Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
2.
J Inherit Metab Dis ; 43(1): 133-144, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30942483

RESUMEN

There are many metabolic disorders that present with bone phenotypes. In some cases, the pathological bone symptoms are the main features of the disease whereas in others they are a secondary characteristic. In general, the generation of the bone problems in these disorders is not well understood and the therapeutic options for them are scarce. Bone development occurs in the early stages of embryonic development where the bone formation, or osteogenesis, takes place. This osteogenesis can be produced through the direct transformation of the pre-existing mesenchymal cells into bone tissue (intramembranous ossification) or by the replacement of the cartilage by bone (endochondral ossification). In contrast, bone remodeling takes place during the bone's growth, after the bone development, and continues throughout the whole life. The remodeling involves the removal of mineralized bone by osteoclasts followed by the formation of bone matrix by the osteoblasts, which subsequently becomes mineralized. In some metabolic diseases, bone pathological features are associated with bone development problems but in others they are associated with bone remodeling. Here, we describe three examples of impaired bone development or remodeling in metabolic diseases, including work by others and the results from our research. In particular, we will focus on hereditary multiple exostosis (or osteochondromatosis), Gaucher disease, and the susceptibility to atypical femoral fracture in patients treated with bisphosphonates for several years.


Asunto(s)
Desarrollo Óseo/fisiología , Remodelación Ósea/fisiología , Cartílago/crecimiento & desarrollo , Enfermedades Metabólicas/metabolismo , Osteogénesis/fisiología , Animales , Cartílago/citología , Condrocitos/ultraestructura , Difosfonatos/uso terapéutico , Exostosis Múltiple Hereditaria/metabolismo , Fracturas del Fémur/tratamiento farmacológico , Fracturas del Fémur/metabolismo , Enfermedad de Gaucher/metabolismo , Humanos , Osteoclastos/metabolismo
3.
J Biol Chem ; 293(20): 7703-7716, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29622677

RESUMEN

Hereditary multiple exostoses (HME) is a pediatric disorder caused by heparan sulfate (HS) deficiency and is characterized by growth plate-associated osteochondromas. Previously, we found that osteochondroma formation in mouse models is preceded by ectopic bone morphogenetic protein (BMP) signaling in the perichondrium, but the mechanistic relationships between BMP signaling and HS deficiency remain unclear. Therefore, we used an HS antagonist (surfen) to investigate the effects of this HS interference on BMP signaling, ligand availability, cell-surface BMP receptor (BMPR) dynamics, and BMPR interactions in Ad-293 and C3H/10T1/2 cells. As observed previously, the HS interference rapidly increased phosphorylated SMAD family member 1/5/8 levels. FACS analysis and immunoblots revealed that the cells possessed appreciable levels of endogenous cell-surface BMP2/4 that were unaffected by the HS antagonist, suggesting that BMP2/4 proteins remained surface-bound but became engaged in BMPR interactions and SMAD signaling. Indeed, surface mobility of SNAP-tagged BMPRII, measured by fluorescence recovery after photobleaching (FRAP), was modulated during the drug treatment. This suggested that the receptors had transitioned to lipid rafts acting as signaling centers, confirmed for BMPRII via ultracentrifugation to separate membrane subdomains. In situ proximity ligation assays disclosed that the HS interference rapidly stimulates BMPRI-BMPRII interactions, measured by oligonucleotide-driven amplification signals. Our in vitro studies reveal that cell-associated HS controls BMP ligand availability and BMPR dynamics, interactions, and signaling, and largely restrains these processes. We propose that HS deficiency in HME may lead to extensive local BMP signaling and altered BMPR dynamics, triggering excessive cellular responses and osteochondroma formation.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Condrogénesis/efectos de los fármacos , Exostosis Múltiple Hereditaria/patología , Regulación de la Expresión Génica/efectos de los fármacos , Heparitina Sulfato/antagonistas & inhibidores , Urea/análogos & derivados , Animales , Proteína Morfogenética Ósea 2/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Células Cultivadas , Exostosis Múltiple Hereditaria/genética , Exostosis Múltiple Hereditaria/metabolismo , Humanos , Ratones , Ratones Endogámicos C3H , Fosforilación , Transducción de Señal , Urea/farmacología
4.
Nature ; 499(7459): 491-5, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23863940

RESUMEN

The tyrosine phosphatase SHP2, encoded by PTPN11, is required for the survival, proliferation and differentiation of various cell types. Germline activating mutations in PTPN11 cause Noonan syndrome, whereas somatic PTPN11 mutations cause childhood myeloproliferative disease and contribute to some solid tumours. Recently, heterozygous inactivating mutations in PTPN11 were found in metachondromatosis, a rare inherited disorder featuring multiple exostoses, enchondromas, joint destruction and bony deformities. The detailed pathogenesis of this disorder has remained unclear. Here we use a conditional knockout (floxed) Ptpn11 allele (Ptpn11(fl)) and Cre recombinase transgenic mice to delete Ptpn11 specifically in monocytes, macrophages and osteoclasts (lysozyme M-Cre; LysMCre) or in cathepsin K (Ctsk)-expressing cells, previously thought to be osteoclasts. LysMCre;Ptpn11(fl/fl) mice had mild osteopetrosis. Notably, however, CtskCre;Ptpn11(fl/fl) mice developed features very similar to metachondromatosis. Lineage tracing revealed a novel population of CtskCre-expressing cells in the perichondrial groove of Ranvier that display markers and functional properties consistent with mesenchymal progenitors. Chondroid neoplasms arise from these cells and show decreased extracellular signal-regulated kinase (ERK) pathway activation, increased Indian hedgehog (Ihh) and parathyroid hormone-related protein (Pthrp, also known as Pthlh) expression and excessive proliferation. Shp2-deficient chondroprogenitors had decreased fibroblast growth factor-evoked ERK activation and enhanced Ihh and Pthrp expression, whereas fibroblast growth factor receptor (FGFR) or mitogen-activated protein kinase kinase (MEK) inhibitor treatment of chondroid cells increased Ihh and Pthrp expression. Importantly, smoothened inhibitor treatment ameliorated metachondromatosis features in CtskCre;Ptpn11(fl/fl) mice. Thus, in contrast to its pro-oncogenic role in haematopoietic and epithelial cells, Ptpn11 is a tumour suppressor in cartilage, acting through a FGFR/MEK/ERK-dependent pathway in a novel progenitor cell population to prevent excessive Ihh production.


Asunto(s)
Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Condromatosis/metabolismo , Condromatosis/patología , Exostosis Múltiple Hereditaria/metabolismo , Exostosis Múltiple Hereditaria/patología , Proteínas Hedgehog/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/deficiencia , Transducción de Señal , Animales , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Cartílago/metabolismo , Cartílago/patología , Catepsina K/deficiencia , Catepsina K/genética , Catepsina K/metabolismo , División Celular , Linaje de la Célula , Condromatosis/tratamiento farmacológico , Condromatosis/genética , Exostosis Múltiple Hereditaria/tratamiento farmacológico , Exostosis Múltiple Hereditaria/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica/efectos de los fármacos , Genes Supresores de Tumor/fisiología , Proteínas Hedgehog/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas , Macrófagos/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Ratones Noqueados , Ratones Transgénicos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Monocitos/metabolismo , Osteoclastos/metabolismo , Osteopetrosis/genética , Osteopetrosis/metabolismo , Osteopetrosis/patología , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Connect Tissue Res ; 59(1): 85-98, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29099240

RESUMEN

Multiple hereditary exostoses (MHE) is an autosomal dominant disorder that affects about 1 in 50,000 children worldwide. MHE, also known as hereditary multiple exostoses (HME) or multiple osteochondromas (MO), is characterized by cartilage-capped outgrowths called osteochondromas that develop adjacent to the growth plates of skeletal elements in young patients. These benign tumors can affect growth plate function, leading to skeletal growth retardation, or deformations, and can encroach on nerves, tendons, muscles, and other surrounding tissues and cause motion impairment, chronic pain, and early onset osteoarthritis. In about 2-5% of patients, the osteochondromas can become malignant and life threatening. Current treatments consist of surgical removal of the most symptomatic tumors and correction of the major skeletal defects, but physical difficulties and chronic pain usually continue and patients may undergo multiple surgeries throughout life. Thus, there is an urgent need to find new treatments to prevent or reverse osteochondroma formation. The 2016 International MHE Research Conference was convened to provide a forum for the presentation of the most up-to-date and advanced clinical and basic science data and insights in MHE and related fields; to stimulate the forging of new perspectives, collaborations, and venues of research; and to publicize key scientific findings within the biomedical research community and share insights and relevant information with MHE patients and their families. This report provides a description, review, and assessment of all the exciting and promising studies presented at the Conference and delineates a general roadmap for future MHE research targets and goals.


Asunto(s)
Exostosis Múltiple Hereditaria , Animales , Congresos como Asunto , Exostosis Múltiple Hereditaria/metabolismo , Exostosis Múltiple Hereditaria/patología , Exostosis Múltiple Hereditaria/terapia , Humanos
6.
Hum Mol Genet ; 23(11): 2953-67, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24436304

RESUMEN

Mutations of Filamin genes, which encode actin-binding proteins, cause a wide range of congenital developmental malformations in humans, mainly skeletal abnormalities. However, the molecular mechanisms underlying Filamin functions in skeletal system formation remain elusive. In our screen to identify skeletal development molecules, we found that Cfm (Fam101) genes, Cfm1 (Fam101b) and Cfm2 (Fam101a), are predominantly co-expressed in developing cartilage and intervertebral discs (IVDs). To investigate the functional role of Cfm genes in skeletal development, we generated single knockout mice for Cfm1 and Cfm2, as well as Cfm1/Cfm2 double-knockout (Cfm DKO) mice, by targeted gene disruption. Mice with loss of a single Cfm gene displayed no overt phenotype, whereas Cfm DKO mice showed skeletal malformations including spinal curvatures, vertebral fusions and impairment of bone growth, showing that the phenotypes of Cfm DKO mice resemble those of Filamin B (Flnb)-deficient mice. The number of cartilaginous cells in IVDs is remarkably reduced, and chondrocytes are moderately reduced in Cfm DKO mice. We observed increased apoptosis and decreased proliferation in Cfm DKO cartilaginous cells. In addition to direct interaction between Cfm and Filamin proteins in developing chondrocytes, we showed that Cfm is required for the interaction between Flnb and Smad3, which was reported to regulate Runx2 expression. Furthermore, we found that Cfm DKO primary chondrocytes showed decreased cellular size and fewer actin bundles compared with those of wild-type chondrocytes. These results suggest that Cfms are essential partner molecules of Flnb in regulating differentiation and proliferation of chondryocytes and actin dynamics.


Asunto(s)
Cartílago/metabolismo , Exostosis Múltiple Hereditaria/metabolismo , Filaminas/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Columna Vertebral/metabolismo , Animales , Apoptosis , Cartílago/anomalías , Cartílago/crecimiento & desarrollo , Condrocitos/citología , Condrocitos/metabolismo , Exostosis Múltiple Hereditaria/genética , Exostosis Múltiple Hereditaria/fisiopatología , Filaminas/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/genética , Unión Proteica , Columna Vertebral/anomalías , Columna Vertebral/crecimiento & desarrollo
7.
Am J Pathol ; 185(6): 1676-85, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25863260

RESUMEN

Hereditary multiple exostoses is a pediatric skeletal disorder characterized by benign cartilaginous tumors called exostoses that form next to growing skeletal elements. Hereditary multiple exostoses patients carry heterozygous mutations in the heparan sulfate (HS)-synthesizing enzymes EXT1 or EXT2, but studies suggest that EXT haploinsufficiency and ensuing partial HS deficiency are insufficient for exostosis formation. Searching for additional pathways, we analyzed presence and distribution of heparanase in human exostoses. Heparanase was readily detectable in most chondrocytes, particularly in cell clusters. In control growth plates from unaffected persons, however, heparanase was detectable only in hypertrophic zone. Treatment of mouse embryo limb mesenchymal micromass cultures with exogenous heparanase greatly stimulated chondrogenesis and bone morphogenetic protein signaling as revealed by Smad1/5/8 phosphorylation. It also stimulated cell migration and proliferation. Interfering with HS function both with the chemical antagonist Surfen or treatment with bacterial heparitinase up-regulated endogenous heparanase gene expression, suggesting a counterintuitive feedback mechanism that would result in further HS reduction and increased signaling. Thus, we tested a potent heparanase inhibitor (SST0001), which strongly inhibited chondrogenesis. Our data clearly indicate that heparanase is able to stimulate chondrogenesis, bone morphogenetic protein signaling, cell migration, and cell proliferation in chondrogenic cells. These properties may allow heparanase to play a role in exostosis genesis and pathogenesis, thus making it a conceivable therapeutic target in hereditary multiple exostoses.


Asunto(s)
Cartílago/metabolismo , Condrogénesis/efectos de los fármacos , Exostosis Múltiple Hereditaria/metabolismo , Glucuronidasa/metabolismo , Animales , Cartílago/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Niño , Condrocitos/metabolismo , Condrogénesis/fisiología , Exostosis Múltiple Hereditaria/genética , Glucuronidasa/farmacología , Placa de Crecimiento/metabolismo , Placa de Crecimiento/patología , Humanos , Ratones , Regulación hacia Arriba
8.
Connect Tissue Res ; 56(4): 272-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26076122

RESUMEN

Heparan sulfate (HS) is a component of cell surface and matrix-associated proteoglycans (HSPGs) that, collectively, play crucial roles in many physiologic processes including cell differentiation, organ morphogenesis and cancer. A key function of HS is to bind and interact with signaling proteins, growth factors, plasma proteins, immune-modulators and other factors. In doing so, the HS chains and HSPGs are able to regulate protein distribution, bio-availability and action on target cells and can also serve as cell surface co-receptors, facilitating ligand-receptor interactions. These proteins contain an HS/heparin-binding domain (HBD) that mediates their association and contacts with HS. HBDs are highly diverse in sequence and predicted structure, contain clusters of basic amino acids (Lys and Arg) and possess an overall net positive charge, most often within a consensus Cardin-Weintraub (CW) motif. Interestingly, other domains and residues are now known to influence protein-HS interactions, as well as interactions with other glycosaminoglycans, such as chondroitin sulfate. In this review, we provide a description and analysis of HBDs in proteins including amphiregulin, fibroblast growth factor family members, heparanase, sclerostin and hedgehog protein family members. We discuss HBD structural and functional features and important roles carried out by other protein domains, and also provide novel conformational insights into the diversity of CW motifs present in Sonic, Indian and Desert hedgehogs. Finally, we review progress in understanding the pathogenesis of a rare pediatric skeletal disorder, Hereditary Multiple Exostoses (HME), characterized by HS deficiency and cartilage tumor formation. Advances in understanding protein-HS interactions will have broad implications for basic biology and translational medicine as well as for the development of HS-based therapeutics.


Asunto(s)
Exostosis Múltiple Hereditaria/metabolismo , Heparitina Sulfato/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Transducción de Señal , Secuencias de Aminoácidos , Animales , Exostosis Múltiple Hereditaria/genética , Exostosis Múltiple Hereditaria/patología , Exostosis Múltiple Hereditaria/terapia , Heparitina Sulfato/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Estructura Terciaria de Proteína , Investigación Biomédica Traslacional/métodos
9.
Pituitary ; 18(4): 456-60, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25145448

RESUMEN

BACKGROUND: Stuve-Wiedemann syndrome (STWS) (MIM #601559) is a rare autosomal recessive disorder caused by mutations in the leukemia inhibitory factor receptor (LIFR) gene. STWS has a diverse range of clinical features involving hematopoietic, skeletal, neuronal and immune systems. STWS manifests a high mortality due to increased risk of sudden death. Heterodimerization of the LIFR mediates leukemia inhibitory factor (LIF) signalling through the intracellular Janus kinase (JAK)/STAT3 signalling cascade. The LIF/LIFR system is highly expressed in and regulates the hypothalamo-pituitary-adrenal (HPA) axis. OBJECTIVES: HPA function was investigated in three STWS patients to characterise consequences of impaired LIF/LIFR signalling on adrenal function. DESIGN: Six genetically proven STWS patients from four unrelated Turkish families were included in the study. Sudden death occurred in three before 2 years of age. Basal adrenal function tests were performed by measurement of early morning serum cortisol and plasma ACTH concentrations on at least two different occasions. Low dose synacthen stimulation test and glucagon stimulation tests were performed to explore adrenal function in three patients who survived. RESULTS: All patients carried the same LIFR (p.Arg692X) mutation. Our oldest patient had attenuated morning serum cortisol and plasma ACTH levels at repeated measurements. Two of three patients had attenuated cortisol response (<18 µg/dl) to glucagon, one of whom also had borderline cortisol response to low dose (1 µg) ACTH stimulation consistent with central adrenal insufficiency. CONCLUSIONS: STWS patients may develop central adrenal insufficiency due to impaired LIF/LIFR signalling. LIF/LIFR system plays a role in human HPA axis regulation.


Asunto(s)
Insuficiencia Suprarrenal/genética , Hormona Adrenocorticotrópica/sangre , Exostosis Múltiple Hereditaria/genética , Hidrocortisona/sangre , Sistema Hipotálamo-Hipofisario/metabolismo , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Osteocondrodisplasias/genética , Sistema Hipófiso-Suprarrenal/metabolismo , Insuficiencia Suprarrenal/metabolismo , Niño , Preescolar , Estudios de Cohortes , Exostosis Múltiple Hereditaria/metabolismo , Femenino , Humanos , Lactante , Masculino , Mutación , Osteocondrodisplasias/metabolismo , Transducción de Señal
10.
Connect Tissue Res ; 55(2): 80-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24409815

RESUMEN

Abstract An interdisciplinary and international group of clinicians and scientists gathered in Philadelphia, PA, to attend the fourth International Research Conference on Multiple Hereditary Exostoses (MHE), a rare and severe skeletal disorder. MHE is largely caused by autosomal dominant mutations in EXT1 or EXT2, genes encoding Golgi-associated glycosyltransferases responsible for heparan sulfate (HS) synthesis. HS chains are key constituents of cell surface- and extracellular matrix-associated proteoglycans, which are known regulators of skeletal development. MHE affected individuals are HS-deficient, can display skeletal growth retardation and deformities, and consistently develop benign, cartilage-capped bony outgrowths (termed exostoses or osteochondromas) near the growth plates of many skeletal elements. Nearly 2% of patients will have their exostoses progress to malignancy, becoming peripheral chondrosarcomas. Current treatments are limited to the surgical removal of symptomatic exostoses. No definitive treatments have been established to inhibit further formation and growth of exostoses, prevent transition to malignancy, or address other medical problems experienced by MHE patients, including chronic pain. Thus, the goals of the Conference were to assess our current understanding of MHE pathogenesis, identify key gaps in information, envision future therapeutic strategies and discuss ways to test and implement them. This report provides an assessment of the exciting and promising findings in MHE and related fields presented at the Conference and a discussion of the future MHE research directions. The Conference underlined the critical usefulness of gathering experts in several research fields to forge new alliances and identify cross-fertilization areas to benefit both basic and translational biomedical research on the skeleton.


Asunto(s)
Investigación Biomédica , Neoplasias Óseas , Condrosarcoma , Exostosis Múltiple Hereditaria , Animales , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/fisiopatología , Condrosarcoma/genética , Condrosarcoma/metabolismo , Condrosarcoma/patología , Condrosarcoma/fisiopatología , Congresos como Asunto , Exostosis Múltiple Hereditaria/genética , Exostosis Múltiple Hereditaria/metabolismo , Exostosis Múltiple Hereditaria/patología , Exostosis Múltiple Hereditaria/fisiopatología , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/metabolismo , Trastornos del Crecimiento/patología , Trastornos del Crecimiento/fisiopatología , Humanos , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Philadelphia
12.
Clin Genet ; 82(1): 12-21, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22300393

RESUMEN

Stüve-Wiedemann syndrome (SWS) is a severe congenital skeletal dysplasia associated with life threatening dysautonomic manifestations. Newborns affected with this condition exhibit distinctive shortening and bowing of the long bones with reduced bone volume. The majority of affected newborns die early due to neuromuscular complications namely hyperthermia, apnea, and swallowing difficulties. In this review, we provide an overall picture on the clinical, including long-term management, molecular and cellular aspects of SWS and discuss briefly other related bent bone dysplasias.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Exostosis Múltiple Hereditaria/genética , Factores de Transcripción NFI/genética , Osteocondrodisplasias/genética , Receptores OSM-LIF/genética , Enfermedades del Desarrollo Óseo/metabolismo , Enfermedades del Desarrollo Óseo/patología , Preescolar , Trastornos de Deglución/genética , Trastornos de Deglución/metabolismo , Trastornos de Deglución/patología , Exostosis Múltiple Hereditaria/metabolismo , Exostosis Múltiple Hereditaria/patología , Humanos , Lactante , Recién Nacido , Mutación , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patología , Disautonomías Primarias/genética , Disautonomías Primarias/metabolismo , Disautonomías Primarias/patología
13.
J Orthop Res ; 40(10): 2391-2401, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34996123

RESUMEN

Hereditary multiple exostoses (HME) is a rare, pediatric disorder characterized by osteochondromas that form along growth plates and provoke significant musculoskeletal problems. HME is caused by mutations in heparan sulfate (HS)-synthesizing enzymes EXT1 or EXT2. Seemingly paradoxically, osteochondromas were found to contain excessive extracellular heparanase (Hpse) that could further reduce HS levels and exacerbate pathogenesis. To test Hpse roles, we asked whether its ablation would protect against osteochondroma formation in a conditional HME model consisting of mice bearing floxed Ext1 alleles in Agr-CreER background (Ext1f/f ;Agr-CreER mice). Mice were crossed with a new global Hpse-null (Hpse-/- ) mice to produce compound Hpse-/- ;Ext1f/f ;Agr-CreER mice. Tamoxifen injection of standard juvenile Ext1f/f ;Agr-CreER mice elicited stochastic Ext1 ablation in growth plate and perichondrium, followed by osteochondroma formation, as revealed by microcomputed tomography and histochemistry. When we examined companion conditional Ext1-deficient mice lacking Hpse also, we detected no major decreases in osteochondroma number, skeletal distribution, and overall structure by the analytical criteria above. The Ext1 mutants used here closely mimic human HME pathogenesis, but have not been previously tested for responsiveness to treatments. To exclude some innate therapeutic resistance in this stochastic model, tamoxifen-injected Ext1f/f ;Agr-CreER mice were administered daily doses of the retinoid Palovarotene, previously shown to prevent ectopic cartilage and bone formation in other mouse disease models. This treatment did inhibit osteochondroma formation compared with vehicle-treated mice. Our data indicate that heparanase is not a major factor in osteochondroma initiation and accumulation in mice. Possible roles of heparanase upregulation in disease severity in patients are discussed.


Asunto(s)
Neoplasias Óseas , Exostosis Múltiple Hereditaria , Glucuronidasa , N-Acetilglucosaminiltransferasas , Osteocondroma , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Niño , Modelos Animales de Enfermedad , Exostosis Múltiple Hereditaria/genética , Exostosis Múltiple Hereditaria/metabolismo , Exostosis Múltiple Hereditaria/patología , Glucuronidasa/genética , Glucuronidasa/metabolismo , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Humanos , Ratones , Mutación , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Osteocondroma/genética , Osteocondroma/metabolismo , Osteocondroma/patología , Retinoides , Tamoxifeno , Microtomografía por Rayos X
14.
J Pediatr Orthop ; 31(5): 577-86, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21654469

RESUMEN

BACKGROUND: Multiple hereditary exostoses, also termed as multiple osteochondromas, is a heritable disorder of connective tissue with primarily orthopaedic clinical manifestations. Understanding of its biological underpinnings has been advanced on a variety of fronts in recent years. METHODS: The multifaceted literature regarding osteochondromagenesis and the major clinical challenges in patients with multiple osteochondromas were reviewed. RESULTS: Consideration of recent advances in molecular biology, biochemistry, and animal modeling of osteochondroma pathogenesis yields a unified model. CONCLUSIONS: Mechanistic details and therapeutic targets have yet to be elucidated, but the general biology of osteochondroma formation is increasingly clear, as well as its implications in the orthopaedic clinical setting.


Asunto(s)
Exostosis Múltiple Hereditaria , Glicómica , Placa de Crecimiento , Animales , Exostosis Múltiple Hereditaria/genética , Exostosis Múltiple Hereditaria/metabolismo , Exostosis Múltiple Hereditaria/patología , Humanos
15.
Int J Mol Sci ; 12(10): 6733-42, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22072915

RESUMEN

Rare diseases (RD) are characterized by low prevalence and affect not more than five individuals per 10,000 in the European population; they are a large and heterogeneous group of disorders including more than 7,000 conditions and often involve all organs and tissues, with several clinical subtypes within the same disease. Very often information concerning either diagnosis and/or prognosis on many RD is insufficient. microRNAs are a class of small non-coding RNAs that regulate gene expression at the posttranscriptional level by either degrading or blocking translation of messenger RNA targets. Recently, microRNA expression patterns of body fluids underscored their potential as noninvasive biomarkers for various diseases. The role of microRNAs as potential biomarkers has become particularly attractive. The identification of disease-related microRNAs is essential for understanding the pathogenesis of diseases at the molecular level, and is critical for designing specific molecular tools for diagnosis, treatment and prevention. Computational analysis of microRNA-disease associations is an important complementary means for prioritizing microRNAs for further experimental examination. In this article, we explored the added value of miRs as biomarkers in a selected panel of RD hitting different tissues/systems at different life stages, but sharing the need of better biomarkers for diagnostic and prognostic purposes.


Asunto(s)
MicroARNs/metabolismo , Enfermedades Raras/genética , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Biomarcadores/metabolismo , Exostosis Múltiple Hereditaria/diagnóstico , Exostosis Múltiple Hereditaria/genética , Exostosis Múltiple Hereditaria/metabolismo , Hepatoblastoma/diagnóstico , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Pénfigo Familiar Benigno/diagnóstico , Pénfigo Familiar Benigno/genética , Pénfigo Familiar Benigno/metabolismo , Enfermedades Raras/diagnóstico , Enfermedades Raras/metabolismo , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Sézary/diagnóstico , Síndrome de Sézary/genética , Síndrome de Sézary/metabolismo
16.
Genet Test Mol Biomarkers ; 25(7): 478-485, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34280007

RESUMEN

Background: Multiple osteochondroma (MO), an autosomal dominant genetic disease, is caused by heterozygous mutations in the EXT1 and EXT2 genes. Approximately 80% of pathogenic mutations are nonsense/missense mutations, small indels, and splicing mutations. Splicing mutations, particularly at the 3' and 5' splice sites, disrupt normal mRNA processing and cause exon skipping or aberrant splicing, ultimately resulting in protein truncation and loss of function. Methods: Polymerase chain reaction (PCR) and Sanger sequencing were applied to detect subtle mutations in a Chinese family with MO, the pathogenicity of a splicing variant was predicted by bioinformatics and further verified using a minigene splicing assay. Results: A novel and heterozygous splicing mutation, c.626 + 2_626 + 5delTAGG, was identified in the EXT2 gene of the proband and the father by PCR and Sanger sequencing, whereas the unaffected mother and brother had wild-type alleles at the same site. Bioinformatics predicted that the 5' splicing site of exon 3 in the EXT2 gene was destroyed due to this mutation. A hybrid minigene splicing assay (HMSA) indicated that the mutation disturbed the normal splicing of the EXT2 gene mRNA and led to a deletion of 79 bp at the 5' end of exon 3, which resulted in aberrant splicing of exon 3 and introduced an earlier stop codon in the EXT2 gene. Conclusion: A novel splicing mutation was identified that produced the MO phenotype through aberrant splicing in a Chinese family. This observation, expands our knowledge of the spectrum of molecular pathogenic mechanisms leading to aberrant mRNA splicing.


Asunto(s)
Exostosis Múltiple Hereditaria/genética , N-Acetilglucosaminiltransferasas/genética , Adulto , Alelos , Pueblo Asiatico/genética , China , Exones/genética , Exostosis Múltiple Hereditaria/metabolismo , Femenino , Humanos , Intrones/genética , Masculino , Mutación/genética , Mutación Missense , N-Acetilglucosaminiltransferasas/metabolismo , Linaje , Fenotipo , Sitios de Empalme de ARN/genética , Empalme del ARN/genética
17.
Genet Test Mol Biomarkers ; 25(2): 145-151, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33596140

RESUMEN

Aim: To detect mutations in the EXT1 and EXT2 genes in four Chinese families with hereditary multiple osteochondromas (HMO). HMO is an autosomal dominant disorder characterized by the overgrowth of multiple cartilage-capped bones in the metaphysis of long bones and flat bones. Methods: Polymerase chain reaction-based amplification followed by DNA sequencing of the complete coding sequences of EXT1 and EXT2 was performed for four Chinese families with HMO. Results: The mutant allele was found in six patients: three mutations were found in EXT1 and two in EXT2. A novel frameshift mutation, which generates a premature stop codon at codon 586 and causes partial loss of the glycosyltransferase domain, was detected in exon 9 of EXT1 (F579Yfs*8). We hypothesize that F579Yfs*8 is a pathogenic mutation. Two novel missense mutations (G339S and V545D) were found in EXT1. The variant c.1634T>A (V545D) is apparently benign. In addition we found a novel deletion mutation in EXT2, c.856_864 del TTCCTCCTG, which results in the deletion of 286Phe, 287Leu, and 288Leu, that is likely pathogenic. Finally, we identified a likely benign variant in exon 13 of EXT2. c.2035-41T>C (rs3740878). Conclusions: We found three novel, potentially pathogenic mutations in EXT1 and EXT2, including a novel frameshift mutation. More importantly, our study results have expanded the spectrum of EXT mutations conducive to the genetic diagnosis and counseling of patients with HMO.


Asunto(s)
Exostosis Múltiple Hereditaria/genética , N-Acetilglucosaminiltransferasas/genética , Adulto , Alelos , Pueblo Asiatico/genética , Secuencia de Bases/genética , Niño , Preescolar , China , Exones/genética , Exostosis Múltiple Hereditaria/metabolismo , Familia , Femenino , Mutación del Sistema de Lectura/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Mutación Missense/genética , N-Acetilglucosaminiltransferasas/metabolismo , Linaje
18.
Clin Genet ; 78(6): 507-16, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20662852

RESUMEN

Multiple osteochondroma (MO) is a rare skeletal disease characterized by the formation of multiple benign cartilage-capped bone tumors; in 1-5% of patients, a malignant transformation into peripheral chondrosarcoma may occur. This disorder is characterized by a large spectrum of germline mutations scattered along EXT1/EXT2 genes, the presence of a significant percentage of patients without alterations in EXT genes, and a large phenotypic variability. The molecular basis of MO genetic and clinical heterogeneity, including the causes underlying malignant transformation, is currently unknown. This leads to the lack of appropriate diagnostic/prognostic markers as well as of therapeutic options. Recently, specific microRNAs (miRNAs) were reported to be involved in chondrogenesis and inflammatory cartilage diseases. We therefore hypothesized a role for microRNAs in cartilaginous tumors and investigated microRNA expression in osteochondroma and normal cartilage tissues to evaluate whether they could affect osteochondromas onset and/or clinical manifestations. Our results indicate that miRNAs differentially expressed in MO samples may hamper the molecular signaling responsible for normal differentiation of chondrocytes, contributing to pathogenesis and clinical outcome. Although further studies are needed to validate our observations and to identify targets of miRNAs, this is the first study reporting on miRNA expression in growth plate and its comparison with pathological conditions.


Asunto(s)
Cartílago/metabolismo , Exostosis Múltiple Hereditaria/genética , MicroARNs/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Cartílago/patología , Exostosis Múltiple Hereditaria/metabolismo , Exostosis Múltiple Hereditaria/patología , Perfilación de la Expresión Génica , Humanos
19.
J Exp Med ; 217(3)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31914175

RESUMEN

The gene IL6ST encodes GP130, the common signal transducer of the IL-6 cytokine family consisting of 10 cytokines. Previous studies have identified cytokine-selective IL6ST defects that preserve LIF signaling. We describe three unrelated families with at least five affected individuals who presented with lethal Stüve-Wiedemann-like syndrome characterized by skeletal dysplasia and neonatal lung dysfunction with additional features such as congenital thrombocytopenia, eczematoid dermatitis, renal abnormalities, and defective acute-phase response. We identified essential loss-of-function variants in IL6ST (a homozygous nonsense variant and a homozygous intronic splice variant with exon skipping). Functional tests showed absent cellular responses to GP130-dependent cytokines including IL-6, IL-11, IL-27, oncostatin M (OSM), and leukemia inhibitory factor (LIF). Genetic reconstitution of GP130 by lentiviral transduction in patient-derived cells reversed the signaling defect. This study identifies a new genetic syndrome caused by the complete lack of signaling of a whole family of GP130-dependent cytokines in humans and highlights the importance of the LIF signaling pathway in pre- and perinatal development.


Asunto(s)
Receptor gp130 de Citocinas/metabolismo , Exostosis Múltiple Hereditaria/metabolismo , Osteocondrodisplasias/metabolismo , Transducción de Señal/fisiología , Antígenos CD/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Interleucina-11/metabolismo , Interleucina-6/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Oncostatina M/metabolismo , Receptores de Citocinas/metabolismo
20.
Dev Cell ; 6(6): 801-13, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15177029

RESUMEN

Exostosin1 (Ext1) belongs to a family of glycosyltransferases necessary for the synthesis of the heparan sulfate (HS) chains of proteoglycans, which regulate signaling of several growth factors. Loss of tout velu (ttv), the homolog of Ext1 in Drosophila, inhibits Hedgehog movement. In contrast, we show that reduced HS synthesis in mice carrying a hypomorphic mutation in Ext1 results in an elevated range of Indian hedgehog (Ihh) signaling during embryonic chondrocyte differentiation. Our data suggest a dual function for HS: First, HS is necessary to bind Hedgehog in the extracellular space. Second, HS negatively regulates the range of Hedgehog signaling in a concentration-dependent manner. Additionally, our data indicate that Ihh acts as a long-range morphogen, directly activating the expression of parathyroid hormone-like hormone. Finally, we propose that the development of exostoses in the human Hereditary Multiple Exostoses syndrome can be attributed to activation of Ihh signaling.


Asunto(s)
Huesos/embriología , Huesos/metabolismo , Heparitina Sulfato/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Osteogénesis/genética , Transactivadores/metabolismo , Animales , Huesos/citología , Diferenciación Celular/genética , Condrocitos/citología , Condrocitos/metabolismo , Exostosis Múltiple Hereditaria/genética , Exostosis Múltiple Hereditaria/metabolismo , Exostosis Múltiple Hereditaria/fisiopatología , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog , Heparitina Sulfato/genética , Ratones , Ratones Transgénicos , Mutación/genética , N-Acetilglucosaminiltransferasas/genética , Proteína Relacionada con la Hormona Paratiroidea/genética , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Transducción de Señal/genética , Transactivadores/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA