Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Cell ; 178(4): 887-900.e14, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398342

RESUMEN

Variable, glutamine-encoding, CAA interruptions indicate that a property of the uninterrupted HTT CAG repeat sequence, distinct from the length of huntingtin's polyglutamine segment, dictates the rate at which Huntington's disease (HD) develops. The timing of onset shows no significant association with HTT cis-eQTLs but is influenced, sometimes in a sex-specific manner, by polymorphic variation at multiple DNA maintenance genes, suggesting that the special onset-determining property of the uninterrupted CAG repeat is a propensity for length instability that leads to its somatic expansion. Additional naturally occurring genetic modifier loci, defined by GWAS, may influence HD pathogenesis through other mechanisms. These findings have profound implications for the pathogenesis of HD and other repeat diseases and question the fundamental premise that polyglutamine length determines the rate of pathogenesis in the "polyglutamine disorders."


Asunto(s)
Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Péptidos/genética , Expansión de Repetición de Trinucleótido/genética , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Alelos , Secuencia de Bases/genética , Femenino , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Haplotipos/genética , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Adulto Joven
2.
J Biol Chem ; 300(5): 107246, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556081

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular degenerative disease caused by a polyglutamine expansion in the androgen receptor (AR). This mutation causes AR to misfold and aggregate, contributing to toxicity in and degeneration of motor neurons and skeletal muscle. There is currently no effective treatment or cure for this disease. The role of an interdomain interaction between the amino- and carboxyl-termini of AR, termed the N/C interaction, has been previously identified as a component of androgen receptor-induced toxicity in cell and mouse models of SBMA. However, the mechanism by which this interaction contributes to disease pathology is unclear. This work seeks to investigate this mechanism by interrogating the role of AR homodimerization- a unique form of the N/C-interaction- in SBMA. We show that, although the AR N/C-interaction is reduced by polyglutamine-expansion, homodimers of 5α-dihydrotestosterone (DHT)-bound AR are increased. Additionally, blocking homodimerization results in decreased AR aggregation and toxicity in cell models. Blocking homodimerization results in the increased degradation of AR, which likely plays a role in the protective effects of this mutation. Overall, this work identifies a novel mechanism in SBMA pathology that may represent a novel target for the development of therapeutics for this disease.


Asunto(s)
Dihidrotestosterona , Péptidos , Multimerización de Proteína , Receptores Androgénicos , Animales , Humanos , Ratones , Atrofia Bulboespinal Ligada al X/metabolismo , Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/patología , Dihidrotestosterona/farmacología , Dihidrotestosterona/metabolismo , Péptidos/metabolismo , Péptidos/genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Ratas , Línea Celular
3.
Am J Hum Genet ; 109(5): 885-899, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35325614

RESUMEN

Genome-wide association studies (GWASs) of Huntington disease (HD) have identified six DNA maintenance gene loci (among others) as modifiers and implicated a two step-mechanism of pathogenesis: somatic instability of the causative HTT CAG repeat with subsequent triggering of neuronal damage. The largest studies have been limited to HD individuals with a rater-estimated age at motor onset. To capitalize on the wealth of phenotypic data in several large HD natural history studies, we have performed algorithmic prediction by using common motor and cognitive measures to predict age at other disease landmarks as additional phenotypes for GWASs. Combined with imputation with the Trans-Omics for Precision Medicine reference panel, predictions using integrated measures provided objective landmark phenotypes with greater power to detect most modifier loci. Importantly, substantial differences in the relative modifier signal across loci, highlighted by comparing common modifiers at MSH3 and FAN1, revealed that individual modifier effects can act preferentially in the motor or cognitive domains. Individual components of the DNA maintenance modifier mechanisms may therefore act differentially on the neuronal circuits underlying the corresponding clinical measures. In addition, we identified additional modifier effects at the PMS1 and PMS2 loci and implicated a potential second locus on chromosome 7. These findings indicate that broadened discovery and characterization of HD genetic modifiers based on additional quantitative or qualitative phenotypes offers not only the promise of in-human validated therapeutic targets but also a route to dissecting the mechanisms and cell types involved in both the somatic instability and toxicity components of HD pathogenesis.


Asunto(s)
Enfermedad de Huntington , Cognición , ADN , Estudio de Asociación del Genoma Completo , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Expansión de Repetición de Trinucleótido
4.
Biochem J ; 480(19): 1583-1598, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37747814

RESUMEN

Inclusion body formation is associated with cytotoxicity in a number of neurodegenerative diseases. However, the molecular basis of the toxicity caused by the accumulation of aggregation-prone proteins remains controversial. In this study, we found that disease-associated inclusions induced by elongated polyglutamine chains disrupt the complex formation of BAG6 with UBL4A, a mammalian homologue of yeast Get5. UBL4A also dissociated from BAG6 in response to proteotoxic stresses such as proteasomal inhibition and mitochondrial depolarization. These findings imply that the cytotoxicity of pathological protein aggregates might be attributed in part to disruption of the BAG6-UBL4A complex that is required for the biogenesis of tail-anchored proteins.


Asunto(s)
Cuerpos de Inclusión , Chaperonas Moleculares , Estrés Proteotóxico , Ubiquitinas , Animales , Chaperonas Moleculares/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Cuerpos de Inclusión/metabolismo
5.
Neuropathology ; 44(1): 31-40, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37340992

RESUMEN

Neuronal intranuclear inclusions (NIIs) are common key structures in polyglutamine (polyQ) diseases such as Huntington disease (HD), spinocerebellar ataxia type 1 (SCA1), and SCA3. Marinesco bodies (MBs) of dopaminergic neurons in the substantia nigra are also intranuclear structures and are frequently seen in normal elderly people. Ribosomal dysfunction is closely related to two differential processes; therefore, we aimed to identify the pathological characteristics of ribosomal protein SA (RPSA), a ribosomal protein, in both states. To this end, we evaluated the autopsy findings in four patients with HD, two SCA3, and five normal elderly cases (NCs). Immunohistochemical studies demonstrated that both NIIs and MBs contain RPSA. In polyQ diseases, RPSA was co-localized with polyQ aggregations, and 3D-reconstructed images revealed their mosaic-like distribution. Assessments of the organization of RPSA and p62 in NIIs showed that RPSA was more localized toward the center than p62 and that this unique organization was more evident in the MBs. Immunoblotting of the temporal cortices revealed that the nuclear fraction of HD patients contained more RPSA than that of NCs. In conclusion, our study revealed that RPSA is a common component of both NIIs and MBs, indicating that a similar mechanism contributes to the formation of polyQ NIIs and MBs.


Asunto(s)
Encéfalo , Cuerpos de Inclusión Intranucleares , Anciano , Humanos , Encéfalo/patología , Cuerpos de Inclusión Intranucleares/metabolismo , Péptidos/metabolismo , Proteínas Ribosómicas/metabolismo
6.
Cerebellum ; 22(1): 37-45, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35034258

RESUMEN

Untranslated regions are involved in the regulation of transcriptional and post-transcriptional processes. Characterization of these regions remains poorly explored for ATXN3, the causative gene of Machado-Joseph disease (MJD). Although a few genetic modifiers have been identified for MJD age at onset (AO), they only explain a small fraction of the AO variance. Our aim was to analyse variation at the 3'UTR of ATXN3 in MJD patients, analyse its impact on AO and attempt to build haplotypes that might discriminate between normal and expanded alleles.After assessing ATXN3 3'UTR variants in molecularly confirmed MJD patients, an in silico analysis was conducted to predict their functional impact (e.g. their effect on miRNA-binding sites). Alleles in cis with the expanded (CAG)n were inferred from family data, and haplotypes were built. The effect of the alternative alleles on the AO and on SARA and NESSCA ataxia scales was tested.Nine variants, all previously described, were found. For eight variants, in silico analyses predicted (a) deleterious effects (rs10151135; rs55966267); (b) changes on miRNA-binding sites (rs11628764; rs55966267; rs709930) and (c) alterations of RNA-binding protein (RBP)-binding sites (rs1055996; rs910369; rs709930; rs10151135; rs3092822; rs7158733). Patients harbouring the alternative allele at rs10151135 had significantly higher SARA Axial subscores (p = 0.023), comparatively with those homozygous for the reference allele. Ten different haplotypes were obtained, one of which was exclusively found in cis with the expanded and four with the normal allele. These findings, which are relevant for the design of allele-specific therapies, warrant further investigation in independent MJD cohorts.


Asunto(s)
Enfermedad de Machado-Joseph , MicroARNs , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Ataxina-3/genética , Regiones no Traducidas 3'/genética , MicroARNs/genética , Variación Genética , Proteínas Represoras/genética
7.
Neurobiol Dis ; 162: 105578, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34871736

RESUMEN

Machado-Joseph disease (MJD/SCA3) is a neurodegenerative polyglutamine disorder exhibiting a wide spectrum of phenotypes. The abnormal size of the (CAG)n at ATXN3 explains ~55% of the age at onset variance, suggesting the involvement of other factors, namely genetic modifiers, whose identification remains limited. Our aim was to find novel genetic modifiers, analyse their epistatic effects and identify disease-modifying pathways contributing to MJD variable expressivity. We performed whole-exome sequencing in a discovery sample of four age at onset concordant and four discordant first-degree relative pairs of Azorean patients, to identify candidate variants which genotypes differed for each discordant pair but were shared in each concordant pair. Variants identified by this approach were then tested in an independent multi-origin cohort of 282 MJD patients. Whole-exome sequencing identified 233 candidate variants, from which 82 variants in 53 genes were prioritized for downstream analysis. Eighteen disease-modifying pathways were identified; two of the most enriched pathways were relevant for the nervous system, namely the neuregulin signaling and the agrin interactions at neuromuscular junction. Variants at PARD3, NFKB1, CHD5, ACTG1, CFAP57, DLGAP2, ITGB1, DIDO1 and CERS4 modulate age at onset in MJD, with those identified in CFAP57, ACTG1 and DIDO1 showing consistent effects across cohorts of different geographical origins. Network analyses of the nine novel MJD modifiers highlighted several important molecular interactions, including genes/proteins previously related with MJD pathogenesis, namely between ACTG1/APOE and VCP/ITGB1. We describe novel pathways, modifiers, and their interaction partners, providing a broad molecular portrait of age at onset modulation to be further exploited as new disease-modifying targets for MJD and related diseases.


Asunto(s)
Enfermedad de Machado-Joseph , Edad de Inicio , Alelos , ADN Helicasas/genética , Genotipo , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Proteínas del Tejido Nervioso/genética , Secuenciación del Exoma
8.
Neurobiol Dis ; 172: 105832, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35907632

RESUMEN

Synaptojanin 2 binding protein (SYNJ2BP) is an outer mitochondrial membrane protein with a cytosolic PDZ domain that functions as a cellular signaling hub. Few studies have evaluated its role in disease. Here we use induced pluripotent stem cell (iPSC)-derived motor neurons and post-mortem tissue from patients with two hereditary motor neuron diseases, spinal and bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis type 4 (ALS4), and show that SYNJ2BP expression is increased in diseased motor neurons. Similarly, we show that SYNJ2BP expression increases in iPSC-derived motor neurons undergoing stress. Using proteomic analysis, we found that elevated SYNJ2BP alters the cellular distribution of mitochondria and increases mitochondrial-ER membrane contact sites. Furthermore, decreasing SYNJ2BP levels improves mitochondrial oxidative function in the diseased motor neurons. Together, our observations offer new insight into the molecular pathology of motor neuron disease and the role of SYNJ2BP in mitochondrial dysfunction.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedad de la Neurona Motora , Atrofia Muscular Espinal , Esclerosis Amiotrófica Lateral/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Enfermedad de la Neurona Motora/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/patología , Proteómica
9.
Mol Cell Neurosci ; 110: 103584, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33338633

RESUMEN

Polyglutamine (polyQ) diseases, such as Spinocerebellar ataxia type 7 (SCA7), are caused by expansions of polyQ repeats in disease specific proteins. The sequestration of vital proteins into aggregates formed by polyQ proteins is believed to be a common pathological mechanism in these disorders. The RNA-binding protein FUS has been observed in polyQ aggregates, though if disruption of this protein plays a role in the neuronal dysfunction in SCA7 or other polyQ diseases remains unclear. We therefore analysed FUS localisation and function in a stable inducible PC12 cell model expressing the SCA7 polyQ protein ATXN7. We found that there was a high degree of FUS sequestration, which was associated with a more cytoplasmic FUS localisation, as well as a decreased expression of FUS regulated mRNAs. In contrast, the role of FUS in the formation of γH2AX positive DNA damage foci was unaffected. In fact, a statistical increase in the number of γH2AX foci, as well as an increased trend of single and double strand DNA breaks, detected by comet assay, could be observed in mutant ATXN7 cells. These results were further corroborated by a clear trend towards increased DNA damage in SCA7 patient fibroblasts. Our findings suggest that both alterations in the RNA regulatory functions of FUS, and increased DNA damage, may contribute to the pathology of SCA7.


Asunto(s)
Ataxina-7/genética , Daño del ADN , Proteína FUS de Unión a ARN/metabolismo , Ataxias Espinocerebelosas/metabolismo , Animales , Ataxina-7/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Histonas/metabolismo , Humanos , Células PC12 , Péptidos/química , Péptidos/genética , Transporte de Proteínas , Ratas , Ataxias Espinocerebelosas/genética
10.
J Biol Chem ; 295(47): 15810-15825, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32989052

RESUMEN

The RNA-binding protein Ataxin-2 binds to and stabilizes a number of mRNA sequences, including that of the transactive response DNA-binding protein of 43 kDa (TDP-43). Ataxin-2 is additionally involved in several processes requiring translation, such as germline formation, long-term habituation, and circadian rhythm formation. However, it has yet to be unambiguously demonstrated that Ataxin-2 is actually involved in activating the translation of its target mRNAs. Here we provide direct evidence from a polysome profile analysis showing that Ataxin-2 enhances translation of target mRNAs. Our recently established method for transcriptional pulse-chase analysis under conditions of suppressing deadenylation revealed that Ataxin-2 promotes post-transcriptional polyadenylation of the target mRNAs. Furthermore, Ataxin-2 binds to a poly(A)-binding protein PABPC1 and a noncanonical poly(A) polymerase PAPD4 via its intrinsically disordered region (amino acids 906-1095) to recruit PAPD4 to the targets. Post-transcriptional polyadenylation by Ataxin-2 explains not only how it activates translation but also how it stabilizes target mRNAs, including TDP-43 mRNA. Ataxin-2 is known to be a potent modifier of TDP-43 proteinopathies and to play a causative role in the neurodegenerative disease spinocerebellar ataxia type 2, so these findings suggest that Ataxin-2-induced cytoplasmic polyadenylation and activation of translation might impact neurodegeneration (i.e. TDP-43 proteinopathies), and this process could be a therapeutic target for Ataxin-2-related neurodegenerative disorders.


Asunto(s)
Ataxina-2/metabolismo , Citoplasma/metabolismo , Poliadenilación , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Mensajero/metabolismo , Ataxina-2/genética , Citoplasma/genética , Células HEK293 , Células HeLa , Humanos , Proteína I de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/metabolismo , Polinucleotido Adenililtransferasa/genética , Polinucleotido Adenililtransferasa/metabolismo , Unión Proteica , ARN Mensajero/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
11.
Biochem Biophys Res Commun ; 553: 9-16, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33756349

RESUMEN

The RNA-binding protein Ataxin-2 regulates translation and mRNA stability through cytoplasmic polyadenylation of the targets. Here we newly identified DDX6 as a positive regulator of the cytoplasmic polyadenylation. Analysis of Ataxin-2 interactome using LC-MS/MS revealed prominent interaction with the DEAD-box RNA helicase DDX6. DDX6 interacted with components of the Ataxin-2 polyadenylation machinery; Ataxin-2, PABPC1 and PAPD4. As in the case for Ataxin-2 downregulation, DDX6 downregulation led to an increase in Ataxin-2 target mRNAs with short poly(A) tails as well as a reduction in their protein expression. In contrast, Ataxin-2 target mRNAs with short poly(A) tails were decreased by the overexpression of Ataxin-2, which was compromised by the DDX6 downregulation. However, polyadenylation induced by Ataxin-2 tethering was not affected by the DDX6 downregulation. Taken together, these results suggest that DDX6 positively regulates Ataxin-2-induced cytoplasmic polyadenylation to maintain poly(A) tail length of the Ataxin-2 targets provably through accelerating binding of Ataxin-2 to the target mRNAs.


Asunto(s)
Ataxina-2/metabolismo , Citoplasma/metabolismo , ARN Helicasas DEAD-box/metabolismo , Poliadenilación , Polinucleotido Adenililtransferasa/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Cromatografía Liquida , Células HEK293 , Humanos , Poli A/genética , Poli A/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Espectrometría de Masas en Tándem
12.
Neuropathology ; 41(3): 196-205, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33851459

RESUMEN

We report an autopsy case of a 56-year-old male patient with the coexistence of dentatorubral-pallidoluysian atrophy (DRPLA) and Parkinson's disease (PD). He presented with gait instability and dysarthria for 10 years. The removed brain showed general atrophy (988 g) with depigmentation of the substantia nigra. The neocortex and deep gray matter, including the red nucleus, subthalamic nuclei, and globus pallidus, were atrophic, and grumose degeneration of the cerebellar dentate nucleus was observed. Polyglutamine- and p62-positive neuronal inclusions were present and widespread in the areas mentioned above. Interestingly, this case also had brainstem-predominant PD pathology with α-synuclein-positive Lewy bodies and Lewy neurites. Generalized white matter atrophy with patchy loss of astrocytes in the white matter suggested glial dysfunction by elongated CAG repeats in the atrophin 1 gene (atrophin 1). Polymerase chain reaction (PCR) fragment analysis revealed increased CAG repeats (61) on atrophin 1 encoding atrophin 1. The patient had a family history of DRPLA, including his daughter, who was confirmed positive on genetic testing (CAG repeat: 65). His father, brother, and niece were suspected of having the disease. Clinicopathologically, all of the above findings are consistent with the coexistence of DRPLA and PD. So far, various overlapping neurodegenerative disorders have been reported, but the coexistence of DRPLA and PD has never been demonstrated in the published literature. Even though the exact time of PD development is unknown in this case, PD might develop after DRPLA, and the overwhelming symptoms of DRPLA might mask those of PD. Here, we report a clinicopathologically definite case of the coexistence of DRPLA and PD. White matter degeneration with patchy loss of astrocytes was another remarkable finding of this case.


Asunto(s)
Atrofia/patología , Núcleos Cerebelosos/patología , Globo Pálido/patología , Proteínas del Tejido Nervioso , Enfermedad de Parkinson/patología , Núcleo Rojo/patología , Atrofia/genética , Autopsia , Comorbilidad , Expansión de las Repeticiones de ADN/genética , Enfermedades Genéticas Congénitas/complicaciones , Enfermedades Genéticas Congénitas/diagnóstico , Pruebas Genéticas , Gliosis/etiología , Gliosis/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Neuronas/patología , Enfermedad de Parkinson/genética
13.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34298970

RESUMEN

Dominant spinocerebellar ataxias (SCAs) are progredient neurodegenerative diseases commonly affecting the survival of Purkinje cells (PCs) in the human cerebellum. Spinocerebellar ataxia type 1 (SCA1) is caused by the mutated ataxin1 (Atx1) gene product, in which a polyglutamine stretch encoded by CAG repeats is extended in affected SCA1 patients. As a monogenetic disease with the Atx1-polyQ protein exerting a gain of function, SCA1 can be genetically modelled in animals by cell type-specific overexpression. We have established a transgenic PC-specific SCA1 model in zebrafish coexpressing the fluorescent reporter protein mScarlet together with either human wild type Atx1[30Q] as control or SCA1 patient-derived Atx1[82Q]. SCA1 zebrafish display an age-dependent PC degeneration starting at larval stages around six weeks postfertilization, which continuously progresses during further juvenile and young adult stages. Interestingly, PC degeneration is observed more severely in rostral than in caudal regions of the PC population. Although such a neuropathology resulted in no gross locomotor control deficits, SCA1-fish with advanced PC loss display a reduced exploratory behaviour. In vivo imaging in this SCA1 model may help to better understand such patterned PC death known from PC neurodegeneration diseases, to elucidate disease mechanisms and to provide access to neuroprotective compound characterization in vivo.


Asunto(s)
Ataxina-1/genética , Modelos Animales de Enfermedad , Ataxias Espinocerebelosas/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Ataxina-1/fisiología , Muerte Celular , Progresión de la Enfermedad , Conducta Exploratoria , Genes Reporteros , Humanos , Larva , Proteínas Luminiscentes/genética , Células de Purkinje/patología , Transgenes , Expansión de Repetición de Trinucleótido , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/fisiología , Proteína Fluorescente Roja
14.
J Physiol ; 598(13): 2719-2739, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32306402

RESUMEN

KEY POINTS: Muscle-derived neurotrophic factors may offer therapeutic promise for treating neuromuscular diseases. We report that a muscle-derived neurotrophic factor, BDNF, rescues synaptic and muscle function in a muscle-type specific manner in mice modelling Kennedy's disease (KD). We also find that BDNF rescues select molecular mechanisms in slow and fast muscle that may underlie the improved cellular function. We also report for the first time that expression of BDNF, but not other members of the neurotrophin family, is perturbed in muscle from patients with KD. Given that muscle BDNF had divergent therapeutic effects that depended on muscle type, a combination of neurotrophic factors may optimally rescue neuromuscular function via effects on both pre- and postsynaptic function, in the face of disease. ABSTRACT: Deficits in muscle brain-derived neurotrophic factor (BDNF) correlate with neuromuscular deficits in mouse models of Kennedy's disease (KD), suggesting that restoring muscle BDNF might restore function. To test this possibility, transgenic mice expressing human BDNF in skeletal muscle were crossed with '97Q' KD mice. We found that muscle BDNF slowed disease, doubling the time between symptom onset and endstage. BDNF also improved expression of genes in muscle known to play key roles in neuromuscular function, including counteracting the expression of neonatal isoforms induced by disease. Intriguingly, BDNF's ameliorative effects differed between muscle types: synaptic strength was rescued only in slow-twitch muscle, while contractile strength was improved only in fast-twitch muscle. In sum, muscle BDNF slows disease progression, rescuing select cellular and molecular mechanisms that depend on fibre type. Muscle BDNF expression was also affected in KD patients, reinforcing its translational and therapeutic potential for treating this disorder.


Asunto(s)
Atrofia Bulboespinal Ligada al X , Animales , Factor Neurotrófico Derivado del Encéfalo , Humanos , Ratones , Ratones Transgénicos , Contracción Muscular , Fuerza Muscular
15.
J Biol Chem ; 294(2): 644-661, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30455355

RESUMEN

Ataxin-3 is a deubiquitinating enzyme and the affected protein in the neurodegenerative disorder Machado-Joseph disease (MJD). The ATXN3 gene is alternatively spliced, resulting in protein isoforms that differ in the number of ubiquitin-interacting motifs. Additionally, nonsynonymous SNPs in ATXN3 cause amino acid changes in ataxin-3, and one of these polymorphisms introduces a premature stop codon in one isoform. Here, we examined the effects of different ataxin-3 isoforms and of the premature stop codon on ataxin-3's physiological function and on main disease mechanisms. At the physiological level, we show that alternative splicing and the premature stop codon alter ataxin-3 stability and that ataxin-3 isoforms differ in their enzymatic deubiquitination activity, subcellular distribution, and interaction with other proteins. At the pathological level, we found that the expansion of the polyglutamine repeat leads to a stabilization of ataxin-3 and that ataxin-3 isoforms differ in their aggregation properties. Interestingly, we observed a functional interaction between normal and polyglutamine-expanded ATXN3 allelic variants. We found that interactions between different ATXN3 allelic variants modify the physiological and pathophysiological properties of ataxin-3. Our findings indicate that alternative splicing and interactions between different ataxin-3 isoforms affect not only major aspects of ataxin-3 function but also MJD pathogenesis. Our results stress the importance of considering isoforms of disease-causing proteins and their interplay with the normal allelic variant as disease modifiers in MJD and autosomal-dominantly inherited diseases in general.


Asunto(s)
Empalme Alternativo , Ataxina-3/genética , Ataxina-3/metabolismo , Enfermedad de Machado-Joseph/genética , Agregación Patológica de Proteínas/genética , Ataxina-3/análisis , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Polimorfismo de Nucleótido Simple , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Mapas de Interacción de Proteínas , Isoformas de Proteínas/análisis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Ubiquitina/metabolismo
16.
J Biol Chem ; 294(25): 9985-9994, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31097540

RESUMEN

Heat shock protein family B (small) member 7 (HSPB7) is a unique, relatively unexplored member within the family of human small heat shock proteins (HSPBs). Unlike most HSPB family members, HSPB7 does not oligomerize and so far has not been shown to associate with any other member of the HSPB family. Intriguingly, it was found to be the most potent member within the HSPB family to prevent aggregation of proteins with expanded polyglutamine (polyQ) stretches. How HSPB7 suppresses polyQ aggregation has remained elusive so far. Here, using several experimental strategies, including in vitro aggregation assay, immunoblotting and fluorescence approaches, we show that the polyQ aggregation-inhibiting activity of HSPB7 is fully dependent on its flexible N-terminal domain (NTD). We observed that the NTD of HSPB7 is both required for association with and inhibition of polyQ aggregation. Remarkably, replacing the NTD of HSPB1, which itself cannot suppress polyQ aggregation, with the NTD of HSPB7 resulted in a hybrid protein that gained anti-polyQ aggregation activity. The hybrid NTDHSPB7-HSPB1 protein displayed a reduction in oligomer size and, unlike WT HSPB1, associated with polyQ. However, experiments with phospho-mimicking HSPB1 mutants revealed that de-oligomerization of HSPB1 alone does not suffice to gain polyQ aggregation-inhibiting activity. Together, our results reveal that the NTD of HSPB7 is both necessary and sufficient to bind to and suppress the aggregation of polyQ-containing proteins.


Asunto(s)
Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Péptidos/química , Agregado de Proteínas , Proteínas de Choque Térmico HSP27/química , Humanos , Péptidos/metabolismo , Unión Proteica , Proteolisis
17.
Neurobiol Dis ; 135: 104268, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30194046

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a trinucleotide repeat expansion in the huntingtin (HTT) gene, which is expressed ubiquitously throughout the brain and peripheral tissues. Whilst the focus of much research has been on the cognitive, psychiatric and motor symptoms of HD, the extent of peripheral pathology and its potential impact on central symptoms has been less intensely explored. Disruption of the gastrointestinal microbiome (gut dysbiosis) has been recently reported in a number of neurological and psychiatric disorders, and therefore we hypothesized that it might also occur in HD. We have used 16S rRNA amplicon sequencing to characterize the gut microbiome in the R6/1 transgenic mouse model of HD, relative to littermate wild-type controls. We report that there is a significant difference in microbiota composition in HD mice at 12 weeks of age. Specifically, we observed an increase in Bacteriodetes and a proportional decrease in Firmicutes in the HD gut microbiome. In addition, we observed an increase in microbial diversity in male HD mice, compared to wild-type controls, but no differences in diversity were observed in female HD mice. The gut dysbiosis observed coincided with impairment in body weight gain despite higher food intake as well as motor deficits at 12 weeks of age. Gut dysbiosis was also associated with a change in the gut microenvironment, as we observed higher fecal water content in HD mice at 12 weeks of age. This study provides the first evidence of gut dysbiosis in HD.


Asunto(s)
Encéfalo/metabolismo , Disbiosis/genética , Microbioma Gastrointestinal/genética , Enfermedad de Huntington/genética , Animales , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Masculino , Ratones Transgénicos , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/metabolismo , Expansión de Repetición de Trinucleótido/genética
18.
Neurobiol Dis ; 134: 104635, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31669734

RESUMEN

Tandem repeat diseases include the neurodegenerative disorders known as polyglutamine (polyQ) diseases, caused by CAG repeat expansions in the coding regions of the respective disease genes. The nine known polyQ disease include Huntington's disease (HD), dentatorubral-pallidoluysian atrophy (DRPLA), spinal bulbar muscular atrophy (SBMA), and six spinocerebellar ataxias (SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17). The underlying disease mechanism in the polyQ diseases is thought principally to reflect dominant toxic properties of the disease proteins which, when harboring a polyQ expansion, differentially interact with protein partners and are prone to aggregate. Among the polyQ diseases, SCA3 is the most common SCA, and second to HD in prevalence worldwide. Here we summarize current understanding of SCA3 disease mechanisms within the broader context of the broader polyQ disease field. We emphasize properties of the disease protein, ATXN3, and new discoveries regarding three potential pathogenic mechanisms: 1) altered protein homeostasis; 2) DNA damage and dysfunctional DNA repair; and 3) nonneuronal contributions to disease. We conclude with an overview of the therapeutic implications of recent mechanistic insights.


Asunto(s)
Enfermedad de Machado-Joseph , Péptidos , Animales , Humanos , Expansión de Repetición de Trinucleótido
19.
Cerebellum ; 19(2): 165-181, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31898278

RESUMEN

Spinocerebellar ataxia type 2 (SCA2), a rare polyglutamine neurodegenerative disorder caused by a CAG repeat expansion in the ataxin-2 gene, exhibits common cellular phenotypes with other neurodegenerative disorders, including oxidative stress and mitochondrial dysfunction. Here, we show that SCA2 patient cells exhibit higher levels of caspase-8- and caspase-9-mediated apoptotic activation than control cells, cellular phenotypes that we find to be exacerbated by reactive oxygen species (ROS) and inhibition of autophagy. We also suggest that oligomerization of mutant ataxin-2 protein is likely to be the cause of the observed cellular phenotypes by causing inhibition of autophagy and by inducing ROS generation. Finally, we show that removal of ataxin-2 oligomers, either by increasing autophagic clearance or by oligomer dissolution, appears to alleviate the cellular phenotypes. Our results suggest that oligomerized ataxin-2 and oxidative stress affect autophagic clearance in SCA2 cells, contributing to the pathophysiology, and that activation of autophagy or clearance of oligomers may prove to be effective therapeutic strategies.


Asunto(s)
Apoptosis/fisiología , Ataxina-2/metabolismo , Autofagia/fisiología , Ataxias Espinocerebelosas/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Estrés Oxidativo/fisiología , Ataxias Espinocerebelosas/fisiopatología
20.
Adv Exp Med Biol ; 1207: 149-161, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32671744

RESUMEN

Polyglutamine (polyQ) disease is a type of fatal neurodegenerative disease caused by an expansion of CAG repeats in a specific gene, resulting in a protein with an abnormal polyQ fragment. The age of onset and the degree of pathological deterioration are related to the length of the polyQ fragment. At least 9 kinds of polyglutamine diseases have been discovered, including Huntington disease (HD), dentatorubral pallidoluysian atrophy (DRPLA), spinobulbar muscular atrophy (SBMA) and six spinocerebellar ataxia (SCA) such as SCA1, 2, 3, 6, 7 and 17 subtypes (Table 9.1). Previous studies suggest that autophagy plays a major role in the quality control of disease proteins in polyQ diseases. In this chapter, we majorly focused on three representative polyQ diseases, including spinocerebellar Ataxia type 3 (SCA3), spinocerebellar ataxia type 7 (SCA7) and Huntington's disease (HD). The relationship of the ubiquitin-proteasome system and autophagy involved in disease protein accumulation were summarized.


Asunto(s)
Autofagia , Atrofia Bulboespinal Ligada al X , Enfermedad de Huntington , Epilepsias Mioclónicas Progresivas , Péptidos/metabolismo , Ataxias Espinocerebelosas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA