Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
Nanomedicine ; 60: 102762, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38866196

RESUMEN

Recalcitrant staphylococcal osteomyelitis may be due, in part, to the ability of Staphylococcus aureus to invade bone cells. However, osteoclasts and osteoblasts are now recognized to shape host responses to bacterial infection and we have recently described their ability to produce IFN-ß following S. aureus infection and limit intracellular bacterial survival/propagation. Here, we have investigated the ability of novel, rationally designed, nucleic acid nanoparticles (NANPs) to induce the production of immune mediators, including IFN-ß, following introduction into bone cells. We demonstrate the successful delivery of representative NANPs into osteoblasts and osteoclasts via endosomal trafficking when complexed with lipid-based carriers. Their delivery was found to differentially induce immune responses according to their composition and architecture via discrete cytosolic pattern recognition receptors. Finally, the utility of this nanoparticle technology was supported by the demonstration that immunostimulatory NANPs augment IFN-ß production by S. aureus infected bone cells and reduce intracellular bacterial burden.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , Osteoblastos , Osteoclastos , Infecciones Estafilocócicas , Staphylococcus aureus , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/inmunología , Nanopartículas/química , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Animales , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/tratamiento farmacológico , Ratones , Interferón Tipo I/metabolismo , Humanos , Interferón beta/metabolismo , Adyuvantes Inmunológicos/farmacología
2.
J Asian Nat Prod Res ; 26(4): 519-533, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37656039

RESUMEN

Use of small molecules as valuable drugs against diseases is still an indefinable purpose due to the lack of in-detail knowledge regarding proper bio-target identification, specificity aspects, mode-mechanism of binding and proper in vitro study. Harmaline, an important beta-carboline alkaloid, shows effective anti-proliferative action against different types of human cancers and is also found to be a nucleic acid targeting natural molecule. This review sought to address the different signal pathways of apoptosis by harmaline in different cancer cell lines and simultaneously to characterize the structure activity aspects of the alkaloid with different motifs of nucleic acid to show its preference, biological efficacy and genotoxicity. The results open up new insights for the design and development of small molecule-based nucleic acid therapeutic agents.


Asunto(s)
Alcaloides , Antineoplásicos , Neoplasias , Ácidos Nucleicos , Humanos , Harmalina/farmacología , Harmalina/química , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacología , Línea Celular , Apoptosis , Alcaloides/química , Antineoplásicos/farmacología , Antineoplásicos/química
3.
Small ; 19(41): e2302326, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37317020

RESUMEN

Osteonecrosis of the femoral head (ONFH) is recognized as a common refractory orthopedic disease that causes severe pain and poor quality of life in patients. Puerarin (Pue), a natural isoflavone glycoside, can promote osteogenesis and inhibit apoptosis of bone mesenchymal stem cells (BMSCs), demonstrating its great potential in the treatment of osteonecrosis. However, its low aqueous solubility, fast degradation in vivo, and inadequate bioavailability, limit its clinical application and therapeutic efficacy. Tetrahedral framework nucleic acids (tFNAs) are promising novel DNA nanomaterials in drug delivery. In this study, tFNAs as Pue carriers is used and synthesized a tFNA/Pue complex (TPC) that exhibited better stability, biocompatibility, and tissue utilization than free Pue. A dexamethasone (DEX)-treated BMSC model in vitro and a methylprednisolone (MPS)-induced ONFH model in vivo is also established, to explore the regulatory effects of TPC on osteogenesis and apoptosis of BMSCs. This findings showed that TPC can restore osteogenesis dysfunction and attenuated BMSC apoptosis induced by high-dose glucocorticoids (GCs) through the hedgehog and Akt/Bcl-2 pathways, contributing to the prevention of GC-induced ONFH in rats. Thus, TPC is a promising drug for the treatment of ONFH and other osteogenesis-related diseases.


Asunto(s)
Necrosis de la Cabeza Femoral , Isoflavonas , Ácidos Nucleicos , Humanos , Ratas , Animales , Cabeza Femoral , Ácidos Nucleicos/farmacología , Calidad de Vida , Necrosis de la Cabeza Femoral/tratamiento farmacológico , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/prevención & control , Ratas Sprague-Dawley , Isoflavonas/efectos adversos , Osteogénesis
4.
Med Vet Entomol ; 37(4): 754-766, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37417368

RESUMEN

In vertebrates, enzymes responsible for DNA methylation, one of the epigenetic mechanisms, are encoded by genes falling into the cytosine methyltransferases genes family (Dnmt1, Dnmt3a,b and Dnmt3L). However, in Diptera, only the methyltransferase Dnmt2 was found, suggesting that DNA methylation might act differently for species in this order. Moreover, genes involved in epigenetic dynamics, such as Ten-eleven Translocation dioxygenases (TET) and Methyl-CpG-binding domain (MBDs), present in vertebrates, might play a role in insects. This work aimed at investigating nucleic acids methylation in the malaria vector Anopheles gambiae (Diptera: Culicidae) by analysing the expression of Dnmt2, TET2 and MBDs genes using quantitative real-time polymerase chain reaction (qRT-PCR) at pre-immature stages and in reproductive tissues of adult mosquitoes. In addition, the effect of two DNA methylation inhibitors on larval survival was evaluated. The qPCR results showed an overall low expression of Dnmt2 at all developmental stages and in adult reproductive tissues. In contrast, MBD and TET2 showed an overall higher expression. In adult mosquito reproductive tissues, the expression level of the three genes in males' testes was significantly higher than that in females' ovaries. The chemical treatments did not affect larval survival. The findings suggest that mechanisms other than DNA methylation underlie epigenetic regulation in An. gambiae.


Asunto(s)
Anopheles , Malaria , Ácidos Nucleicos , Masculino , Femenino , Animales , Anopheles/genética , Metilación , Epigénesis Genética , Mosquitos Vectores , Malaria/veterinaria , Larva , Ácidos Nucleicos/farmacología
5.
Food Microbiol ; 109: 104137, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36309456

RESUMEN

The sterilizing effect of a combination of heat (80, 90, and 100 °C) and ε-polylysine (ε-PL, 0.25 and 1 g/L) treatments on Bacillus subtilis spores was investigated and compared with that of conventional heat sterilization. The inactivation rate of spores and changes in their protective structure were evaluated using different methods and techniques. Changes in cell membrane's fatty acids, cell walls, proteins and nucleic acids were also analyzed. The results showed that the combined heat and ε-PL treatments significantly (p < 0.05) inactivated the Bacillus subtilis spores compared with the single heat treatment. Besides, the inactivation of spores was enhanced as the temperature and ε-PL concentration of combined treatments increased. The inactivation rate was found to be 2.18 log after heating at 90 °C for 60 min combined with the addition of 1 g/L ε-PL. Additionally, the electrical conductivity of spores' suspension and the positive region of flow cytometry significantly (p < 0.05) increased depending on temperature and ε-PL concentration of a combination treatment, indicating significant damage in the cell membranes and increased permeability. Significant changes in the spore morphology were also observed by the microscopy analysis after a combination treatment. Furthermore, the Fourier transform infrared spectra indicated a phase change in the inner membrane and alteration in the structure of peptidoglycan layer, as well as protein and nucleic acids denaturation after combined treatments. Therefore, the combined heat and ε-PL treatments can be suggested as sterilizing alternative to conventional heat sterilization in the food industry.


Asunto(s)
Bacillus subtilis , Ácidos Nucleicos , Esporas Bacterianas , Calor , Polilisina/farmacología , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/farmacología
6.
Nano Lett ; 22(6): 2381-2390, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35266400

RESUMEN

More than 15 million out of 70 million patients worldwide do not respond to available antiepilepticus drugs (AEDs). With the emergence of nanomedicine, nanomaterials are increasingly being used to treat many diseases. Here, we report that tetrahedral framework nucleic acid (tFNA), an assembled nucleic acid nanoparticle, showed an excellent ability to the cross blood-brain barrier (BBB) to inhibit M1 microglial activation and A1 reactive astrogliosis in the hippocampus of mice after status epilepticus. Furthermore, tFNA inhibited the downregulation of glutamine synthetase by alleviating oxidative stress in reactive astrocytes and subsequently reduced glutamate accumulation and glutamate-mediated neuronal hyperexcitability. Meanwhile, tFNA promotes α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization in the postsynaptic membrane by regulating AMPAR endocytosis, which contributed to reduced calcium influx and ultimately reduced hyperexcitability and spontaneous epilepticus spike frequencies. These findings demonstrated tFNA as a potential AED and that nucleic acid material may be a new direction for the treatment of epilepsy.


Asunto(s)
Gliosis , Ácidos Nucleicos , Animales , Regulación hacia Abajo , Gliosis/tratamiento farmacológico , Glutamato-Amoníaco Ligasa/metabolismo , Ácido Glutámico , Humanos , Ratones , Ácidos Nucleicos/farmacología
7.
BMC Microbiol ; 22(1): 220, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36117157

RESUMEN

BACKGROUND: The widespread use of antibiotics has led to the emergence of many drug-resistant strains; thus, the development of new antibacterial drugs is essential with antimicrobial peptides becoming the focus of research. This study assessed the antibacterial effect of a novel antimicrobial peptide, named LL-1 on Escherichia coli (E.coli) by determining the minimum inhibitory concentration (MIC) and the antibacterial curve. The interaction between LL-1 and E. coli DNA was then detected by nucleic acid gel electrophoresis. The effect of LL-1 on the E. coli cell membrane was assessed by detecting the leakage of ß-galactosidase, nucleic acid and protein. The influence of LL-1 on the intracellular ATP of E. coli was analysed by determining the concentration of intracellular ATP. Finally, the bacteria and colonies of E. coli treated with LL-1 were observed using scanning and transmission electron microscopy. RESULTS: The results suggested that the MIC value was 3.125 µg/ml, and the antibacterial effect was dose-dependent. LL-1 dose-dependently combined with E. coli DNA. LL-1 resulted in the leakage of intracellular ß-galactosidase, nucleic acid and protein, and decreased intracellular ATP concentrations of E. coli. Two MIC of LL-1 caused E. coli to shrink, resulting in a rough surface, plasmolysis, and bacterial adhesion. CONCLUSION: This study indicated that LL-1 had a good bactericidal effect on E. coli by mainly increasing the permeability of the cell membrane, leading to leakage of the intracellular content. This will lay the foundation for an in-depth study on the antibacterial mechanism of LL-1 against E. coli and its clinical application.


Asunto(s)
Infecciones por Escherichia coli , Ácidos Nucleicos , Adenosina Trifosfato/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Escherichia coli/genética , Infecciones por Escherichia coli/tratamiento farmacológico , Humanos , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/farmacología , Permeabilidad , beta-Galactosidasa/metabolismo
8.
Exp Parasitol ; 242: 108395, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36179851

RESUMEN

The knowledge about amino acid metabolism in trypanosomatids is a valuable source of new therapeutic targets. l-arginine is an essential amino acid for Leishmania parasites, and it participates in the synthesis of polyamines, a group of essential nutrients used for nucleic acids, proteins biosynthesis, and redox modulation necessary for proliferation. In the present study, we evaluated the effect of changes in the availability of this amino acid on promastigotes and intracellular amastigotes on U937 macrophages and showed that the absence of l-arginine in culture medium negatively influences the growth and infectivity of Leishmania (Viannia) braziliensis, causing a decrease in the percentage of the infected cells and parasite load tested through light microscopy. In addition, the absence of l-arginine resulted in the parasite's inability to regulate its reactive oxygen species (ROS) production, which persisted for up to 24 h by flow cytometry following the probe H2DCF-DA dye. Moreover, the differentiation of promastigote to amastigote in axenic culture was more significant at low concentrations of l-arginine suggesting that this depletion induces a stress environment to increase this transformation under axenic conditions. No association was established between the availability of l-arginine and the effectiveness of antileishmanial drugs. All these results confirm the importance of l-arginine in L. braziliensis life cycle vital processes, such as its replication and infectivity, as documented in other Leishmania species. Based on these results, we proposed that the l-arginine uptake/metabolism route is possible in exploring new antileishmanial drugs.


Asunto(s)
Leishmania braziliensis , Leishmania , Ácidos Nucleicos , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Arginina , Poliaminas/metabolismo , Poliaminas/farmacología , Ácidos Nucleicos/farmacología , Ratones Endogámicos BALB C
9.
Nanomedicine ; 36: 102418, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34171470

RESUMEN

Radiation induces the generation of platelet-activating factor receptor (PAF-R) ligands, including PAF and oxidized phospholipids. Alternatively, PAF is also synthesized by the biosynthetic enzymes lysophosphatidylcholine acyltransferases (LPCATs) which are expressed by tumor cells including melanoma. The activation of PAF-R by PAF and oxidized lipids triggers a survival response protecting tumor cells from radiation-induced cell death, suggesting the involvement of the PAF/PAF-R axis in radioresistance. Here, we investigated the role of LPCATs in the melanoma cell radiotherapy response. LPCAT is a family of four enzymes, LPCAT1-4, and modular nucleic acid nanoparticles (NANPs) allowed for the simultaneous silencing of all four LPCATs. We found that the in vitro simultaneous silencing of all four LPCAT transcripts by NANPs enhanced the therapeutic effects of radiation in melanoma cells by increasing cell death, reducing long-term cell survival, and activating apoptosis. Thus, we propose that NANPs are an effective strategy for improving radiotherapy efficacy in melanomas.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa , Silenciador del Gen , Melanoma , Nanopartículas , Proteínas de Neoplasias , Ácidos Nucleicos , 1-Acilglicerofosfocolina O-Aciltransferasa/antagonistas & inhibidores , 1-Acilglicerofosfocolina O-Aciltransferasa/biosíntesis , Línea Celular Tumoral , Humanos , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Nanopartículas/química , Nanopartículas/uso terapéutico , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/biosíntesis , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacología
10.
Nanomedicine ; 23: 102094, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669854

RESUMEN

Programmable nucleic acid nanoparticles (NANPs) provide controlled coordination of therapeutic nucleic acids (TNAs) and other biological functionalities. Beyond multivalence, recent reports demonstrate that NANP technology can also elicit a specific immune response, adding another layer of customizability to this innovative approach. While the delivery of nucleic acids remains a challenge, new carriers are introduced and tested continuously. Polymeric platforms have proven to be efficient in shielding nucleic acid cargos from nuclease degradation while promoting their delivery and intracellular release. Here, we venture beyond the delivery of conventional TNAs and combine the stable cationic poly-(lactide-co-glycolide)-graft-polyethylenimine with functionalized NANPs. Furthermore, we compare several representative NANPs to assess how their overall structures influence their delivery with the same carrier. An extensive study of various formulations both in vitro and in vivo reveals differences in their immunostimulatory activity, gene silencing efficiency, and biodistribution, with fibrous NANPs advancing for TNA delivery.


Asunto(s)
Adyuvantes Inmunológicos , Silenciador del Gen , Nanopartículas/química , Ácidos Nucleicos , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacocinética , Adyuvantes Inmunológicos/farmacología , Línea Celular Tumoral , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Humanos , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacocinética , Ácidos Nucleicos/farmacología
11.
Small ; 15(31): e1901907, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31192537

RESUMEN

Poor post-traumatic wound healing can affect the normal function of damaged tissues and organs. For example, poor healing of corneal epithelial injuries may lead to permanent visual impairment. It is of great importance to find a therapeutic way to promote wound closure. Tetrahedral framework nucleic acids (tFNAs) are new promising nanomaterials, which can affect the biological behavior of cells. In the experiment, corneal wound healing is used as an example to explore the effect of tFNAs on wound healing. Results show that the proliferation and migration of human corneal epithelial cells are enhanced by exposure to tFNAs in vitro, possibly relevant to the activation of P38 and ERK1/2 signaling pathway. An animal model of corneal alkali burn is established to further identify the facilitation effect of tFNAs on corneal wound healing in vivo. Clinical evaluations and histological analyses show that tFNAs can improve the corneal transparency and accelerate the re-epithelialization of wounds. Both in vitro and in vivo experiments show that tFNAs can play a positive role in corneal epithelial wound healing.


Asunto(s)
Epitelio Corneal/patología , Ácidos Nucleicos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Álcalis , Animales , Quemaduras/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Células Epiteliales/patología , Epitelio Corneal/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Masculino , Ácidos Nucleicos/ultraestructura , Fosforilación/efectos de los fármacos , Conejos , Regulación hacia Arriba/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
J Virol ; 92(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29212929

RESUMEN

In this study, an in vitro infection model for the hepatitis delta virus (HDV) was used to evaluate the antiviral effects of phosphorothioate nucleic acid polymers (NAPs) and investigate their mechanism of action. The results show that NAPs inhibit HDV infection at concentrations less than 4 µM in cultures of differentiated human hepatoma cells. NAPs were shown to be active at viral entry but inactive postentry on HDV RNA replication. Inhibition was independent of the NAP nucleotide sequence but dependent on both size and amphipathicity of the polymer. NAP antiviral activity was effective against HDV virions bearing the main hepatitis B virus (HBV) immune escape substitutions (D144A and G145R) and was pangenomic with regard to HBV envelope proteins. Furthermore, similar to immobilized heparin, immobilized NAPs could bind HDV particles, suggesting that entry inhibition was due, at least in part, to preventing attachment of the virus to cell surface glycosaminoglycans. The results document NAPs as a novel class of antiviral compounds that can prevent HDV propagation.IMPORTANCE HDV infection causes the most severe form of viral hepatitis in humans and one of the most difficult to cure. Currently, treatments are limited to long-term administration of interferon at high doses, which provide only partial efficacy. There is thus an urgent need for innovative approaches to identify new antiviral against HDV. The significance of our study is in demonstrating that nucleic acid polymers (NAPs) are active against HDV by targeting the envelope of HDV virions. In an in vitro infection assay, NAP activity was recorded at concentrations less than 4 µM in the absence of cell toxicity. Furthermore, the fact that NAPs could block HDV at viral entry suggests their potential to control the spread of HDV in a chronically HBV-infected liver. In addition, NAP anti-HDV activity was pangenomic with regard to HBV envelope proteins and not circumvented by HBsAg substitutions associated with HBV immune escape.


Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis Delta/efectos de los fármacos , Ácidos Nucleicos/farmacología , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus/efectos de los fármacos , Línea Celular Tumoral , Virus de la Hepatitis B , Virus de la Hepatitis Delta/fisiología , Humanos , Polímeros/farmacología , Proteínas del Envoltorio Viral/genética , Virión/efectos de los fármacos , Replicación Viral/efectos de los fármacos
13.
J Viral Hepat ; 26(4): 485-495, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30450662

RESUMEN

The treatment of patients suffering from HBeAg-positive chronic hepatitis B with REP 2139-Ca resulted in potent reductions in HBsAg and HBV DNA, seroconversion to anti-HBs and the establishment of functional control of infection. In this cohort of 12 patients, we investigated whether differences between HBsAg sequences might explain the lack of response to REP 2139-Ca observed in 3 of 12 patients. We also assessed if the reduction or complete loss of HBsAg in serum observed during therapy were caused by mutations in the "a" determinant preventing the detection of HBsAg by standard diagnostic assays. The complete pre-S/S open reading frame (ORF) was sequenced and pre-S1, pre-S2 and S amino acid sequences were analysed. We found no major differences between pre-S1, pre-S2 and S sequences in responders and nonresponders correlated with low reduction in HBsAg. In addition, we found no mutations in the "a" determinant that would significantly affect the reactivity of HBsAg in diagnostic assays. These results demonstrate that the amino acid sequence of complete pre-S/S ORF has no direct influence on response to REP 2139-Ca therapy.


Asunto(s)
Antígenos de Superficie de la Hepatitis B/genética , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/tratamiento farmacológico , Ácidos Nucleicos/farmacología , Ácidos Nucleicos/uso terapéutico , Polímeros/farmacología , Polímeros/uso terapéutico , Secuencia de Aminoácidos , Antivirales/farmacología , Antivirales/uso terapéutico , ADN Viral/sangre , Genotipo , Antígenos de Superficie de la Hepatitis B/sangre , Virus de la Hepatitis B/genética , Humanos , Mutación , Resultado del Tratamiento
14.
Org Biomol Chem ; 17(30): 7215-7221, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31322157

RESUMEN

Sulfonic nucleic acids were identified as inhibitors of ribonuclease A (RNase A). The incorporation of a strongly acidic group (sulfonic, -SO3H) at the 3'-end of pyrimidine nucleosides thymidine and uridine was prompted by the low inhibition constant (Ki) values recorded for carboxymethylsulfonyl (-SO2CH2CO2H) and -CO2H functionalized nucleosides. It was envisaged that the sulfonic acid-modified pyrimidines would bind effectively with the positively charged P1 site of ribonuclease A. Typical harsh conditions used for SO3H incorporation were replaced with milder reaction conditions. The uridine analogue showing a Ki value of 0.96 µM elicited a better result than the thymidine-modified inhibitor. Notably, it was also the best result among all modified non-phosphate acidic nucleosides reported and screened so far as RNase A inhibitors.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Ácidos Nucleicos/farmacología , Ribonucleasa Pancreática/antagonistas & inhibidores , Ácidos Sulfónicos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Ácidos Nucleicos/síntesis química , Ácidos Nucleicos/química , Ribonucleasa Pancreática/metabolismo , Ácidos Sulfónicos/síntesis química , Ácidos Sulfónicos/química
15.
Biochem J ; 475(9): 1597-1610, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29654109

RESUMEN

Matrix metalloproteinases (MMPs) play varied roles in normal biology and diseases where, depending on the context, both inhibition and enhancement of the enzymatic activity may be beneficial. However, there are very few reports of positive modulators of MMP activity. We report that polynucleotides, including single-stranded DNA, RNA, and even double-stranded DNA, bind to and enhance the enzymatic activity of MMP9. This enhancement of MMP9 catalytic activity is not shared by biologically active polycationic molecules suggesting nonspecific charge screening as an unlikely mechanism. Deletion construct and MMP1, 2, and 3 studies suggest that the type-II fibronectin repeat domains of the enzyme appear to play a role in mediating the nucleotide potentiation of MMP9 activity. Single-stranded DNA enhances nerve growth factor-induced MMP9-dependent neurite extension in pheochromocytoma 12 cells providing evidence for potential biological significance of the nucleotide-mediated allosteric enhancement of the catalytic activity.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Proyección Neuronal , Ácidos Nucleicos/farmacología , Animales , Células HEK293 , Humanos , Procesamiento de Imagen Asistido por Computador , Metaloproteinasa 9 de la Matriz/química , Células PC12 , Conformación Proteica , Ratas
16.
Sensors (Basel) ; 20(1)2019 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-31881749

RESUMEN

During open-heart surgery, the status of hemostasis has to be constantly monitored to quickly and reliably detect bleeding or coagulation disorders. In this study, a novel optimized piezo-based measuring system (PIEZ) for rheological monitoring of hemostasis was established. The applicability of the PIEZ for the evaluation of nucleic acid-based drugs influencing coagulation was analyzed. Thrombin aptamers such as NU172 might be used during extracorporeal circulation (ECC) in combination with a reduced heparin concentration or for patients with heparin-induced thrombocytopenia (HIT). Therefore, the effect of the coagulation inhibiting thrombin aptamer NU172 and the abrogation by its complementary antidote sequence (AD) were investigated by this rheological PIEZ system. After the addition of different NU172 concentrations, the coagulation of fresh human blood was analyzed under static conditions and using an in vitro rotation model under dynamic conditions (simulating ECC). The clotting times (CTs) detected by PIEZ were compared to those obtained with a medical reference device, a ball coagulometer. Additionally, after the circulation of blood samples for 30 min at 37 °C, blood cell numbers, thrombin markers (thrombin-antithrombin III (TAT) and fibrinopeptide A (FPA)) and a platelet activation marker (ß-thromboglobulin (ß-TG)) were analyzed by enzyme-linked immunosorbent assays (ELISAs). The increase of NU172 concentration resulted in prolonged CTs, which were comparable between the reference ball coagulometer and the PIEZ, demonstrating the reliability of the new measuring system. Moreover, by looking at the slope of the linear regression of the viscous and elastic components, PIEZ also could provide information on the kinetics of the coagulation reaction. The shear viscosity at the end of the measurements (after 300 s) was indicative of clot firmness. Furthermore, the PIEZ was able to detect the abrogation of coagulation inhibition after the equimolar addition of NU172 aptamer´s AD. The obtained results showed that the established PIEZ is capable to dynamically measure the hemostasis status in whole blood and can be applied to analyze nucleic acid-based drugs influencing the coagulation.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Ácidos Nucleicos/farmacología , Adulto , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Recuento de Células Sanguíneas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tiempo de Coagulación de la Sangre Total
17.
Small ; 14(5)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29226611

RESUMEN

Liposomal spherical nucleic acids (LSNAs) are an attractive therapeutic platform for gene regulation and immunomodulation due to their biocompatibility, chemically tunable structures, and ability to enter cells rapidly without the need for ancillary transfection agents. Such structures consist of small (<100 nm) liposomal cores functionalized with a dense, highly oriented nucleic acid shell, both of which are key components in facilitating their biological activity. Here, the properties of LSNAs synthesized using conventional methods, anchoring cholesterol terminated oligonucleotides into a liposomal core, are compared to LSNAs made by directly modifying the surface of a liposomal core containing azide-functionalized lipids with dibenzocyclooctyl-terminated oligonucleotides. The surface densities of the oligonucleotides are measured for both types of LSNAs, with the lipid-modified structures having approximately twice the oligonucleotide surface coverage. The stabilities and cellular uptake properties of these structures are also evaluated. The higher density, lipid-functionalized structures are markedly more stable than conventional cholesterol-based structures in the presence of other unmodified liposomes and serum proteins as evidenced by fluorescence assays. Significantly, this new form of LSNA exhibits more rapid cellular uptake and increased sequence-specific toll-like receptor activation in immune reporter cell lines, making it a promising candidate for immunotherapy.


Asunto(s)
Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , ADN/química , Lípidos/química , Liposomas , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacología , Línea Celular , Transfección
18.
Molecules ; 23(7)2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932443

RESUMEN

Oligonucleotides are biopolymers that can be easily modified at various locations. Thereby, the attachment of metal complexes to nucleic acid derivatives has emerged as a common pathway to improve the understanding of biological processes or to steer oligonucleotides towards novel applications such as electron transfer or the construction of nanomaterials. Among the different metal complexes coupled to oligonucleotides, ruthenium complexes, have been extensively studied due to their remarkable properties. The resulting DNA-ruthenium bioconjugates have already demonstrated their potency in numerous applications. Consequently, this review focuses on the recent synthetic methods developed for the preparation of ruthenium complexes covalently linked to oligonucleotides. In addition, the usefulness of such conjugates will be highlighted and their applications from nanotechnologies to therapeutic purposes will be discussed.


Asunto(s)
Complejos de Coordinación/síntesis química , Nanoestructuras/química , Ácidos Nucleicos/química , Oligonucleótidos/química , Rutenio/química , Secuencia de Bases , Complejos de Coordinación/farmacología , Transporte de Electrón , Humanos , Mediciones Luminiscentes/métodos , Terapia Molecular Dirigida/métodos , Nanotecnología/métodos , Nanotecnología/tendencias , Hibridación de Ácido Nucleico/métodos , Ácidos Nucleicos/farmacología , Oligonucleótidos/farmacología , Rutenio/farmacología
19.
Chembiochem ; 18(19): 1917-1922, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28748559

RESUMEN

MicroRNAs (miRNAs) are endogenous small RNAs that regulate gene expression at the post-transcriptional level by sequence-specific hybridisation. Anti-miRNA oligonucleotides (AMOs) are inhibitors of miRNA activity. Chemical modification of AMOs is required to increase binding affinity and stability in serum and cells. In this study, we synthesised AMOs with our original acyclic nucleic acid, serinol nucleic acid (SNA), backbone and with the artificial nucleobase 2,6-diaminopurine. The AMO composed of only SNA had strong nuclease resistance and blocked endogenous miRNA activity. A significant improvement in anti-miRNA activity of the AMO was achieved by introduction of a 2,6-diaminopurine residues into the SNA backbone. In addition, we found that the enhancement in AMO activity depended on the position of the 2,6-diaminopurine residue in the sequence. The high potency of the SNA-AMOs suggests that these oligomers will be useful as therapeutic reagents for control of miRNA function in patients and as tools for investigating the roles of microRNAs in cells.


Asunto(s)
2-Aminopurina/análogos & derivados , MicroARNs/antagonistas & inhibidores , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacología , Propanolaminas/química , Glicoles de Propileno/química , 2-Aminopurina/química , Células HeLa , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Oligonucleótidos/química , Oligonucleótidos/farmacología
20.
Fish Physiol Biochem ; 43(6): 1501-1515, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28798999

RESUMEN

Immunostimulants are widely applied in aquaculture practice and may have beneficial effects on the immune system and physical functions allowing higher tolerance to stress. In the current study, the impact of four (i-iv) dietary active ingredients on the immune and stress response of turbot was examined in two experiments (I and II). A basal low fish meal (FM; 32%) diet was formulated and supplemented with (i) yeast ß-glucan and mannan oligosaccharide (GM), (ii) alginic acid (AC), (iii) yeast nucleotides and RNA (NR), or (iv) Bacillus strains (BS). The basal diet (C-LF) and a high FM (59%) control (C-HF) were maintained. All six diets were fed to juvenile turbots for 84 days in experiment I and for additional 28 days prior to experiment II. Immunological and hematological parameters were determined in experiment I. In experiment II, physical stress response to a typical short-term (<1 day) aquaculture handling procedure (combination of capture, netting/transfer, and crowding) was investigated. For this, turbot blood was sampled before and at 0.5, 1, 4, and 24 h post stress. Plasma lysozyme activity, neutrophil reactive oxygen species (ROS) production, and total plasma protein levels did not significantly differ between treatment groups; however, plasma cholesterol increased significantly in fish fed GM, AC, NR, and C-HF compared to C-LF (I). A significant increase in plasma glucose and triglyceride was observed in GM and NR treatments, while glucose levels were significantly higher in C-HF compared to C-LF. Moreover, the immunostimulant-supplemented diets exhibited significantly lower cortisol levels compared to controls C-LF (at 0.5 h) and C-HF (at 1 h) post stress, respectively (II). According to our findings, FM substitution did not modulate the innate immune response but was associated with reduced levels of cholesterol. Dietary immunostimulants were not effective enough to boost the immune response, but we believe they might be helpful to trigger metabolic advantages during stressful handling events on fish farms.


Asunto(s)
Bacillus/fisiología , Peces Planos/fisiología , Ácidos Nucleicos/farmacología , Polisacáridos/farmacología , Estrés Fisiológico/efectos de los fármacos , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Acuicultura , Dieta/veterinaria , Hidrocortisona/sangre , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Polisacáridos/administración & dosificación , Probióticos , Glycine max , Estrés Fisiológico/fisiología , Triticum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA