Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Biol Chem ; 295(52): 17922-17934, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-32873708

RESUMEN

Centrioles are key eukaryotic organelles that are responsible for the formation of cilia and flagella, and for organizing the microtubule network and the mitotic spindle in animals. Centriole assembly requires oligomerization of the essential protein spindle assembly abnormal 6 (SAS-6), which forms a structural scaffold templating the organization of further organelle components. A dimerization interaction between SAS-6 N-terminal "head" domains was previously shown to be essential for protein oligomerization in vitro and for function in centriole assembly. Here, we developed a pharmacophore model allowing us to assemble a library of low-molecular-weight ligands predicted to bind the SAS-6 head domain and inhibit protein oligomerization. We demonstrate using NMR spectroscopy that a ligand from this family binds at the head domain dimerization site of algae, nematode, and human SAS-6 variants, but also that another ligand specifically recognizes human SAS-6. Atomistic molecular dynamics simulations starting from SAS-6 head domain crystallographic structures, including that of the human head domain which we now resolve, suggest that ligand specificity derives from favorable Van der Waals interactions with a hydrophobic cavity at the dimerization site.


Asunto(s)
Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Multimerización de Proteína , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/crecimiento & desarrollo , Centriolos/efectos de los fármacos , Simulación de Dinámica Molecular , Conformación Proteica
2.
Development ; 145(23)2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30389850

RESUMEN

In vertebrates, planar polarization of ciliary basal bodies has been associated with actin polymerization that occurs downstream of the Frizzled-planar cell polarity (Fz-PCP) pathway. In Drosophila wing epithelial cells, which do not have cilia, centrioles also polarize in a Fz-PCP-dependent manner, although the relationship with actin polymerization remains unknown. By combining existing and new quantitative methods, we unexpectedly found that known PCP effectors linked to actin polymerization phenotypes affect neither final centriole polarization nor apical centriole distribution. But actin polymerization is required upstream of Fz-PCP to maintain the centrioles in restricted areas in the apical-most planes of those epithelial cells before and after the actin-based hair is formed. Furthermore, in the absence of proper core Fz-PCP signalling, actin polymerization is insufficient to drive this off-centred centriole migration. Altogether, the results reveal that there are at least two pathways controlling centriole positioning in Drosophila pupal wings - an upstream actin-dependent mechanism involved in centriole distribution that is PCP independent, and an unknown mechanism that links core Fz-PCP and centriole polarization.


Asunto(s)
Polaridad Celular , Centriolos/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Alas de Animales/citología , Alas de Animales/metabolismo , Actinas/metabolismo , Animales , Polaridad Celular/efectos de los fármacos , Centriolos/efectos de los fármacos , Citocalasina D/farmacología , Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Mutación con Ganancia de Función/genética , Mutación con Pérdida de Función/genética , Fenotipo , Polimerizacion
3.
Chembiochem ; 17(21): 2063-2074, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27558802

RESUMEN

Centrioles are microtubule-based organelles found in most eukaryotic cells and that are critical for the formation of cilia and flagella, as well as of centrosomes in animal cells. The number of centrioles must be strictly regulated in proliferating cells in order to ensure genome integrity upon cell division. Despite their importance, however, the mechanisms governing centriole assembly and number control remain incompletely understood, owing in part to a paucity of available small-molecule compounds for dissection and alteration of the underlying processes. Here we have developed a chemical genetic approach to identify small-molecule compounds capable of modulating centriole numbers in human cells. High-throughput screening of ≈2600 natural compounds identified 14 candidate molecules that either diminish (ten compounds) or augment (four compounds) the number of centrioles per cell. We investigated the mechanisms of action of four of these compounds and discovered that two of them potentially reduce centriole number through effects on NF-κB signalling. Moreover, we established that one further compound blocks cell cycle progression and probably indirectly causes an augmentation of centriole number. The last compound analysed induces, in addition to excess centrioles, exceptionally long primary cilia-like structures. Overall, our analysis demonstrates that natural products constitute a rich source of tool compounds useful for unravelling and manipulating the mechanisms governing centriole assembly and number control.


Asunto(s)
Productos Biológicos/farmacología , Centriolos/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Productos Biológicos/química , Recuento de Células , Ciclo Celular/efectos de los fármacos , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Bibliotecas de Moléculas Pequeñas/química , Células Tumorales Cultivadas
4.
Biochim Biophys Acta ; 1843(9): 1851-64, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24769208

RESUMEN

Centrosome amplification, which is a characteristic of cancer cells, has been understood as a driving force of genetic instability in the development of cancer. In previous work, we demonstrated that TEIF (transcriptional element-interacting factor) distributes in the centrosomes and regulates centrosome status under both physiologic and pathologic conditions. Here we identify TEIF as a downstream effector in EGF/PI3K/Akt signaling. The addition of EGF or transfection of active Akt stimulates centrosome TEIF distribution, resulting in an increase of centrosome splitting and amplification, while inhibitors of either PI3K or Akt attenuate these changes in TEIF and the associated centrosome status. A consensus motif for Akt phosphorylation (RHRVLT) proved to be involved in centrosomal TEIF localization, and the 469-threonine of this motif may be phosphorylated by Akt both in vitro and in vivo. Elimination of this phosphorylated site on TEIF caused reduced centrosome distribution and centrosome splitting or amplification. Moreover, TEIF closely co-localized with C-NAP1 at the proximal ends of centrioles, and centriolar loading of TEIF stimulated by EGF/Akt could displace C-NAP1, resulting in centrosome splitting. These findings reveal linkage of the EGF/PI3K/Akt signaling pathway to regulation of centrosome status which may act as an oncogenic pathway and induce genetic instability in carcinogenesis.


Asunto(s)
Centrosoma/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Secuencia de Aminoácidos , Línea Celular , Centriolos/efectos de los fármacos , Centriolos/metabolismo , Centriolos/ultraestructura , Centrosoma/efectos de los fármacos , Centrosoma/ultraestructura , Proteínas de Unión al ADN , Factor de Crecimiento Epidérmico/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Fosforilación/efectos de los fármacos , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/química
5.
J Cell Physiol ; 229(10): 1427-36, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24532022

RESUMEN

The radiation and radiomimetic drugs used to treat human tumors damage DNA in both cancer cells and normal proliferating cells. Centrosome amplification after DNA damage is well established for transformed cell types but is sparsely reported and not fully understood in untransformed cells. We characterize centriole behavior after DNA damage in synchronized untransformed human cells. One hour treatment of S phase cells with the radiomimetic drug, Doxorubicin, prolongs G2 by at least 72 h, though 14% of the cells eventually go through mitosis in that time. By 72 h after DNA damage we observe a 52% incidence of centriole disengagement plus a 10% incidence of extra centrioles. We find that either APC/C or Plk activities can disengage centrioles after DNA damage, though they normally work in concert. All disengaged centrioles are associated with γ-tubulin and maturation markers and thus, should in principle be capable of reduplicating and organizing spindle poles. The low incidence of reduplication of disengaged centrioles during G2 is due to the p53-dependent expression of p21 and the consequent loss of Cdk2 activity. We find that 26% of the cells going through mitosis after DNA damage contain disengaged or extra centrioles. This could produce genomic instability through transient or persistent spindle multipolarity. Thus, for cancer patients the use of DNA damaging therapies raises the chances of genomic instability and evolution of transformed characteristics in proliferating normal cell populations.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/inducido químicamente , Centriolos/efectos de los fármacos , Daño del ADN , Doxorrubicina/toxicidad , Epitelio Pigmentado de la Retina/efectos de los fármacos , Ciclosoma-Complejo Promotor de la Anafase/antagonistas & inhibidores , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Centriolos/metabolismo , Centriolos/patología , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Inestabilidad Genómica , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Factores de Tiempo , Transfección , Tubulina (Proteína)/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Quinasa Tipo Polo 1
6.
J Cell Sci ; 125(Pt 22): 5353-68, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22956538

RESUMEN

Centrosome duplication is licensed by the disengagement, or 'uncoupling', of centrioles during late mitosis. However, arrest of cells in G2 can trigger premature centriole disengagement. Here, we show that premature disengagement results from untimely activation of the anaphase-promoting complex (APC/C), leading to securin degradation and release of active separase. Although APC/C activation during G2 arrest is dependent on polo-like kinase 1 (Plk1)-mediated degradation of the APC/C inhibitor, early mitotic inhibitor 1 (Emi1), Plk1 also has a second APC/C-independent role in promoting disengagement. Importantly, APC/C and Plk1 activity also stimulates centriole disengagement in response to hydroxyurea or DNA damage-induced cell-cycle arrest and this leads to centrosome amplification. However, the reduplication of disengaged centrioles is dependent on cyclin-dependent kinase 2 (Cdk2) activity and Cdk2 activation coincides with a subsequent inactivation of the APC/C and re-accumulation of cyclin A. Although release from these arrests leads to mitotic entry, the presence of disengaged and/or amplified centrosomes results in the formation of abnormal mitotic spindles that lead to chromosome mis-segregation. Thus, oscillation of APC/C activity during cell cycle arrest promotes both centrosome amplification and genome instability.


Asunto(s)
Puntos de Control del Ciclo Celular , Centrosoma/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de la radiación , Proteínas de Ciclo Celular/metabolismo , Centriolos/efectos de los fármacos , Centriolos/metabolismo , Centriolos/efectos de la radiación , Centrosoma/efectos de los fármacos , Centrosoma/efectos de la radiación , Endopeptidasas/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/efectos de la radiación , Células HeLa , Humanos , Hidroxiurea/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Radiación Ionizante , Separasa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Huso Acromático/efectos de la radiación , Quinasa Tipo Polo 1
7.
J Cell Biol ; 179(2): 321-30, 2007 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-17954613

RESUMEN

Primary cilia (PC) function as microtubule-based sensory antennae projecting from the surface of many eukaryotic cells. They play important roles in mechano- and chemosensory perception and their dysfunction is implicated in developmental disorders and severe diseases. The basal body that functions in PC assembly is derived from the mature centriole, a component of the centrosome. Through a small interfering RNA screen we found several centrosomal proteins (Ceps) to be involved in PC formation. One newly identified protein, Cep164, was indispensable for PC formation and hence characterized in detail. By immunogold electron microscopy, Cep164 could be localized to the distal appendages of mature centrioles. In contrast to ninein and Cep170, two components of subdistal appendages, Cep164 persisted at centrioles throughout mitosis. Moreover, the localizations of Cep164 and ninein/Cep170 were mutually independent during interphase. These data implicate distal appendages in PC formation and identify Cep164 as an excellent marker for these structures.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Cilios/metabolismo , Anticuerpos/farmacología , Proteínas Portadoras/ultraestructura , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/ultraestructura , Línea Celular Tumoral , Estructuras del Núcleo Celular/efectos de los fármacos , Estructuras del Núcleo Celular/metabolismo , Centriolos/efectos de los fármacos , Cilios/efectos de los fármacos , Humanos , Proteínas de Microtúbulos , Transporte de Proteínas/efectos de los fármacos , ARN Interferente Pequeño/metabolismo
8.
Elife ; 112022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35758262

RESUMEN

Centrosomes act as the main microtubule organizing center (MTOC) in metazoans. Centrosome number is tightly regulated by limiting centriole duplication to a single round per cell cycle. This control is achieved by multiple mechanisms, including the regulation of the protein kinase PLK4, the most upstream facilitator of centriole duplication. Altered centrosome numbers in mouse and human cells cause p53-dependent growth arrest through poorly defined mechanisms. Recent work has shown that the E3 ligase TRIM37 is required for cell cycle arrest in acentrosomal cells. To gain additional insights into this process, we undertook a series of genome-wide CRISPR/Cas9 screens to identify factors important for growth arrest triggered by treatment with centrinone B, a selective PLK4 inhibitor. We found that TRIM37 is a key mediator of growth arrest after partial or full PLK4 inhibition. Interestingly, PLK4 cellular mobility decreased in a dose-dependent manner after centrinone B treatment. In contrast to recent work, we found that growth arrest after PLK4 inhibition correlated better with PLK4 activity than with mitotic length or centrosome number. These data provide insights into the global response to changes in centrosome number and PLK4 activity and extend the role for TRIM37 in regulating the abundance, localization, and function of centrosome proteins.


Asunto(s)
Centriolos , Centrosoma , Proteínas Serina-Treonina Quinasas , Pirimidinas , Sulfonas , Animales , Proteínas de Ciclo Celular/metabolismo , Centriolos/efectos de los fármacos , Centriolos/metabolismo , Centrosoma/metabolismo , Ratones , Centro Organizador de los Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Pirimidinas/farmacología , Huso Acromático/metabolismo , Sulfonas/farmacología , Ubiquitina-Proteína Ligasas/metabolismo
9.
J Cell Biol ; 220(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33443571

RESUMEN

The pericentriolar material (PCM) that accumulates around the centriole expands during mitosis and nucleates microtubules. Here, we show the cooperative roles of the centriole and PCM scaffold proteins, pericentrin and CDK5RAP2, in the recruitment of CEP192 to spindle poles during mitosis. Systematic depletion of PCM proteins revealed that CEP192, but not pericentrin and/or CDK5RAP2, was crucial for bipolar spindle assembly in HeLa, RPE1, and A549 cells with centrioles. Upon double depletion of pericentrin and CDK5RAP2, CEP192 that remained at centriole walls was sufficient for bipolar spindle formation. In contrast, through centriole removal, we found that pericentrin and CDK5RAP2 recruited CEP192 at the acentriolar spindle pole and facilitated bipolar spindle formation in mitotic cells with one centrosome. Furthermore, the perturbation of PLK1, a critical kinase for PCM assembly, efficiently suppressed bipolar spindle formation in mitotic cells with one centrosome. Overall, these data suggest that the centriole and PCM scaffold proteins cooperatively recruit CEP192 to spindle poles and facilitate bipolar spindle formation.


Asunto(s)
Centriolos/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Polos del Huso/metabolismo , Antígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centriolos/efectos de los fármacos , Células HeLa , Humanos , Mitosis/efectos de los fármacos , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Pirimidinas/farmacología , Polos del Huso/efectos de los fármacos , Sulfonas/farmacología , Quinasa Tipo Polo 1
10.
J Cell Biol ; 220(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33258871

RESUMEN

Primary cilia function as critical signaling hubs whose absence leads to severe disorders collectively known as ciliopathies; our knowledge of ciliogenesis remains limited. We show that Smo induces ciliogenesis through two distinct yet essential noncanonical Hh pathways in several cell types, including neurons. Surprisingly, ligand activation of Smo induces autophagy via an LKB1-AMPK axis to remove the satellite pool of OFD1. This is required, but not sufficient, for ciliogenesis. Additionally, Smo activates the Gαi-LGN-NuMA-dynein axis, causing accumulation of a portion of OFD1 at centrioles in early ciliogenesis. Both pathways are critical for redistribution of BBS4 from satellites to centrioles, which is also mediated by OFD1 centriolar translocation. Notably, different Smo agonists, which activate Smo distinctly, activate one or the other of these pathways; only in combination they recapitulate the activity of Hh ligand. These studies provide new insight into physiological stimuli (Hh) that activate autophagy and promote ciliogenesis and introduce a novel role for the Gαi-LGN-NuMA-dynein complex in this process.


Asunto(s)
Autofagia , Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Organogénesis , Transducción de Señal , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenilato Quinasa/metabolismo , Autofagia/efectos de los fármacos , Cuerpos Basales/efectos de los fármacos , Cuerpos Basales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Centriolos/efectos de los fármacos , Centriolos/metabolismo , Cilios/efectos de los fármacos , Dineínas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Organogénesis/efectos de los fármacos , Piperazinas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas/metabolismo , Proteolisis/efectos de los fármacos , Piridinas/farmacología , ARN Interferente Pequeño/metabolismo , Epitelio Pigmentado de la Retina/citología , Suero/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Smoothened/agonistas , Receptor Smoothened/antagonistas & inhibidores , Receptor Smoothened/metabolismo
11.
Cells ; 9(12)2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327573

RESUMEN

Sperm elongation and nuclear shaping in Drosophila largely depends on the microtubule cytoskeleton that in early spermatids has centrosomal and non-centrosomal origins. We report here an additional γ-tubulin focus localized on the anterior pole of the nucleus in correspondence of the apical end of the perinuclear microtubules that run within the dense complex. The perinuclear microtubules are nucleated by the pericentriolar material, or centriole adjunct, that surrounds the basal body and are retained to play a major role in nuclear shaping. However, we found that both the perinuclear microtubules and the dense complex are present in spermatids lacking centrioles. Therefore, the basal body or the centriole adjunct seem to be dispensable for the organization and assembly of these structures. These observations shed light on a novel localization of γ-tubulin and open a new scenario on the distribution of the microtubules and the organization of the dense complex during early Drosophila spermiogenesis.


Asunto(s)
Drosophila melanogaster/metabolismo , Microtúbulos/metabolismo , Espermatogénesis , Acetilación , Animales , Centriolos/efectos de los fármacos , Centriolos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/ultraestructura , Masculino , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura , Mutación/genética , Nocodazol/farmacología , Pupa/efectos de los fármacos , Pupa/metabolismo , Espermátides/efectos de los fármacos , Espermátides/metabolismo , Espermatocitos/efectos de los fármacos , Espermatocitos/metabolismo , Espermatogénesis/efectos de los fármacos , Testículo/metabolismo , Testículo/ultraestructura , Tubulina (Proteína)/metabolismo
12.
Cancer Chemother Pharmacol ; 86(1): 33-43, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32519033

RESUMEN

PURPOSE: Polo-like kinase 4 (PLK4), a member of the polo-like kinase family, plays several important roles in mitotic regulation, including centrosome duplication, spindle formation, and cytokinesis. PLK4 overexpression is frequently detected in many human cancers, including ovarian cancer, and the inhibition of PLK4 activity results in cancer cell mitotic arrest and apoptosis. Therefore, PLK4 might be a valid therapeutic target for antitumor therapy. In the present study, we aimed to determine if YLZ-F5, a potent small-molecule inhibitor of PLK4, inhibits ovarian cancer cell growth. METHODS AND RESULTS: MTT assay showed that YLZ-F5 inhibited ovarian cancer cell proliferation in a concentration- and time-dependent manner. The results of colony formation assays were consistent with those of the MTT assay results. In addition, YLZ-F5 induced ovarian cancer cell apoptosis that was associated with activation of caspase-3/caspase-9. Moreover, YLZ-F5 caused aberrant in centriole duplication that was associated with the inhibition of PLK4 phosphorylation. Notably, we showed that YLZ-F5 promoted the accumulation of ovarian cancer cells with mitotic defects (> 4 N DNA content) in a concentration-dependent manner. Furthermore, YLZ-F5 markedly inhibited the migration of A2780 cells. CONCLUSION: Taken together, these findings suggest that YLZ-F5 is a potential drug candidate for human ovarian cancer.


Asunto(s)
Antineoplásicos/farmacología , Indazoles/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Centriolos/efectos de los fármacos , Femenino , Humanos , Mitosis/efectos de los fármacos , Neoplasias Ováricas/patología , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
13.
J Cell Biol ; 105(3): 1283-96, 1987 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-2888771

RESUMEN

The microtubule-nucleating activity of centrosomes was analyzed in fibroblastic (Vero) and in epithelial cells (PtK2, Madin-Darby canine kidney [MDCK]) by double-immunofluorescence labeling with anti-centrosome and antitubulin antibodies. Most of the microtubules emanated from the centrosomes in Vero cells, whereas the microtubule network of MDCK cells appeared to be noncentrosome nucleated and randomly organized. The pattern of microtubule organization in PtK2 cells was intermediate to the patterns observed in the typical fibroblastic and epithelial cells. The two centriole cylinders were tightly associated and located close to the nucleus in Vero and PtK2 cells. In MDCK cells, however, they were clearly separated and electron microscopy revealed that they nucleated only a few microtubules. The stability of centrosomal and noncentrosomal microtubules was examined by treatment of these different cell lines with various concentrations of nocodazole. 1.6 microM nocodazole induced an almost complete depolymerization of microtubules in Vero cells; some centrosome nucleated microtubules remained in PtK2 cells, while many noncentrosomal microtubules resisted that treatment in MDCK cells. Centrosomal and noncentrosomal microtubules regrew in MDCK cells with similar kinetics after release from complete disassembly by high concentrations of nocodazole (33 microM). During regrowth, centrosomal microtubules became resistant to 1.6 microM nocodazole before the noncentrosomal ones, although the latter eventually predominate. We suggest that in MDCK cells, microtubules grow and shrink as proposed by the dynamic instability model but the presence of factors prevents them from complete depolymerization. This creates seeds for reelongation that compete with nucleation off the centrosome. By using specific antibodies, we have shown that the abundant subset of nocodazole-resistant microtubules in MDCK cells contained detyrosinated alpha-tubulin (glu tubulin). On the other hand, the first microtubules to regrow after nocodazole removal contained only tyrosinated tubulin. Glu-tubulin became detectable only after 30 min of microtubule regrowth. This strongly supports the hypothesis that alpha-tubulin detyrosination occurs primarily on "long lived" microtubules and is not the cause of the stabilization process. This is also supported by the increased amount of glu-tubulin that we found in taxol-treated cells.


Asunto(s)
Centriolos/ultraestructura , Microtúbulos/ultraestructura , Tubulina (Proteína)/metabolismo , Alcaloides/farmacología , Animales , Bencimidazoles/farmacología , Carboxipeptidasas , Carboxipeptidasas A , Línea Celular , Núcleo Celular/ultraestructura , Centriolos/efectos de los fármacos , Perros , Riñón , Cinética , Microscopía Electrónica , Microtúbulos/efectos de los fármacos , Nocodazol , Paclitaxel , Tirosina
14.
J Cell Biol ; 93(2): 507-12, 1982 May.
Artículo en Inglés | MEDLINE | ID: mdl-6980222

RESUMEN

Using indirect immunofluorescence, we have found that epidermal growth factor (EGF), at 100 ng/ml, induces centrosomal separation within 20 min in HeLa and 3T3 cells. The effect was evident both in unsynchronized cultures and in HeLa cells blocked in early S phase by hydroxyurea. EGF also induced centrosomal separation in quiescent 3T3 cells blocked in G0/G1 by serum deprivation, indicating that DNA replication is not necessary for this effect. The mechanism of this rapid centrosomal separation and its role in the mitogenic effects of EGF remains to be determined.


Asunto(s)
Centriolos/fisiología , Citoplasma/fisiología , Factor de Crecimiento Epidérmico/farmacología , Organoides/fisiología , Animales , Línea Celular , Centriolos/efectos de los fármacos , Citoplasma/efectos de los fármacos , Replicación del ADN , Células HeLa , Humanos , Interfase , Ratones
15.
J Cell Biol ; 110(4): 1123-35, 1990 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-2108969

RESUMEN

The two centrioles that are localized close to each other and to the nucleus in single Madin-Darby Canine kidney cells (MDCK) move apart by distances as large as 13 microns after the establishment of extensive cellular junctions. Microfilaments, and possibly microtubules appear to be responsible for this separation. In fully polarized cells, the centrioles are localized just beneath the apical membrane. After disruption of intercellular junctions in low calcium medium, the centrioles move back towards the cell center. This process requires intact microtubules but happens even in the absence of microfilaments. These results indicate that the position of centrioles is determined by opposing forces produced by microtubules and microfilaments and suggest that the balance between these forces is modulated by the assembly of cellular junctions. Centriole separation appears to be an early event in the process that precedes their final positioning in the apical-most region of the polarized cell.


Asunto(s)
Centriolos/ultraestructura , Citoesqueleto/ultraestructura , Citoesqueleto de Actina/ultraestructura , Animales , Calcio/farmacología , Línea Celular , Centriolos/efectos de los fármacos , Centriolos/fisiología , Medios de Cultivo , Citocalasina D/farmacología , Citoesqueleto/efectos de los fármacos , Citoesqueleto/fisiología , Perros , Ácido Egtácico/farmacología , Técnica del Anticuerpo Fluorescente , Riñón , Cinética , Microtúbulos/ultraestructura , Modelos Estructurales , Nocodazol/farmacología
16.
J Cell Biol ; 110(6): 2033-42, 1990 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-2190990

RESUMEN

Cycloheximide (500 micrograms/ml) rapidly arrests cleavage, spindle assembly, and cycles of an M-phase-specific histone kinase in early Xenopus blastulae. 2 h after cycloheximide addition, most cells contained two microtubule asters radiating from perinuclear microtubule organizing centers (MTOCs). In contrast, blastomeres treated with cycloheximide for longer periods (3-6 h) contained numerous microtubule asters and MTOCs. Immunofluorescence with an anticentrosome serum and EM demonstrated that the MTOCs in cycloheximide-treated cells were typical centrosomes, containing centrioles and pericentriolar material. We conclude that centrosome duplication continues in cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle. In addition, these observations suggest that Xenopus embryos contain sufficient material to assemble 1,000-2,000 centrosomes in the absence of normal protein synthesis.


Asunto(s)
Blastocisto/efectos de los fármacos , Centriolos/fisiología , Cicloheximida/farmacología , Huso Acromático/fisiología , Xenopus laevis/embriología , Animales , Blastocisto/citología , Blastocisto/ultraestructura , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Centriolos/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Interfase , Microtúbulos/efectos de los fármacos , Microtúbulos/fisiología , Microtúbulos/ultraestructura , Huso Acromático/efectos de los fármacos , Factores de Tiempo
17.
J Cell Biol ; 110(2): 405-15, 1990 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-2298811

RESUMEN

Xenopus eggs are laid arrested at second metaphase of meiosis lacking a functional centrosome. Upon fertilization, the sperm provides the active centrosome that is required for cleavage to occur. The injection of purified centrosomes mimics fertilization and leads to tadpole formation (parthenogenesis). In this work we show that the parthenogenetic activity of centrosomes is inactivated by urea concentrations higher than 2 M. The loss of activity is correlated with a progressive destruction of the centriolar cylinder and extraction of proteins. This shows that centrosomes are relatively sensitive to urea since complete protein unfolding and solubilization of proteins normally occurs at urea concentrations as high as 8-10 M. When present, the parthenogenetic activity is always associated with a pelletable fraction showing that it cannot be solubilized by urea. The parthenogenetic activity is progressively inactivated by salt concentrations higher than 2 M (NaCl or KCl). However, only a few proteins are extracted by these treatments and the centrosome ultrastructure is not affected. This shows that both parthenogenetic activity and centrosomal structure are resistant to relatively high ionic strength. Indeed, most protein structures held by electrostatic forces are dissociated by 2 M salt. The loss of parthenogenetic activity produced at higher salt concentrations, while the structure of the centrosome is unaffected, is an apparent paradox. We interpret this result as meaning that the native state of centrosomes is held together by forces that favor functional denaturation by high ionic strength. The respective effects of urea and salts on centrosomal structure and activity suggest that the centrosome is mainly held together by hydrogen and hydrophobic bonds. The in vitro microtubule nucleating activity of centrosomes can be inactivated at salt or urea concentrations that do not affect the parthenogenetic activity. Since egg cleavage requires the formation of microtubule asters, we conclude that the extracted or denatured microtubule nucleating activity of centrosomes can be complemented by components present in the egg cytoplasm. Both parthenogenetic and microtubule nucleating activities are abolished by protease treatments but resist nuclease action. Since we find no RNA in centrosomes treated by RNase, they probably do not contain a protected RNA. Taken together, these results are consistent with the idea that the whole or part of the centrosome structure acts as a seed to start the centrosome duplication cycle in Xenopus eggs.


Asunto(s)
Centrómero/fisiología , Cromosomas/fisiología , Óvulo/fisiología , Partenogénesis/fisiología , Xenopus laevis/fisiología , Animales , Fraccionamiento Celular , Centriolos/efectos de los fármacos , Centriolos/fisiología , Centriolos/ultraestructura , Centrómero/efectos de los fármacos , Centrómero/ultraestructura , Relación Dosis-Respuesta a Droga , Femenino , Fertilización/fisiología , Microscopía Electrónica , Microtúbulos/efectos de los fármacos , Microtúbulos/fisiología , Microtúbulos/ultraestructura , Ácidos Nucleicos/análisis , Ácidos Nucleicos/fisiología , Óvulo/análisis , Óvulo/ultraestructura , Partenogénesis/efectos de los fármacos , Cloruro de Potasio/farmacología , Yoduro de Potasio/farmacología , Huso Acromático/efectos de los fármacos , Huso Acromático/fisiología , Huso Acromático/ultraestructura , Urea/farmacología
18.
J Cell Biol ; 151(7): 1423-34, 2000 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-11134072

RESUMEN

Apicomplexan parasites harbor a single nonphotosynthetic plastid, the apicoplast, which is essential for parasite survival. Exploiting Toxoplasma gondii as an accessible system for cell biological analysis and molecular genetic manipulation, we have studied how these parasites ensure that the plastid and its 35-kb circular genome are faithfully segregated during cell division. Parasite organelles were labeled by recombinant expression of fluorescent proteins targeted to the plastid and the nucleus, and time-lapse video microscopy was used to image labeled organelles throughout the cell cycle. Apicoplast division is tightly associated with nuclear and cell division and is characterized by an elongated, dumbbell-shaped intermediate. The plastid genome is divided early in this process, associating with the ends of the elongated organelle. A centrin-specific antibody demonstrates that the ends of dividing apicoplast are closely linked to the centrosomes. Treatment with dinitroaniline herbicides (which disrupt microtubule organization) leads to the formation of multiple spindles and large reticulate plastids studded with centrosomes. The mitotic spindle and the pellicle of the forming daughter cells appear to generate the force required for apicoplast division in Toxoplasma gondii. These observations are discussed in the context of autonomous and FtsZ-dependent division of plastids in plants and algae.


Asunto(s)
Centrosoma/metabolismo , Segregación Cromosómica , Plastidios/genética , Plastidios/metabolismo , Toxoplasma/citología , Compuestos de Anilina/farmacología , Animales , División Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Centriolos/efectos de los fármacos , Centriolos/metabolismo , Centriolos/ultraestructura , Centrosoma/efectos de los fármacos , Centrosoma/ultraestructura , Segregación Cromosómica/efectos de los fármacos , Replicación del ADN , Genoma , Microscopía Electrónica , Microscopía por Video , Modelos Biológicos , Plastidios/efectos de los fármacos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Toxoplasma/efectos de los fármacos , Toxoplasma/genética
19.
Toxicol In Vitro ; 59: 115-125, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30980863

RESUMEN

Bisphenol A [BPA, 2,2-bis-(4-hydroxyphenyl)propane] is one of the most prevalent synthetic environmental estrogens; as an endocrine disruptor, it is associated with endocrine-related cancers including breast, ovarian, and prostate. However, the mechanisms by which BPA contributes to carcinogenesis are unclear. This study aims to clarify its toxic effects on mitotic cells and investigate the molecular mechanism. In vitro effects of BPA on mitotic progression were examined by performing experiments on HeLa cells. Proteins involved in mitotic processes were detected by Western blot, live cell imaging, and immunofluorescence staining. The results showed that BPA increased chromosomal instability by perturbing mitotic processes such as bipolar spindle formation and spindle microtubule attachment to the kinetochore. BPA prolonged mitotic progression by disturbing spindle attachment and concomitant activating spindle assembly checkpoint (SAC). Mechanistically, BPA interfered proper localization of HURP to the proximal ends of spindle microtubules, Kif2a to the minus ends of spindle microtubules, and TPX2 on the mitotic spindle. This mislocalization of microtubule associated proteins (MAPs) is postulated to lead to spindle attachment failure. Furthermore, BPA caused multipolar spindle by inducing centriole overduplication and premature disengagement. Although BPA acts as an estrogen receptor (ER) agonist, mitotic defects caused by BPA occurred in an ER-independent manner. Our findings indicate that BPA may stimulate carcinogenesis not only by acting as an endocrine disruptor but also by increasing chromosomal instability during mitosis.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Mitosis/efectos de los fármacos , Fenoles/toxicidad , Carcinogénesis/inducido químicamente , Centriolos/efectos de los fármacos , Inestabilidad Cromosómica/efectos de los fármacos , Células HeLa , Humanos , Cinetocoros/efectos de los fármacos , Células MCF-7 , Proteínas de Neoplasias/metabolismo
20.
Nat Commun ; 10(1): 3585, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395887

RESUMEN

Replication stress, a hallmark of cancerous and pre-cancerous lesions, is linked to structural chromosomal aberrations. Recent studies demonstrated that it could also lead to numerical chromosomal instability (CIN). The mechanism, however, remains elusive. Here, we show that inducing replication stress in non-cancerous cells stabilizes spindle microtubules and favours premature centriole disengagement, causing transient multipolar spindles that lead to lagging chromosomes and micronuclei. Premature centriole disengagement depends on the G2 activity of the Cdk, Plk1 and ATR kinases, implying a DNA-damage induced deregulation of the centrosome cycle. Premature centriole disengagement also occurs spontaneously in some CIN+ cancer cell lines and can be suppressed by attenuating replication stress. Finally, we show that replication stress potentiates the effect of the chemotherapeutic agent taxol, by increasing the incidence of multipolar cell divisions. We postulate that replication stress in cancer cells induces numerical CIN via transient multipolar spindles caused by premature centriole disengagement.


Asunto(s)
Centriolos/metabolismo , Inestabilidad Cromosómica , Segregación Cromosómica , Neoplasias/genética , Huso Acromático/metabolismo , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Carcinogénesis/genética , Línea Celular Tumoral , Centriolos/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Humanos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Neoplasias/tratamiento farmacológico , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Huso Acromático/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA