfalo/metabolismo , Dinoprostona/biosíntesis , Hipotermia/metabolismo , Canal Catiónico TRPA1/biosíntesis , Acetaminofén/farmacología , Animales , Antipiréticos/farmacología , Encéfalo/patología , Hipotermia/inducido químicamente , Hipotermia/patología , Ratones , Ratones Noqueados
4.
J Neurosci ; 36(19): 5264-78, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27170124

RESUMEN

UNLABELLED: Photosensitization, an exaggerated sensitivity to harmless light, occurs genetically in rare diseases, such as porphyrias, and in photodynamic therapy where short-term toxicity is intended. A common feature is the experience of pain from bright light. In human subjects, skin exposure to 405 nm light induced moderate pain, which was intensified by pretreatment with aminolevulinic acid. In heterologous expression systems and cultured sensory neurons, exposure to blue light activated TRPA1 and, to a lesser extent, TRPV1 channels in the absence of additional photosensitization. Pretreatment with aminolevulinic acid or with protoporphyrin IX dramatically increased the light sensitivity of both TRPA1 and TRPV1 via generation of reactive oxygen species. Artificial lipid bilayers equipped with purified human TRPA1 showed substantial single-channel activity only in the presence of protoporphyrin IX and blue light. Photosensitivity and photosensitization could be demonstrated in freshly isolated mouse tissues and led to TRP channel-dependent release of proinflammatory neuropeptides upon illumination. With antagonists in clinical development, these findings may help to alleviate pain during photodynamic therapy and also allow for disease modification in porphyria patients. SIGNIFICANCE STATEMENT: Cutaneous porphyria patients suffer from burning pain upon exposure to sunlight and other patients undergoing photodynamic therapy experience similar pain, which can limit the therapeutic efforts. This study elucidates the underlying molecular transduction mechanism and identifies potential targets of therapy. Ultraviolet and blue light generates singlet oxygen, which oxidizes and activates the ion channels TRPA1 and TRPV1. The disease and the therapeutic options could be reproduced in models ranging from isolated ion channels to human subjects, applying protoporphyrin IX or its precursor aminolevulinic acid. There is an unmet medical need, and our results suggest a therapeutic use of the pertinent antagonists in clinical development.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Porfirias/metabolismo , Canales Catiónicos TRPV/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Ácido Aminolevulínico/farmacología , Animales , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Neuropéptidos/metabolismo , Porfirias/terapia , Protoporfirinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células Receptoras Sensoriales/metabolismo , Piel/efectos de los fármacos , Piel/efectos de la radiación , Canal Catiónico TRPA1
5.
J Biol Chem ; 291(52): 26899-26912, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-27875296

RESUMEN

Temperature sensors are crucial for animals to optimize living conditions. The temperature response of the ion channel transient receptor potential A1 (TRPA1) is intriguing; some orthologs have been reported to be activated by cold and others by heat, but the molecular mechanisms responsible for its activation remain elusive. Single-channel electrophysiological recordings of heterologously expressed and purified Anopheles gambiae TRPA1 (AgTRPA1), with and without the N-terminal ankyrin repeat domain, demonstrate that both proteins are functional because they responded to the electrophilic compounds allyl isothiocyanate and cinnamaldehyde as well as heat. The proteins' similar intrinsic fluorescence properties and corresponding quenching when activated by allyl isothiocyanate or heat suggest lipid bilayer-independent conformational changes outside the N-terminal domain. The results show that AgTRPA1 is an inherent thermo- and chemoreceptor, and analogous to what has been reported for the human TRPA1 ortholog, the N-terminal domain may tune the response but is not required for the activation by these stimuli.


Asunto(s)
Repetición de Anquirina , Culicidae/metabolismo , Activación del Canal Iónico/fisiología , Canales de Potencial de Receptor Transitorio/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Frío , Cristalografía por Rayos X , Calor , Humanos , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido , Canales de Potencial de Receptor Transitorio/aislamiento & purificación
6.
Proc Natl Acad Sci U S A ; 111(47): 16901-6, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25389312

RESUMEN

We have purified and reconstituted human transient receptor potential (TRP) subtype A1 (hTRPA1) into lipid bilayers and recorded single-channel currents to understand its inherent thermo- and chemosensory properties as well as the role of the ankyrin repeat domain (ARD) of the N terminus in channel behavior. We report that hTRPA1 with and without its N-terminal ARD (Δ1-688 hTRPA1) is intrinsically cold-sensitive, and thus, cold-sensing properties of hTRPA1 reside outside the N-terminal ARD. We show activation of hTRPA1 by the thiol oxidant 2-((biotinoyl)amino)ethyl methanethiosulfonate (MTSEA-biotin) and that electrophilic compounds activate hTRPA1 in the presence and absence of the N-terminal ARD. The nonelectrophilic compounds menthol and the cannabinoid Δ(9)-tetrahydrocannabiorcol (C16) directly activate hTRPA1 at different sites independent of the N-terminal ARD. The TRPA1 antagonist HC030031 inhibited cold and chemical activation of hTRPA1 and Δ1-688 hTRPA1, supporting a direct interaction with hTRPA1 outside the N-terminal ARD. These findings show that hTRPA1 is an intrinsically cold- and chemosensitive ion channel. Thus, second messengers, including Ca(2+), or accessory proteins are not needed for hTRPA1 responses to cold or chemical activators. We suggest that conformational changes outside the N-terminal ARD by cold, electrophiles, and nonelectrophiles are important in hTRPA1 channel gating and that targeting chemical interaction sites outside the N-terminal ARD provides possibilities to fine tune TRPA1-based drug therapies (e.g., for treatment of pain associated with cold hypersensitivity and cardiovascular disease).


Asunto(s)
Repetición de Anquirina , Canales de Calcio/fisiología , Frío , Proteínas del Tejido Nervioso/fisiología , Canales de Potencial de Receptor Transitorio/fisiología , Canales de Calcio/química , Humanos , Proteínas del Tejido Nervioso/química , Técnicas de Placa-Clamp , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/química
7.
Handb Exp Pharmacol ; 222: 583-630, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24756722

RESUMEN

The transient receptor potential ankyrin subtype 1 protein (TRPA1) is a nonselective cation channel permeable to Ca(2+), Na(+), and K(+). TRPA1 is a promiscuous chemical nocisensor that is also involved in noxious cold and mechanical sensation. It is present in a subpopulation of Aδ- and C-fiber nociceptive sensory neurons as well as in other sensory cells including epithelial cells. In primary sensory neurons, Ca(2+) and Na(+) flowing through TRPA1 into the cell cause membrane depolarization, action potential discharge, and neurotransmitter release both at peripheral and central neural projections. In addition to being activated by cysteine and lysine reactive electrophiles and oxidants, TRPA1 is indirectly activated by pro-inflammatory agents via the phospholipase C signaling pathway, in which cytosolic Ca(2+) is an important regulator of channel gating. The finding that non-electrophilic compounds, including menthol and cannabinoids, activate TRPA1 may provide templates for the design of non-tissue damaging activators to fine-tune the activity of TRPA1 and raises the possibility that endogenous ligands sharing binding sites with such non-electrophiles exist and regulate TRPA1 channel activity. TRPA1 is promising as a drug target for novel treatments of pain, itch, and sensory hyperreactivity in visceral organs including the airways, bladder, and gastrointestinal tract.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Canales de Calcio/química , Canales de Calcio/genética , Permeabilidad de la Membrana Celular , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Activación del Canal Iónico , Potenciales de la Membrana , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Fenotipo , Conformación Proteica , Transducción de Señal , Relación Estructura-Actividad , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/deficiencia , Canales de Potencial de Receptor Transitorio/genética
8.
Nat Commun ; 13(1): 6113, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253390

RESUMEN

TRP channels sense temperatures ranging from noxious cold to noxious heat. Whether specialized TRP thermosensor modules exist and how they control channel pore gating is unknown. We studied purified human TRPA1 (hTRPA1) truncated proteins to gain insight into the temperature gating of hTRPA1. In patch-clamp bilayer recordings, ∆1-688 hTRPA1, without the N-terminal ankyrin repeat domain (N-ARD), was more sensitive to cold and heat, whereas ∆1-854 hTRPA1, also lacking the S1-S4 voltage sensing-like domain (VSLD), gained sensitivity to cold but lost its heat sensitivity. In hTRPA1 intrinsic tryptophan fluorescence studies, cold and heat evoked rearrangement of VSLD and the C-terminus domain distal to the transmembrane pore domain S5-S6 (CTD). In whole-cell electrophysiology experiments, replacement of the CTD located cysteines 1021 and 1025 with alanine modulated hTRPA1 cold responses. It is proposed that hTRPA1 CTD harbors cold and heat sensitive domains allosterically coupled to the S5-S6 pore region and the VSLD, respectively.


Asunto(s)
Repetición de Anquirina , Calor , Alanina , Humanos , Canal Catiónico TRPA1/genética , Canal Catiónico TRPA1/metabolismo , Sensación Térmica , Triptófano
9.
Nat Commun ; 13(1): 7483, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470868

RESUMEN

TRPV2 is a ligand-operated temperature sensor with poorly defined pharmacology. Here, we combine calcium imaging and patch-clamp electrophysiology with cryo-electron microscopy (cryo-EM) to explore how TRPV2 activity is modulated by the phytocannabinoid Δ9-tetrahydrocannabiorcol (C16) and by probenecid. C16 and probenecid act in concert to stimulate TRPV2 responses including histamine release from rat and human mast cells. Each ligand causes distinct conformational changes in TRPV2 as revealed by cryo-EM. Although the binding for probenecid remains elusive, C16 associates within the vanilloid pocket. As such, the C16 binding location is distinct from that of cannabidiol, partially overlapping with the binding site of the TRPV2 inhibitor piperlongumine. Taken together, we discover a new cannabinoid binding site in TRPV2 that is under the influence of allosteric control by probenecid. This molecular insight into ligand modulation enhances our understanding of TRPV2 in normal and pathophysiology.


Asunto(s)
Cannabidiol , Cannabinoides , Ratas , Humanos , Animales , Cannabidiol/farmacología , Canales Catiónicos TRPV/metabolismo , Cannabinoides/farmacología , Probenecid/farmacología , Ligandos , Microscopía por Crioelectrón
10.
Eur J Med Chem ; 213: 113042, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33257173

RESUMEN

Paracetamol, one of the most widely used pain-relieving drugs, is deacetylated to 4-aminophenol (4-AP) that undergoes fatty acid amide hydrolase (FAAH)-dependent biotransformation into N-arachidonoylphenolamine (AM404), which mediates TRPV1-dependent antinociception in the brain of rodents. However, paracetamol is also converted to the liver-toxic metabolite N-acetyl-p-benzoquinone imine already at therapeutic doses, urging for safer paracetamol analogues. Primary amine analogues with chemical structures similar to paracetamol were evaluated for their propensity to undergo FAAH-dependent N-arachidonoyl conjugation into TRPV1 activators both in vitro and in vivo in rodents. The antinociceptive and antipyretic activity of paracetamol and primary amine analogues was examined with regard to FAAH and TRPV1 as well as if these analogues produced acute liver toxicity. 5-Amino-2-methoxyphenol (2) and 5-aminoindazole (3) displayed efficient target protein interactions with a dose-dependent antinociceptive effect in the mice formalin test, which in the second phase was dependent on FAAH and TRPV1. No hepatotoxicity of the FAAH substrates transformed into TRPV1 activators was observed. While paracetamol attenuates pyrexia via inhibition of brain cyclooxygenase, its antinociceptive FAAH substrate 4-AP was not antipyretic, suggesting separate mechanisms for the antipyretic and antinociceptive effect of paracetamol. Furthermore, compound 3 reduced fever without a brain cyclooxygenase inhibitory action. The data support our view that analgesics and antipyretics without liver toxicity can be derived from paracetamol. Thus, research into the molecular actions of paracetamol could pave the way for the discovery of analgesics and antipyretics with a better benefit-to-risk ratio.


Asunto(s)
Acetaminofén/química , Amidohidrolasas/metabolismo , Analgésicos/química , Antipiréticos/química , Canales Catiónicos TRPV/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Acetaminofén/farmacología , Aminofenoles/química , Analgésicos/farmacología , Animales , Antipiréticos/farmacología , Ácidos Araquidónicos/química , Encéfalo , Femenino , Humanos , Indazoles/química , Hígado , Masculino , Ratones Endogámicos C57BL , Modelos Moleculares , Dolor/tratamiento farmacológico , Dimensión del Dolor , Prostaglandina-Endoperóxido Sintasas/metabolismo , Ratas Wistar , Relación Estructura-Actividad
11.
Bioorg Med Chem ; 18(9): 3299-306, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20381363

RESUMEN

A series of natural and synthetic piperine amides were evaluated for activity on the human TRPV1 expressed in HEK293 cells. The agonistic effect of piperine amides was mainly dependent on the length of the carbon chain. Structural changes of double bonds and stereochemistry in the aliphatic chain of these compounds did not change their potency or efficacy, indicating that increased rigidity or planarity of the piperine structure does not affect the activity. The opening of the methylenedioxy ring or changes in the heterocyclic ring of the piperine molecule reduced or abolished activity. Furthermore, inactive compounds did not display functional antagonistic activity.


Asunto(s)
Alcaloides/farmacología , Amidas/farmacología , Benzodioxoles/farmacología , Piperidinas/farmacología , Alcamidas Poliinsaturadas/farmacología , Canales Catiónicos TRPV/metabolismo , Alcaloides/síntesis química , Alcaloides/química , Amidas/síntesis química , Amidas/química , Benzodioxoles/síntesis química , Benzodioxoles/química , Capsaicina/análogos & derivados , Capsaicina/farmacología , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Piperidinas/síntesis química , Piperidinas/química , Alcamidas Poliinsaturadas/síntesis química , Alcamidas Poliinsaturadas/química , Espectrometría de Fluorescencia , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/antagonistas & inhibidores
12.
Nature ; 427(6971): 260-5, 2004 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-14712238

RESUMEN

Wasabi, horseradish and mustard owe their pungency to isothiocyanate compounds. Topical application of mustard oil (allyl isothiocyanate) to the skin activates underlying sensory nerve endings, thereby producing pain, inflammation and robust hypersensitivity to thermal and mechanical stimuli. Despite their widespread use in both the kitchen and the laboratory, the molecular mechanism through which isothiocyanates mediate their effects remains unknown. Here we show that mustard oil depolarizes a subpopulation of primary sensory neurons that are also activated by capsaicin, the pungent ingredient in chilli peppers, and by Delta(9)-tetrahydrocannabinol (THC), the psychoactive component of marijuana. Both allyl isothiocyanate and THC mediate their excitatory effects by activating ANKTM1, a member of the TRP ion channel family recently implicated in the detection of noxious cold. These findings identify a cellular and molecular target for the pungent action of mustard oils and support an emerging role for TRP channels as ionotropic cannabinoid receptors.


Asunto(s)
Canales de Calcio/metabolismo , Cannabinoides/farmacología , Planta de la Mostaza , Proteínas del Tejido Nervioso/metabolismo , Neuronas Aferentes/efectos de los fármacos , Aceites de Plantas/farmacología , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Animales Recién Nacidos , Ancirinas , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Capsaicina/farmacología , Carbacol/farmacología , Células Cultivadas , Clonación Molecular , Dronabinol/farmacología , Humanos , Proteínas del Tejido Nervioso/genética , Neuronas Aferentes/metabolismo , Nociceptores , Oocitos/efectos de los fármacos , Oocitos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Canal Catiónico TRPA1 , Canales Catiónicos TRPC , Tapsigargina/farmacología , Canales de Potencial de Receptor Transitorio/genética , Ganglio del Trigémino
13.
Cell Calcium ; 91: 102255, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32717533

RESUMEN

The role of mammalian Transient Receptor Potential Ankyrin 1 (TRPA1) as a mechanosensor is controversial. Here, we report that purified human TRPA1 (hTRPA1) with and without its N-terminal ankyrin repeat domain responded with pressure-dependent single-channel current activity when reconstituted into artificial lipid bilayers. The hTRPA1 activity was abolished by the thiol reducing agent TCEP. Thus, depending on its redox state, hTRPA1 is an inherent mechanosensitive ion channel gated by force-from-lipids.


Asunto(s)
Activación del Canal Iónico , Membrana Dobles de Lípidos/metabolismo , Mecanotransducción Celular , Canal Catiónico TRPA1/metabolismo , Humanos , Canal Catiónico TRPA1/química
14.
Cell Calcium ; 90: 102228, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32554053

RESUMEN

Extracellular influx of calcium or release of calcium from intracellular stores have been shown to activate mammalian TRPA1 as well as to sensitize and desensitize TRPA1 electrophilic activation. Calcium binding sites on both intracellular N- and C-termini have been proposed. Here, we demonstrate based on Förster resonance energy transfer (FRET) and bilayer patch-clamp studies, a direct calmodulin-independent action of calcium on the purified human TRPA1 (hTRPA1), causing structural changes and activation without immediate subsequent desensitization of hTRPA1 with and without its N-terminal ankyrin repeat domain (N-ARD). Thus, calcium alone activates hTRPA1 by a direct interaction with binding sites outside the N-ARD.


Asunto(s)
Repetición de Anquirina , Calcio/metabolismo , Calmodulina/metabolismo , Canal Catiónico TRPA1/química , Canal Catiónico TRPA1/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Activación del Canal Iónico/efectos de los fármacos
16.
Nat Commun ; 8(1): 947, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-29038531

RESUMEN

Recent evidence suggests that the ion channel TRPA1 is implicated in lung adenocarcinoma (LUAD), where its role and mechanism of action remain unknown. We have previously established that the membrane receptor FGFR2 drives LUAD progression through aberrant protein-protein interactions mediated via its C-terminal proline-rich motif. Here we report that the N-terminal ankyrin repeats of TRPA1 directly bind to the C-terminal proline-rich motif of FGFR2 inducing the constitutive activation of the receptor, thereby prompting LUAD progression and metastasis. Furthermore, we show that upon metastasis to the brain, TRPA1 gets depleted, an effect triggered by the transfer of TRPA1-targeting exosomal microRNA (miRNA-142-3p) from brain astrocytes to cancer cells. This downregulation, in turn, inhibits TRPA1-mediated activation of FGFR2, hindering the metastatic process. Our study reveals a direct binding event and characterizes the role of TRPA1 ankyrin repeats in regulating FGFR2-driven oncogenic process; a mechanism that is hindered by miRNA-142-3p.TRPA1 has been reported to contribute lung cancer adenocarcinoma (LUAD), but the mechanisms are unclear. Here the authors propose that TRPA1/FGFR2 interaction is functional in LUAD and show that astrocytes oppose brain metastasis by mediating the downregulation of TRPA1 through exosome-delivered miRNA-142-3p.


Asunto(s)
MicroARNs/metabolismo , Oncogenes , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Canal Catiónico TRPA1/metabolismo , Animales , Repetición de Anquirina , Astrocitos/metabolismo , Neoplasias Encefálicas/secundario , Línea Celular Tumoral , Proliferación Celular , Exosomas/metabolismo , Células HEK293 , Humanos , MicroARNs/genética , Unión Proteica , Ratas , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/química
17.
Sci Rep ; 6: 28763, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27349477

RESUMEN

Thermosensitive Transient Receptor Potential (TRP) channels are believed to respond to either cold or heat. In the case of TRP subtype A1 (TRPA1), there seems to be a species-dependent divergence in temperature sensation as non-mammalian TRPA1 is heat-sensitive whereas mammalian TRPA1 is sensitive to cold. It has been speculated but never experimentally proven that TRPA1 and other temperature-sensitive ion channels have the inherent capability of responding to both cold and heat. Here we show that redox modification and ligands affect human TRPA1 (hTRPA1) cold and heat sensing properties in lipid bilayer and whole-cell patch-clamp recordings as well as heat-evoked TRPA1-dependent calcitonin gene-related peptide (CGRP) release from mouse trachea. Studies of purified hTRPA1 intrinsic tryptophan fluorescence, in the absence of lipid bilayer, consolidate hTRPA1 as an intrinsic bidirectional thermosensor that is modified by the redox state and ligands. Thus, the heat sensing property of TRPA1 is conserved in mammalians, in which TRPA1 may contribute to sensing warmth and uncomfortable heat in addition to noxious cold.


Asunto(s)
Canal Catiónico TRPA1/metabolismo , Sensación Térmica/fisiología , Animales , Péptido Relacionado con Gen de Calcitonina/química , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Células HEK293 , Humanos , Ratones Noqueados , Oxidación-Reducción , Canal Catiónico TRPA1/química , Canal Catiónico TRPA1/genética , Tráquea/química , Tráquea/metabolismo
18.
J Neurosci ; 22(11): 4720-7, 2002 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12040079

RESUMEN

Although Delta(9)-tetrahydrocannabinol (THC) produces analgesia, its effects on nociceptive primary afferents are unknown. These neurons participate not only in pain signaling but also in the local response to tissue injury. Here, we show that THC and cannabinol induce a CB(1)/CB(2) cannabinoid receptor-independent release of calcitonin gene-related peptide from capsaicin-sensitive perivascular sensory nerves. Other psychotropic cannabinoids cannot mimic this action. The vanilloid receptor antagonist ruthenium red abolishes the responses to THC and cannabinol. However, the effect of THC on sensory nerves is intact in vanilloid receptor subtype 1 gene knock-out mice. The THC response depends on extracellular calcium but does not involve known voltage-operated calcium channels, glutamate receptors, or protein kinases A and C. These results may indicate the presence of a novel cannabinoid receptor/ion channel in the pain pathway.


Asunto(s)
Vías Aferentes/efectos de los fármacos , Cannabinol/farmacología , Dronabinol/farmacología , Receptor Cannabinoide CB2 , Receptores de Droga/efectos de los fármacos , Vías Aferentes/fisiología , Animales , Bioensayo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Calcio/metabolismo , Cannabinoides/farmacología , Capsaicina/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Arteria Hepática/efectos de los fármacos , Arteria Hepática/inervación , Arteria Hepática/fisiología , Técnicas In Vitro , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/inervación , Arterias Mesentéricas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/fisiología , Dolor , Psicotrópicos/farmacología , Ratas , Ratas Wistar , Receptores de Cannabinoides , Receptores de Droga/antagonistas & inhibidores , Receptores de Droga/deficiencia , Receptores de Droga/metabolismo , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología
19.
Br J Pharmacol ; 146(2): 171-9, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15997233

RESUMEN

The endocannabinoid anandamide is an emerging potential signalling molecule in the cardiovascular system. Anandamide causes vasodilatation, bradycardia and hypotension in animals and has been implicated in the pathophysiology of endotoxic, haemorrhagic and cardiogenic shock, but its vascular effects have not been studied in man. Human forearm blood flow and skin microcirculatory flow were recorded using venous occlusion plethysmography and laser-Doppler perfusion imaging (LDPI), respectively. Each test drug was infused into the brachial artery or applied topically on the skin followed by a standardized pin-prick to disrupt the epidermal barrier. Anandamide failed to affect forearm blood flow when administered intra-arterially at infusion rates of 0.3-300 nmol min(-1). The highest infusion rate led to an anandamide concentration of approximately 1 microM in venous blood as measured by mass spectrometry. Dermal application of anandamide significantly increased skin microcirculatory flow and coapplication of the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine inhibited this effect. The TRPV1 agonists capsaicin, olvanil and arvanil all induced concentration-dependent increases in skin blood flow and burning pain when administered dermally. Coapplication of capsazepine inhibited blood flow and pain responses to all three TRPV1 agonists. This study shows that locally applied anandamide is a vasodilator in the human skin microcirculation. The results are consistent with this lipid being an activator of TRPV1 on primary sensory nerves, but do not support a role for anandamide as a circulating vasoactive hormone in the human forearm vascular bed.


Asunto(s)
Ácidos Araquidónicos/farmacología , Bencilaminas/farmacología , Antebrazo/irrigación sanguínea , Piel/irrigación sanguínea , Adulto , Ácidos Araquidónicos/farmacocinética , Capsaicina/análogos & derivados , Capsaicina/farmacología , Endocannabinoides , Femenino , Humanos , Flujometría por Láser-Doppler , Masculino , Microcirculación/efectos de los fármacos , Persona de Mediana Edad , Músculo Esquelético/irrigación sanguínea , Pletismografía , Alcamidas Poliinsaturadas , Flujo Sanguíneo Regional/efectos de los fármacos , Piel/efectos de los fármacos , Canales Catiónicos TRPV/agonistas
20.
Basic Clin Pharmacol Toxicol ; 114(2): 210-6, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24034343

RESUMEN

The transient receptor potential vanilloid 4 (TRPV4) is a calcium permeable ion channel expressed in airway epithelial cells. Based on studies of cell lines and animals, TRPV4 has been suggested to play a role in the regulation of ciliary beat frequency (CBF). Whether the same is true for human ciliated epithelial cells is not known. Therefore, the aim was to examine the expression and function of TRPV4 in human native nasal epithelial cells. Expression of TRPV4 mRNA in nasal epithelial cells and in the cell lines BEAS2B and 16HBE was confirmed by quantitative real-time PCR. A marked apical TRPV4 immunoreactivity was observed in nasal epithelial cells using immunocytochemistry. Responses to pharmacological modulation of TRPV4 were assessed with calcium imaging and CBF measurements. The TRPV4 agonist GSK1016790A produced concentration-dependent calcium responses in TRPV4-expressing HEK293, BEAS2B and 16HBE cells, and the TRPV4 antagonist HC067047 caused a rightward shift of the GSK1016790A concentration-response curves. Nasal epithelial cells responded to the TRPV4 agonist GSK1016790A with increased intracellular calcium signals and increased CBF, followed by cessation of ciliary beating and cell death. These effects were prevented or inhibited by the TRPV4 antagonist HC067047, the TRP channel blocker ruthenium red or removal of extracellular calcium. We conclude that TRPV4 is expressed in human primary nasal epithelial cells and modulates epithelial calcium levels and CBF. Thus, TRPV4 may participate in mucociliary clearance and airway protection. However, exaggerated activation of TRPV4 may result in epithelial cell death.


Asunto(s)
Cilios/fisiología , Células Epiteliales/metabolismo , Canales Catiónicos TRPV/genética , Calcio/metabolismo , Canales de Calcio/metabolismo , Línea Celular , Regulación de la Expresión Génica , Células HEK293 , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA