Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(23): e2217869120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37253016

RESUMEN

T cell lymphomas (TCLs) are a group of rare and heterogeneous tumors. Although proto-oncogene MYC has an important role in driving T cell lymphomagenesis, whether MYC carries out this function remains poorly understood. Here, we show that malic enzyme 2 (ME2), one of the NADPH-producing enzymes associated with glutamine metabolism, is essential for MYC-driven T cell lymphomagenesis. We establish a CD4-Cre; Myc flox/+transgenic mouse mode, and approximately 90% of these mice develop TCL. Interestingly, knockout of Me2 in Myc transgenic mice almost completely suppresses T cell lymphomagenesis. Mechanistically, by transcriptionally up-regulating ME2, MYC maintains redox homeostasis, thereby increasing its tumorigenicity. Reciprocally, ME2 promotes MYC translation by stimulating mTORC1 activity through adjusting glutamine metabolism. Treatment with rapamycin, an inhibitor of mTORC1, blocks the development of TCL both in vitro and in vivo. Therefore, our findings identify an important role for ME2 in MYC-driven T cell lymphomagenesis and reveal that MYC-ME2 circuit may be an effective target for TCL therapy.


Asunto(s)
Glutamina , Malato Deshidrogenasa , Linfocitos T , Animales , Ratones , Glutamina/metabolismo , Homeostasis , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Linfocitos T/metabolismo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo
2.
J Cell Mol Med ; 28(6): e18163, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38445776

RESUMEN

Malic enzyme (ME) genes are key functional metabolic enzymes playing a crucial role in carcinogenesis. However, the detailed effects of ME gene expression on breast cancer progression remain unclear. Here, our results revealed ME1 expression was significantly upregulated in breast cancer, especially in patients with oestrogen receptor/progesterone receptor-negative and human epidermal growth factor receptor 2-positive breast cancer. Furthermore, upregulation of ME1 was significantly associated with more advanced pathological stages (p < 0.001), pT stage (p < 0.001) and tumour grade (p < 0.001). Kaplan-Meier analysis revealed ME1 upregulation was associated with poor disease-specific survival (DSS: p = 0.002) and disease-free survival (DFS: p = 0.003). Multivariate Cox regression analysis revealed ME1 upregulation was significantly correlated with poor DSS (adjusted hazard ratio [AHR] = 1.65; 95% CI: 1.08-2.52; p = 0.021) and DFS (AHR, 1.57; 95% CI: 1.03-2.41; p = 0.038). Stratification analysis indicated ME1 upregulation was significantly associated with poor DSS (p = 0.039) and DFS (p = 0.038) in patients with non-triple-negative breast cancer (TNBC). However, ME1 expression did not affect the DSS of patients with TNBC. Biological function analysis revealed ME1 knockdown could significantly suppress the growth of breast cancer cells and influence its migration ability. Furthermore, the infiltration of immune cells was significantly reduced when they were co-cultured with breast cancer cells with ME1 knockdown. In summary, ME1 plays an oncogenic role in the growth of breast cancer; it may serve as a potential biomarker of progression and constitute a therapeutic target in patients with breast cancer.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Mama , Carcinogénesis , Técnicas de Cocultivo , Supervivencia sin Enfermedad
3.
J Exp Bot ; 75(6): 1754-1766, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-37668184

RESUMEN

Physaria fendleri is a member of the Brassicaceae that produces in its embryos hydroxy fatty acids, constituents of oils that are very valuable and widely used by industry for cosmetics, lubricants, biofuels, etc. Free of toxins and rich in hydroxy fatty acids, Physaria provides a promising alternative to imported castor oil and is on the verge of being commercialized. This study aims to identify important biochemical step(s) for oil synthesis in Physaria, which may serve as target(s) for future crop improvement. To advance towards this goal, the endosperm composition was analysed by LC-MS/MS to develop and validate culture conditions that mimic the development of the embryos in planta. Using developing Physaria embryos in culture and 13C-labeling, our studies revealed that: (i) Physaria embryos metabolize carbon into biomass with an efficiency significantly lower than other photosynthetic embryos; (ii) the plastidic malic enzyme provides 42% of the pyruvate used for de novo fatty acid synthesis, which is the highest measured so far in developing 'green' oilseed embryos; and (iii) Physaria uses non-conventional pathways to channel carbon into oil, namely the Rubisco shunt, which fixes CO2 released in the plastid, and the reversibility of isocitrate dehydrogenase, which provides additional carbon for fatty acid elongation.


Asunto(s)
Brassicaceae , Carbono , Carbono/metabolismo , Cromatografía Liquida , Isótopos de Carbono/metabolismo , Espectrometría de Masas en Tándem , Brassicaceae/metabolismo , Ácidos Grasos/metabolismo , Semillas
4.
Am J Respir Crit Care Med ; 207(8): 998-1011, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36724365

RESUMEN

Rationale: Chronic obstructive pulmonary disease (COPD) is a disease characterized by persistent airway inflammation and disordered macrophage function. The extent to which alterations in macrophage bioenergetics contribute to impaired antioxidant responses and disease pathogenesis has yet to be fully delineated. Objectives: Through the study of COPD alveolar macrophages (AMs) and peripheral monocyte-derived macrophages (MDMs), we sought to establish if intrinsic defects in core metabolic processes drive macrophage dysfunction and redox imbalance. Methods: AMs and MDMs from donors with COPD and healthy donors underwent functional, metabolic, and transcriptional profiling. Measurements and Main Results: We observed that AMs and MDMs from donors with COPD display a critical depletion in glycolytic- and mitochondrial respiration-derived energy reserves and an overreliance on glycolysis as a source for ATP, resulting in reduced energy status. Defects in oxidative metabolism extend to an impaired redox balance associated with defective expression of the NADPH-generating enzyme, ME1 (malic enzyme 1), a known target of the antioxidant transcription factor NRF2 (nuclear factor erythroid 2-related factor 2). Consequently, selective activation of NRF2 resets the COPD transcriptome, resulting in increased generation of TCA cycle intermediaries, improved energetic status, favorable redox balance, and recovery of macrophage function. Conclusions: In COPD, an inherent loss of metabolic plasticity leads to metabolic exhaustion and reduced redox capacity, which can be rescued by activation of the NRF2 pathway. Targeting these defects, via NRF2 augmentation, may therefore present an attractive therapeutic strategy for the treatment of the aberrant airway inflammation described in COPD.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Macrófagos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Malato Deshidrogenasa/metabolismo
5.
Physiol Mol Biol Plants ; 30(6): 985-1002, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974358

RESUMEN

Present study would be significant in the sustenance of quality characters for postharvest storage of Capsicum fruit with CO2-sensitization in biocompatible manner. The present experiment describes effects of CO2 sensitization on delaying postharvest ripening through physiological attributes in Capsicum fruit. The experiment was conducted with acidified bicarbonate-derived CO2 exposure for 2 h on Capsicum fruit, kept under white light at 25 °C through 7 days postharvest storage. Initially, fruits responded well to CO2 as recorded sustenance of greenness and integrity of fruit coat resolved through scanning electron micrograph. Loss of water and accumulation of total soluble solids were marginally increased on CO2-sensitized fruit as compared to non-sensitized (control) fruit. The ethylene metabolism biosynthetic genes like CaACC synthase, CaACC oxidase were downregulated on CO2-sensitization. Accompanying ethylene metabolism cellular respiration was downregulated on CO2 induction as compared to control through 7 days of storage. Fruit coat photosynthesis decarboxylating reaction by NADP malic enzyme was upregulated to maintain the reduced carbon accumulation as recorded on 7 days of storage under the same condition. CO2-sensitization effectively reduced the lipid peroxides as oxidative stress products on ripening throughout the storage. Anti-oxidation reaction essentially downregulates the ROS-induced damages of biomolecules that otherwise are highly required for food preservation during postharvest storage. Thus, the major finding is that CO2-sensitization maintains a higher ratio of unsaturated to saturated fatty acids in fruit coat during storage. Tissue-specific downregulation of ROS also maintained the nuclear stability under CO2 exposure. These findings provide basic as well as applied insights for sustaining Capsicum fruit quality with CO2 exposure under postharvest storage. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01471-4.

6.
Appl Environ Microbiol ; 89(5): e0203422, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37154709

RESUMEN

Potassium feldspar (K2O·Al2O3·6SiO2) is considered to be the most important source of potash fertilizer. The use of microorganisms to dissolve potassium feldspar is a low-cost and environmentally friendly method. Priestia aryabhattai SK1-7 is a strain with a strong ability to dissolve potassium feldspar; it showed a faster pH drop and produced more acid in the medium with potassium feldspar as the insoluble potassium source than in the medium with K2HPO4 as the soluble potassium source. We speculated whether the cause of acid production was related to one or more stresses, such as mineral-induced generation of reactive oxygen species (ROS), the presence of aluminum in potassium feldspar, and cell membrane damage due to friction between SK1-7 and potassium feldspar, and analyzed it by transcriptome. The results revealed that the expression of the genes related to pyruvate metabolism, the two-component system, DNA repair, and oxidative stress pathways in strain SK1-7 was significantly upregulated in potassium feldspar medium. The subsequent validation experiments revealed that ROS were the stress faced by strain SK1-7 when interacting with potassium feldspar and led to a decrease in the total fatty acid content of SK1-7. In the face of ROS stress, strain SK1-7 upregulated the expression of the maeA-1 gene, allowing malic enzyme (ME2) to produce more pyruvate to be secreted outside the cell using malate as a substrate. Pyruvate is both a scavenger of external ROS and a gas pedal of dissolved potassium feldspar. IMPORTANCE Mineral-microbe interactions play important roles in the biogeochemical cycling of elements. Manipulating mineral-microbe interactions and optimizing the consequences of such interactions can be used to benefit society. It is necessary to explore the black hole of the mechanism of interaction between the two. In this study, it is revealed that P. aryabhattai SK1-7 faces mineral-induced ROS stress by upregulating a series of antioxidant genes as a passive defense, while overexpression of malic enzyme (ME2) secretes pyruvate to scavenge ROS as well as to increase feldspar dissolution, releasing K, Al, and Si into the medium. Our research provides a theoretical basis for improving the ability of microorganisms to weather minerals through genetic manipulation in the future.


Asunto(s)
Minerales , Transcriptoma , Solubilidad , Especies Reactivas de Oxígeno , Minerales/metabolismo , Potasio/metabolismo , Piruvatos
7.
New Phytol ; 239(5): 1834-1851, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36829298

RESUMEN

Central metabolism produces amino and fatty acids for protein and lipids that establish seed value. Biosynthesis of storage reserves occurs in multiple organelles that exchange central intermediates including two essential metabolites, malate, and pyruvate that are linked by malic enzyme. Malic enzyme can be active in multiple subcellular compartments, partitioning carbon and reducing equivalents for anabolic and catabolic requirements. Prior studies based on isotopic labeling and steady-state metabolic flux analyses indicated malic enzyme provides carbon for fatty acid biosynthesis in plants, though genetic evidence confirming this role is lacking. We hypothesized that increasing malic enzyme flux would alter carbon partitioning and result in increased lipid levels in soybeans. Homozygous transgenic soybean plants expressing Arabidopsis malic enzyme alleles, targeting the translational products to plastid or outside the plastid during seed development, were verified by transcript and enzyme activity analyses, organelle proteomics, and transient expression assays. Protein, oil, central metabolites, cofactors, and acyl-acyl carrier protein (ACPs) levels were quantified overdevelopment. Amino and fatty acid levels were altered resulting in an increase in lipids by 0.5-2% of seed biomass (i.e. 2-9% change in oil). Subcellular targeting of a single gene product in central metabolism impacts carbon and reducing equivalent partitioning for seed storage reserves in soybeans.


Asunto(s)
Arabidopsis , Carbono , Carbono/metabolismo , Glycine max/metabolismo , Semillas/metabolismo , Ácidos Grasos/metabolismo , Arabidopsis/genética
8.
Photosynth Res ; 158(1): 57-76, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37561272

RESUMEN

The C4 plants photosynthesize better than C3 plants especially in arid environment. As an attempt to genetically convert C3 plant to C4, the cDNA of decarboxylating C4 type NADP-malic enzyme from Zea mays (ZmNADP-ME) that has lower Km for malate and NADP than its C3 isoforms, was overexpressed in Arabidopsis thaliana under the control of 35S promoter. Due to increased activity of NADP-ME in the transgenics the malate decarboxylation increased that resulted in loss of carbon skeletons needed for amino acid and protein synthesis. Consequently, amino acid and protein content of the transgenics declined. Therefore, the Chl content, photosynthetic efficiency (Fv/Fm), electron transport rate (ETR), the quantum yield of photosynthetic CO2 assimilation, rosette diameter, and biomass were lower in the transgenics. However, in salt stress (150 mM NaCl), the overexpressers had higher Chl, protein content, Fv/Fm, ETR, and biomass than the vector control. NADPH generated in the transgenics due to increased malate decarboxylation, contributed to augmented synthesis of proline, the osmoprotectant required to alleviate the reactive oxygen species-mediated membrane damage and oxidative stress. Consequently, the glutathione peroxidase activity increased and H2O2 content decreased in the salt-stressed transgenics. The reduced membrane lipid peroxidation and lower malondialdehyde production resulted in better preservation, of thylakoid integrity and membrane architecture in the transgenics under saline environment. Our results clearly demonstrate that overexpression of C4 chloroplastic ZmNADP-ME in the C3 Arabidopsis thaliana, although decrease their photosynthetic efficiency, protects the transgenics from salinity stress.


Asunto(s)
Arabidopsis , Zea mays , Arabidopsis/genética , Arabidopsis/metabolismo , Malatos/metabolismo , Peróxido de Hidrógeno/metabolismo , NADP/metabolismo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Fotosíntesis , Estrés Salino , Aminoácidos/metabolismo
9.
J Pineal Res ; 74(4): e12865, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36864655

RESUMEN

Tooth development is a complex process that is tightly controlled by circadian rhythm. Melatonin (MT) is a major hormonal regulator of the circadian rhythm, and influences dentin formation and odontoblastic differentiation during tooth development; however, the underlying mechanism remains elusive. This study investigated how MT regulates odontoblastic differentiation, with a special focus on its regulation of mitochondrial dynamics. In rat dental papilla cells (DPCs), we found that MT promotes odontoblastic differentiation concurrently with enhanced mitochondrial fusion, while disruption of mitochondrial fusion by depleting optic atrophy 1 (OPA1) impairs MT-mediated differentiation and mitochondrial respiratory functions. Through RNA sequencing, we discovered that MT significantly upregulated malic enzyme 2 (ME2), a mitochondrial NAD(P)+ -dependent enzyme, and identified ME2 as a critical MT downstream effector that orchestrates odontoblastic differentiation, mitochondrial fusion, and respiration functions. By detecting the spatiotemporal expression of ME2 in developing tooth germs, and using tooth germ reconstituted organoids, we also provided in vivo and ex vivo evidence that ME2 promotes dentin formation, indicating a possible involvement of ME2 in MT-modulated tooth development. Collectively, our findings offer novel understandings regarding the molecular mechanism by which MT affects cell differentiation and organogenesis, meanwhile, the critical role of ME2 in MT-regulated mitochondrial functions is also highlighted.


Asunto(s)
Melatonina , Animales , Ratas , Diferenciación Celular , Pulpa Dental , Melatonina/metabolismo , Dinámicas Mitocondriales , Odontoblastos/metabolismo , Respiración , Malato Deshidrogenasa/metabolismo
10.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047583

RESUMEN

Malic Enzyme 1 (ME1) supports lipogenesis, cholesterol synthesis, and cellular redox potential by catalyzing the decarboxylation of L-malate to pyruvate, and the concomitant reduction of NADP to NADPH. We examined the contribution of ME1 to the development of obesity by provision of an obesogenic diet to C57BL/6 wild type (WT) and MOD-1 (lack ME1 protein) female mice. Adiposity, serum hormone levels, and adipose, mammary gland, liver, and small intestine gene expression patterns were compared between experimental groups after 10 weeks on a diet. Relative to WT female mice, MOD-1 female mice exhibited lower body weights and less adiposity; decreased concentrations of insulin, leptin, and estrogen; higher concentrations of adiponectin and progesterone; smaller-sized mammary gland adipocytes; and reduced hepatosteatosis. MOD-1 mice had diminished expression of Lep gene in abdominal fat; Lep, Pparg, Klf9, and Acaca genes in mammary glands; Pparg and Cdkn1a genes in liver; and Tlr9 and Ffar3 genes in the small intestine. By contrast, liver expression of Cdkn2a and Lepr genes was augmented in MOD-1, relative to WT mice. Results document an integrative role for ME1 in development of female obesity, suggest novel linkages with specific pathways/genes, and further support the therapeutic targeting of ME1 for obesity, diabetes, and fatty liver disease.


Asunto(s)
Leptina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Femenino , Animales , Leptina/metabolismo , Insulina/metabolismo , Adiposidad/genética , Ratones Obesos , PPAR gamma/metabolismo , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/metabolismo , Hígado/metabolismo , Insulina Regular Humana , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Dieta Alta en Grasa
11.
Prep Biochem Biotechnol ; 53(7): 807-815, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36384444

RESUMEN

Docosahexaenoic acid (DHA) is an essential dietary supplement that is highly coveted due to its benefits for human health. Extensive research has been conducted for the sustainable commercial production of DHA by various strains in thraustochytrid family due to the accumulation of higher lipid content in the cells. The current study is focused on improving DHA production by investigating various key enzymes like glucose-6-phosphate dehydrogenase (G6PDH), malic enzyme (ME), and ATP-citrate lyase (ACL) involved in DHA production using Thraustochytrium sp. T01. The growth of this strain was compared in batch and fed-batch mode. The fed-batch yielded better Dry cell weight (40 g L-1), lipid (27.75 g L-1 or 693 mg g-1 of DCW), and DHA contents (11.10 g L-1 or 277 mg g-1 of DCW). G6PDH activity increased 4-fold during the glucose fed-batch, but ME and ACL did not increase significantly. Furthermore, a study was conducted to determine the effects of organic acids (pyruvate and malate) on key enzyme activities. The addition of pyruvate increased the lipid content by 1.35-fold, and ACL activity by 10-fold as compared with control (without added organic acids). Malate addition into the culture media increased DHA content 1.4-fold, and ME activity increased 14-fold compared with control.


Asunto(s)
Ácidos Docosahexaenoicos , Estramenopilos , Humanos , Malatos , Piruvatos
12.
Plant J ; 106(2): 454-467, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33523525

RESUMEN

Plant metabolism is modulated by a complex interplay between internal signals and external cues. A major goal of all quantitative metabolomic studies is to clone the underlying genes to understand the mechanistic basis of this variation. Using fine-scale genetic mapping, in this work we report the identification and initial characterization of NAD-DEPENDENT MALIC ENZYME 1 (NAD-ME1) as the candidate gene underlying the pleiotropic network Met.II.15 quantitative trait locus controlling variation in plant metabolism and circadian clock outputs in the Bay × Sha Arabidopsis population. Transcript abundance and promoter analysis in NAD-ME1Bay-0 and NAD-ME1Sha alleles confirmed allele-specific expression that appears to be due a polymorphism disrupting a putative circadian cis-element binding site. Analysis of transfer DNA insertion lines and heterogeneous inbred families showed that transcript variation of the NAD-ME1 gene led to temporal shifts of tricarboxylic acid cycle intermediates, glucosinolate (GSL) accumulation, and altered regulation of several GSL biosynthesis pathway genes. Untargeted metabolomic analyses revealed complex regulatory networks of NAD-ME1 dependent upon the daytime. The mutant led to shifts in plant primary metabolites, cell wall components, isoprenoids, fatty acids, and plant immunity phytochemicals, among others. Our findings suggest that NAD-ME1 may act as a key gene to coordinate plant primary and secondary metabolism in a time-dependent manner.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Genes de Plantas/genética , Alelos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes/genética , Redes y Vías Metabólicas , Sitios de Carácter Cuantitativo/genética
13.
Antimicrob Agents Chemother ; 66(1): e0153521, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34606338

RESUMEN

Phenotypic screening identified an arylsulfonamide compound with activity against Trypanosoma cruzi, the causative agent of Chagas' disease. Comprehensive mode of action studies revealed that this compound primarily targets the T. cruzi proteasome, binding at the interface between ß4 and ß5 subunits that catalyze chymotrypsin-like activity. A mutation in the ß5 subunit of the proteasome was associated with resistance to compound 1, while overexpression of this mutated subunit also reduced susceptibility to compound 1. Further genetically engineered and in vitro-selected clones resistant to proteasome inhibitors known to bind at the ß4/ß5 interface were cross-resistant to compound 1. Ubiquitinated proteins were additionally found to accumulate in compound 1-treated epimastigotes. Finally, thermal proteome profiling identified malic enzyme as a secondary target of compound 1, although malic enzyme inhibition was not found to drive potency. These studies identify a novel pharmacophore capable of inhibiting the T. cruzi proteasome that may be exploitable for anti-chagasic drug discovery.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Enfermedad de Chagas/tratamiento farmacológico , Descubrimiento de Drogas , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Trypanosoma cruzi/química
14.
Cell Biol Int ; 46(11): 1852-1863, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35971749

RESUMEN

CircSERPINA3 has been shown to be upregulated in laryngeal squamous cell carcinoma (LSCC); however, whether it regulates the development of LSCC and the specific molecular mechanism remains unclear, which is to be explored in this study. Expressions of circSERPINA3, miR-885-5p, and Malic enzyme 1 (ME1) in LSCC tissues or cell lines were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The regulation of circSERPINA3 on the biological behavior of LSCC cells was confirmed by loss and gain experiments (cell counting kit-8, transwell, and colony formation assay). The correlation between circSERPINA3/ME1 and miR-885-5p was predicted and confirmed by bioinformatics analysis, dual-luciferase reporter assay, and qRT-PCR. The effect of circSERPINA3/miR-885-5p axis on the biological behavior of LSCC cells and expressions of epithelial-mesenchymal transition-related proteins was confirmed by rescue experiments. CircSERPINA3 and ME1 was upregulated in LSCC tissues, whereas miR-885-5p was downregulated. MiR-885-5p was the target gene of circSERPINA3, whereas ME1 was the target gene of miR-885-5p. Silent circSERPINA3 suppressed viability, invasion, migration, colony formation, and expression of ME1, claudin-4, snail, and vimentin but elevated expression of miR-885-5p and E-cadherin, whereas overexpressed circSERPINA3 was the opposite. However, miR-885-5p inhibitor or mimic reversed the effects of silent circSERPINA3 or overexpressed circSERPINA3. Collectively, circSERPINA3 promotes proliferation, migration, and invasion of LSCC cells by targeting miR-885-5p.


Asunto(s)
Neoplasias de Cabeza y Cuello , MicroARNs , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Claudina-4/genética , Claudina-4/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Vimentina/metabolismo
15.
J Ind Microbiol Biotechnol ; 49(4)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35665816

RESUMEN

Glucoamylase has a wide range of applications in the production of glucose, antibiotics, amino acids, and other fermentation industries. Fungal glucoamylase, in particular, has attracted much attention because of its wide application in different industries, among which Aspergillus niger is the most popular strain producing glucoamylase. The low availability of NADPH was found to be one of the limiting factors for the overproduction of glucoamylase. In this study, 3 NADH kinases (AN03, AN14, and AN17) and malic enzyme (maeA) were overexpressed in aconidial A. niger by CRISPR/Cas9 technology, significantly increasing the size of the NADPH pool, resulting in the activity of glucoamylase was improved by about 70%, 50%, 90%, and 70%, respectively; the total secreted protein was increased by about 25%, 22%, 52%, and 26%, respectively. Furthermore, the combination of the mitochondrial NADH kinase (AN17) and the malic enzyme (maeA) increased glucoamylase activity by a further 19%. This study provided an effective strategy for enhancing glucoamylase production of A. niger.


Asunto(s)
Aspergillus niger , Glucano 1,4-alfa-Glucosidasa , Fermentación , Glucano 1,4-alfa-Glucosidasa/genética , NAD/metabolismo , NADP/metabolismo
16.
J Fish Biol ; 101(5): 1371-1374, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35912429

RESUMEN

A non-synonymous single nucleotide polymorphism (SNP) underlies a diallelic allozyme polymorphism at the mitochondrial NADP-dependent mMEP-2* locus in Atlantic salmon (Salmo salar L.). The resultant amino acid substitution, which alters the charge of the allelic products, matches the differential mobility of the two allozyme alleles, whereas allozyme and SNP assays revealed genotyping concordance in 257 of 258 individuals. A single mismatch, homozygous allozyme vs. heterozygote SNP, suggests the presence of a second, less common null allele.


Asunto(s)
Salmo salar , Animales , Salmo salar/genética , Isoenzimas , Alelos , Polimorfismo de Nucleótido Simple , ADN
17.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35806004

RESUMEN

Soluble solids content (SSC) is an important quality trait of wax gourd, but reports about its regulatory genes are scarce. In this study, the SSC regulatory gene BhSSC2.1 in wax gourd was mined via quantitative trait locus (QTL) mapping based on high-density genetic mapping containing 12 linkage groups (LG) and bulked segregant analysis (BSA)-seq. QTL mapping and BSA-seq revealed for the first time that the SSC QTL (107.658-108.176 cM) of wax gourd was on Chr2 (LG2). The interpretable phenotypic variation rate and maximum LOD were 16.033% and 6.454, respectively. The QTL interval contained 13 genes. Real-time fluorescence quantitative expression analysis, functional annotation, and sequence analysis suggested that Bch02G016960, named BhSSC2.1, was a candidate regulatory gene of the SSC in wax gourd. Functional annotation of this gene showed that it codes for a NADP-dependent malic enzyme. According to BhSSC2.1 sequence variation, an InDel marker was developed for molecular marker-assisted breeding of wax gourd. This study will lay the foundation for future studies regarding breeding and understanding genetic mechanisms of wax gourd.


Asunto(s)
Cucurbitaceae , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Cucurbitaceae/genética , Genes Reguladores , Ligamiento Genético , Fitomejoramiento
18.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269722

RESUMEN

Hypoxia is damaging to the fetus, but the developmental impact may vary, with underlying molecular mechanisms unclear. We demonstrate the dependence of physiological and biochemical effects of acute prenatal hypoxia (APH) on sex and gestational age. Compared to control rats, APH on the 10th day of pregnancy (APH-10) increases locomotion in both the male and female offspring, additionally increasing exploratory activity and decreasing anxiety in the males. Compared to APH-10, APH on the 20th day of pregnancy (APH-20) induces less behavioral perturbations. ECG is changed similarly in all offspring only by APH-10. Sexual dimorphism in the APH outcome on behavior is also observed in the brain acetylation system and 2-oxoglutarate dehydrogenase reaction, essential for neurotransmitter metabolism. In view of the perturbed behavior, more biochemical parameters in the brains are assessed after APH-20. Of the six enzymes, APH-20 significantly decreases the malic enzyme activity in both sexes. Among 24 amino acids and dipeptides, APH-20 increases the levels of only three amino acids (Phe, Thr, and Trp) in male offspring, and of seven amino acids (Glu, Gly, Phe, Trp, Ser, Thr, Asn) and carnosine in the female offspring. Thus, a higher reactivity of the brain metabolism to APH stabilizes the behavior. The behavior and brain biochemistry demonstrate sexually dimorphic responses to APH at both gestational stages, whereas the APH effects on ECG depend on gestational age rather than sex.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Aminoácidos/metabolismo , Animales , Encéfalo/metabolismo , Femenino , Edad Gestacional , Hipoxia/metabolismo , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas
19.
Plant Mol Biol ; 107(1-2): 37-48, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34333694

RESUMEN

KEY MESSAGE: NADP-ME2 from Arabidopsis thaliana exhibits a distinctive and complex regulation by fumarate, acting as an activator or an inhibitor according to substrate and effector concentrations. In this work, we used molecular modeling approach and site-directed mutagenesis to characterized the NADP-ME2 structural determinants necessary for allosteric regulation providing new insights for enzyme optimization. Structure-function studies contribute to deciphering how small modifications in the primary structure could introduce desirable characteristics into enzymes without affecting its overall functioning. Malic enzymes (ME) are ubiquitous and responsible for a wide variety of functions. The availability of a high number of ME crystal structures from different species facilitates comparisons between sequence and structure. Specifically, the structural determinants necessary for fumarate allosteric regulation of ME has been of particular interest. NADP-ME2 from Arabidopsis thaliana exhibits a distinctive and complex regulation by fumarate, acting as an activator or an inhibitor according to substrate and effector concentrations. However, the 3D structure for this enzyme is not yet reported. In this work, we characterized the NADP-ME2 allosteric site by structural modeling, molecular docking, normal mode analysis and mutagenesis. The regulatory site model and its docking analysis suggested that other C4 acids including malate, NADP-ME2 substrate, could also fit into fumarate's pocket. Besides, a non-conserved cluster of hydrophobic residues in the second sphere of the allosteric site was identified. The substitution of one of those residues, L62, by a less flexible residue as tryptophan, resulted in a complete loss of fumarate activation and a reduction of substrate affinities for the active site. In addition, normal mode analysis indicated that conformational changes leading to the activation could originate in the region surrounding L62, extending through the allosteric site till the active site. Finally, the results in this work contribute to the understanding of structural determinants necessary for allosteric regulation providing new insights for enzyme optimization.


Asunto(s)
Aminoácidos/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Malato-Deshidrogenasa (NADP+)/química , Malato-Deshidrogenasa (NADP+)/metabolismo , Transducción de Señal , Sitio Alostérico , Fluorescencia , Cinética , Simulación del Acoplamiento Molecular , Proteínas Mutantes/metabolismo , Mutación/genética
20.
New Phytol ; 229(6): 3116-3124, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33159327

RESUMEN

Opening of stomata in plants with crassulacean acid metabolism (CAM) is mainly shifted to the night period when atmospheric CO2 is fixed by phosphoenolpyruvate carboxylase and stored as malic acid in the vacuole. As such, CAM plants ameliorate transpirational water losses and display substantially higher water-use efficiency compared with C3 and C4 plants. In the past decade significant technical advances have allowed an unprecedented exploration of genomes, transcriptomes, proteomes and metabolomes of CAM plants and efforts are ongoing to engineer the CAM pathway in C3 plants. Whilst research efforts have traditionally focused on nocturnal carboxylation, less information is known regarding the drivers behind diurnal malate remobilisation from the vacuole that liberates CO2 to be fixed by RuBisCo behind closed stomata. To shed more light on this process, we provide a stoichiometric analysis to identify potentially rate-limiting steps underpinning diurnal malate mobilisation and help direct future research efforts. Within this remit we address three key questions: Q1 Does light-dependent assimilation of CO2 via RuBisCo dictate the rate of malate mobilisation? Q2: Do the enzymes responsible for malate decarboxylation limit daytime mobilisation from the vacuole? Q3: Does malate efflux from the vacuole set the pace of decarboxylation?


Asunto(s)
Metabolismo Ácido de las Crasuláceas , Malatos , Dióxido de Carbono , Vacuolas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA