Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(26): e2121987119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35749365

RESUMEN

Mechanisms of defense against ferroptosis (an iron-dependent form of cell death induced by lipid peroxidation) in cellular organelles remain poorly understood, hindering our ability to target ferroptosis in disease treatment. In this study, metabolomic analyses revealed that treatment of cancer cells with glutathione peroxidase 4 (GPX4) inhibitors results in intracellular glycerol-3-phosphate (G3P) depletion. We further showed that supplementation of cancer cells with G3P attenuates ferroptosis induced by GPX4 inhibitors in a G3P dehydrogenase 2 (GPD2)-dependent manner; GPD2 deletion sensitizes cancer cells to GPX4 inhibition-induced mitochondrial lipid peroxidation and ferroptosis, and combined deletion of GPX4 and GPD2 synergistically suppresses tumor growth by inducing ferroptosis in vivo. Mechanistically, inner mitochondrial membrane-localized GPD2 couples G3P oxidation with ubiquinone reduction to ubiquinol, which acts as a radical-trapping antioxidant to suppress ferroptosis in mitochondria. Taken together, these results reveal that GPD2 participates in ferroptosis defense in mitochondria by generating ubiquinol.


Asunto(s)
Ferroptosis , Glicerolfosfato Deshidrogenasa , Peroxidación de Lípido , Mitocondrias , Proteínas Mitocondriales , Neoplasias , Línea Celular Tumoral , Ferroptosis/genética , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Glicerolfosfato Deshidrogenasa/genética , Glicerolfosfato Deshidrogenasa/metabolismo , Humanos , Peroxidación de Lípido/genética , Mitocondrias/enzimología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neoplasias/enzimología , Neoplasias/patología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(10): e2122287119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238637

RESUMEN

SignificanceMetformin is the most commonly prescribed drug for the treatment of type 2 diabetes mellitus, yet the mechanism by which it lowers plasma glucose concentrations has remained elusive. Most studies to date have attributed metformin's glucose-lowering effects to inhibition of complex I activity. Contrary to this hypothesis, we show that inhibition of complex I activity in vitro and in vivo does not reduce plasma glucose concentrations or inhibit hepatic gluconeogenesis. We go on to show that metformin, and the related guanides/biguanides, phenformin and galegine, inhibit complex IV activity at clinically relevant concentrations, which, in turn, results in inhibition of glycerol-3-phosphate dehydrogenase activity, increased cytosolic redox, and selective inhibition of glycerol-derived hepatic gluconeogenesis both in vitro and in vivo.


Asunto(s)
Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Gluconeogénesis , Guanidinas/farmacología , Hipoglucemiantes/farmacología , Metformina/farmacología , Fenformina/farmacología , Animales , Glucosa/metabolismo , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Hígado/efectos de los fármacos , Hígado/metabolismo , Oxidación-Reducción , Piridinas/farmacología
3.
Nature ; 510(7506): 542-6, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24847880

RESUMEN

Metformin is considered to be one of the most effective therapeutics for treating type 2 diabetes because it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain or posing a risk of hypoglycaemia. For over half a century, this agent has been prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense oligonucleotide knockdown of hepatic mitochondrial glycerophosphate dehydrogenase in rats resulted in a phenotype akin to chronic metformin treatment, and abrogated metformin-mediated increases in cytosolic redox state, decreases in plasma glucose concentrations, and inhibition of endogenous glucose production. These findings were replicated in whole-body mitochondrial glycerophosphate dehydrogenase knockout mice. These results have significant implications for understanding the mechanism of metformin's blood glucose lowering effects and provide a new therapeutic target for type 2 diabetes.


Asunto(s)
Gluconeogénesis/efectos de los fármacos , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Metformina/farmacología , Mitocondrias/enzimología , Animales , Glucemia/análisis , Glucemia/biosíntesis , Células Cultivadas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/metabolismo , Glicerolfosfato Deshidrogenasa/deficiencia , Glicerolfosfato Deshidrogenasa/genética , Glicerolfosfato Deshidrogenasa/metabolismo , Humanos , Hipoglucemiantes/farmacología , Insulina/metabolismo , Secreción de Insulina , Ácido Láctico/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Noqueados , Oxidación-Reducción/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
4.
Bull Exp Biol Med ; 168(4): 470-473, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32146623

RESUMEN

Combined antituberculosis substances induced a dose-dependent changes in activity of dehydrogenases and hydrolases in rat lymphocytes. The main toxic effect of the substances was related to inhibition of mitochondrial dehydrogenases (succinate dehydrogenase and α-glycerol phosphate dehydrogenase) usually followed by suppression of activity of hydrolytic enzymes (acid phosphatase and non-specific esterase). Opposite changes in lactate dehydrogenase activity reflected specific features of intoxication.


Asunto(s)
Antituberculosos/toxicidad , Etambutol/toxicidad , Fluoroquinolonas/toxicidad , Isoniazida/toxicidad , Linfocitos/efectos de los fármacos , Protionamida/toxicidad , Pirazinamida/toxicidad , Rifampin/toxicidad , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Administración Oral , Animales , Animales no Consanguíneos , Combinación de Medicamentos , Esterasas/genética , Esterasas/metabolismo , Expresión Génica/efectos de los fármacos , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Glicerolfosfato Deshidrogenasa/genética , Glicerolfosfato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Linfocitos/citología , Linfocitos/enzimología , Masculino , Cultivo Primario de Células , Ratas , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
5.
Pestic Biochem Physiol ; 135: 41-46, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28043329

RESUMEN

Insects pollinate 75% of crops used for human consumption. Over the last decade, a substantial reduction in the abundance of pollinating insects has been recorded and recognized as a severe matter for food supply security. Many of the important food crops destined for human consumption are grown in greenhouses. A unique feature of greenhouse agriculture is the extensive use of fungicides to curb multiple fungal infections. The most widely used pollinating insects in greenhouses are commercially reared bumblebees. However, there is no data regarding the toxicity of fungicides to bumblebee mitochondria. To fill this gap in knowledge, we examined the effects of 16 widely used fungicides on the energetics of the flight muscles mitochondria of Bombus terrestris. We found that diniconazole and fludioxonil uncoupled the respiration of mitochondria; dithianon and difenoconazole inhibited it. By analyzing the action of these inhibitors on mitochondrial respiration and generation of reactive oxygen species, we concluded that difenoconazole inhibited electron transport at the level of Complex I and glycerol-3-phosphate dehydrogenase. Dithianon strongly inhibited succinate dehydrogenase and glycerol-3-phosphate dehydrogenase. It also strongly inhibited mitochondrial oxidation of NAD-linked substrates or glycerol 3-phosphate, but it had no effect on the enzymatic activity of Complex I. It may be suggested that dithianon inhibits electron transport downstream of Complex I, likely at multiply sites.


Asunto(s)
Abejas , Fungicidas Industriales/toxicidad , Mitocondrias Musculares/efectos de los fármacos , Animales , Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Glicerolfosfato Deshidrogenasa/metabolismo , Glicerofosfatos/metabolismo , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Musculares/metabolismo , NADH Deshidrogenasa/antagonistas & inhibidores , NADH Deshidrogenasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo
6.
Bioorg Med Chem Lett ; 25(17): 3564-8, 2015 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-26169126

RESUMEN

The enzyme glycerol-3-phosphate dehydrogenase (G3PDH) from Leishmania species is considered as an attractive target to design new antileishmanial drugs and a previous in silico study reported on the importance of chalcones to achieve its inhibition. Here, we report the identification of a synthetic chalcone in our in vitro assays with promastigote cells from Leishmania amazonensis, its biological activity in animal models, and docking followed by molecular dynamics simulation to investigate the molecular interactions and structural patterns that are crucial to achieve the inhibition complex between this compound and G3PDH. A molecular fragment of this natural product derivative can provide new inhibitors with increased potency and selectivity.


Asunto(s)
Antiprotozoarios/química , Antiprotozoarios/farmacología , Chalconas/química , Chalconas/farmacología , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Leishmania/enzimología , Animales , Glicerolfosfato Deshidrogenasa/metabolismo , Leishmania/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/parasitología , Macrófagos/efectos de los fármacos , Ratones , Simulación del Acoplamiento Molecular
7.
Molecules ; 19(10): 16656-71, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25322285

RESUMEN

Obesity and its related disorders have become leading metabolic diseases. In the present study, we used 3T3-L1 adipocytes to investigate the anti-obesity activity of hispidin and two related compounds that were isolated from Alpinia zerumbet (alpinia) rhizomes. The results showed that hispidin, dihydro-5,6-dehydrokawain (DDK), and 5,6-dehydrokawain (DK) have promising anti-obesity properties. In particular, all three compounds significantly increased intracellular cyclic adenosine monophosphate (cAMP) concentrations by 81.2% ± 0.06%, 67.0% ± 1.62%, and 56.9% ± 0.19%, respectively. Hispidin also stimulated glycerol release by 276.4% ± 0.8% and inhibited lipid accumulation by 47.8% ± 0.16%. Hispidin and DDK decreased intracellular triglyceride content by 79.5% ± 1.37% and 70.2% ± 1.4%, respectively, and all three compounds inhibited glycerol-3-phosphate dehydrogenase (GPDH) and pancreatic lipase, with hispidin and DDK being the most potent inhibitors. Finally, none of the three compounds reduced 3T3-L1 adipocyte viability. These results highlight the potential for developing hispidin and its derivatives as anti-obesity compounds.


Asunto(s)
Adipocitos/efectos de los fármacos , Alpinia/química , Fármacos Antiobesidad/farmacología , Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Pironas/farmacología , Células 3T3-L1 , Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Glicerolfosfato Deshidrogenasa/metabolismo , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Lípidos/análisis , Ratones , Triglicéridos/metabolismo
8.
J Sci Food Agric ; 94(5): 943-50, 2014 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-23929507

RESUMEN

BACKGROUND: Rapid urbanisation and nutritional transition is fuelling the increased global incidence of type 2 diabetes. Pineapple fruit residue was explored for its nutraceutical properties as an alternative or adjunct to currently available treatment regime. Ethyl acetate and methanolic extracts of pineapple fruit residue were evaluated for anti-diabetic activity in cell free and cell based systems. Specifically, we assessed: (1) antioxidant potential, (2) anti-glycation potential, (3) carbohydrate digestive enzyme inhibition, and (4) lipid accumulation and glycerol-3-phosphate dehydrogenase activity in differentiating 3T3-L1 cells. RESULTS: The active components in the ethyl acetate and methanolic extracts were identified as sinapic acid, daucosterol, 2-methylpropanoate, 2,5-dimethyl-4-hydroxy-3(2H)-furanone, methyl 2-methylbutanoate and triterpenoid ergosterol using DART/HRMS and ESI/HRMS. Micronutrient analysis revealed the presence of magnesium, potassium and calcium. Adipogenic potential, anti-glycation property of the ethyl acetate extract, and DNA damage protection capacity of the methanolic extract are promising. CONCLUSION: Results from this study clearly indicate that pineapple fruit residue could be utilised as a nutraceutical against diabetes and related complications.


Asunto(s)
Adipocitos Blancos/metabolismo , Ananas/química , Suplementos Dietéticos , Frutas/química , Hipoglucemiantes/aislamiento & purificación , Residuos Industriales/análisis , Extractos Vegetales/aislamiento & purificación , Células 3T3-L1 , Adipocitos Blancos/citología , Adipogénesis , Animales , Antioxidantes/química , Antioxidantes/economía , Antioxidantes/aislamiento & purificación , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/economía , Inhibidores Enzimáticos/aislamiento & purificación , Industria de Procesamiento de Alimentos/economía , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Glicerolfosfato Deshidrogenasa/metabolismo , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/economía , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Glicosilación , Hipoglucemiantes/química , Hipoglucemiantes/economía , India , Residuos Industriales/economía , Lipotrópicos/química , Lipotrópicos/economía , Lipotrópicos/aislamiento & purificación , Ratones , Extractos Vegetales/química , Extractos Vegetales/economía , Solventes/química , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo
9.
Cell Biol Int ; 37(9): 1003-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23804196

RESUMEN

Intercellular signalling communication between adipose and muscle tissue has been investigated. To test the effect of muscle cells on adipogenic gene expression, we utilised an in vitro co-culture system, in which fat (3T3-L1) and muscle (L-6) cells were physically separated but chemically exposed each other via insert with 0.4 µm porous membrane. When 3T3-L1 and L-6 cells reached at 80 and 40% confluence, respectively in separate wells, L-6 cells grown in insert were transferred onto 6-well plates where 3T3-L1 cells were being grown. When both cells were fully differentiated in co-culture plates, morphology of 3T3-L1 was examined by staining with Oil-red-O. Activity of glycerol-3-phosphate dehydrogenase (GPDH) and adipogenic gene expression including lipoprotein lipase (LPL), adipsin, GPDH, peroxisome proliferator-activated receptor-γ (PPARγ) and CCAAT/enhancer binding protein (C/EBPα) were analysed. The presence of muscle cells during preadipocyte differentiation inhibited (P < 0.05) lipogenesis by suppressing lipogenic gene expression including LPL, adipsin and GPDH. Furthermore, GPDH activity was also decreased (P < 0.05) in 3T3-L1 cells by the presence of L-6 cells. These results suggest that presence of muscle cells suppresses adipogenic differentiation by inhibiting the adipogenic gene expression and GPDH activity in the muscle and fat cell co-culture system.


Asunto(s)
Adipogénesis/genética , Comunicación Celular/genética , Regulación de la Expresión Génica/genética , Lipogénesis/genética , Fibras Musculares Esqueléticas/metabolismo , Células 3T3-L1 , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Diferenciación Celular , Técnicas de Cocultivo , Factor D del Complemento/antagonistas & inhibidores , Factor D del Complemento/genética , Factor D del Complemento/metabolismo , Cámaras de Difusión de Cultivos , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Glicerolfosfato Deshidrogenasa/genética , Glicerolfosfato Deshidrogenasa/metabolismo , Lipoproteína Lipasa/antagonistas & inhibidores , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Ratones , Fibras Musculares Esqueléticas/citología , PPAR gamma/genética , PPAR gamma/metabolismo , Transducción de Señal
10.
J Sci Food Agric ; 93(3): 485-90, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22821258

RESUMEN

BACKGROUND: Kefir, a traditional fermented milk composed of microbial symbionts, is reported to have various health benefits such as anti-tumour, anti-inflammatory, anti-neoplastic and pro-digestive effects. In this study, to elucidate the effects of kefir on adipocyte differentiation and lipid accumulation, three fractions were prepared from kefir culture broth. The inhibitory effects of kefir liquid culture broth fraction (Fr-1), soluble fraction (Fr-2) and insoluble fraction (Fr-3), prepared by sonication of kefir solid culture broth, on adipocyte differentiation in 3T3-L1 preadipocytes were examined. RESULTS: Fr-3 (0.1 mg mL(-1)) significantly decreased lipid accumulation and glycerol-3-phosphate dehydrogenase (GPDH) activity by 60 and 68% respectively without affecting cell viability. In addition, Fr-3 treatment down-regulated the mRNA expression of adipogenic transcription factors including C/EBPα (32%), PPARγ (46%) and SREBP-1c (34%) during adipocyte differentiation compared with untreated control cells. The mRNA expression of adipocyte-specific genes (aP2, FAS and ACC) was also clearly decreased. CONCLUSION: The results suggest that the insoluble fraction of kefir (Fr-3) mediates anti-adipogenic effects through the inhibition of adipocyte differentiation, partly via suppression of the C/EBPα-, SREBP-1c- and PPARγ-dependent pathways.


Asunto(s)
Adipocitos/citología , Adipogénesis/genética , Diferenciación Celular/fisiología , Productos Lácteos Cultivados/fisiología , Factores de Transcripción/genética , Células 3T3-L1 , Animales , Proteína alfa Potenciadora de Unión a CCAAT/antagonistas & inhibidores , Proteína alfa Potenciadora de Unión a CCAAT/genética , Productos Lácteos Cultivados/química , Regulación hacia Abajo , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Ratones , PPAR gamma/antagonistas & inhibidores , PPAR gamma/genética , ARN Mensajero/genética , Solubilidad , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/antagonistas & inhibidores , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
12.
Chem Pharm Bull (Tokyo) ; 60(1): 129-36, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22223384

RESUMEN

Obesity is a serious health problem worldwide. We investigated the anti-obesity effect of the flower of Albizia julibrissin DURAZZ. (Leguminosae). A 90% EtOH extract of the flower inhibited adipogenesis in 3T3-L1 preadipocytes, as well as the activity of glycerol-3-phosphate dehydrogenase (GPDH) activity. New flavonol acylglycosides (1-4) and eighteen known compounds (5-22) were isolated by bioassay-directed fractionation. These new glycosides were elucidated to be 3″-(E)-p-coumaroylquercitrin (1), 3″-(E)-feruloylquercitrin (2), 3″-(E)-cinnamoylquercitrin (3), and 2″-(E)-cinnamoylquercitrin (4) on the basis of spectroscopic and chemical analysis. These compounds inhibited adipogenesis in 3T3-L1 preadipocytes. In particular, 2 exhibited potent inhibitory effects on triglyceride accumulation. Furthermore, GPDH activity was inhibited by 2. Additionally, 2 inhibited glucose uptake in 3T3-L1 adipocytes. These results indicate that the 90% EtOH extract and compounds isolated from the flower of A. julibrissin inhibit adipogenesis in 3T3-L1 preadipocytes and may have anti-obesity effect through the inhibition of preadipocyte differentiation.


Asunto(s)
Albizzia/química , Fármacos Antiobesidad/química , Flavonoles/química , Glicósidos/química , Metabolismo de los Lípidos/efectos de los fármacos , Células 3T3-L1 , Adipogénesis/efectos de los fármacos , Animales , Fármacos Antiobesidad/aislamiento & purificación , Fármacos Antiobesidad/farmacología , Diferenciación Celular/efectos de los fármacos , Flores/química , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Glicerolfosfato Deshidrogenasa/metabolismo , Glicósidos/aislamiento & purificación , Glicósidos/farmacología , Ratones , Triglicéridos/metabolismo
13.
Biometals ; 24(1): 135-41, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20938718

RESUMEN

The antibacterial activity and mechanism of silver nanoparticles (Ag-NPs) on Staphylococcus aureus ATCC 6538P were investigated in this study. The experiment results showed the minimum bactericidal concentration (MBC) of Ag-NPs to S. aureus was 20 µg/ml. Moreover, when bacteria cells were exposed to 50 µg/ml Ag-NPs for 6 h, the cell DNA was condensed to a tension state and could have lost their replicating abilities. When S. aureus cells were exposed to 50 µg/ml Ag-NPs for 12 h, the cell wall was breakdown, resulting in the release of the cellular contents into the surrounding environments, and finally became collapsed. And Ag-NPs could reduce the enzymatic activity of respiratory chain dehydrogenase. Furthermore, the proteomic analysis showed that the expression abundance of some proteins was changed in the treated bacterial cell with Ag-NPs, formate acetyltransferase increased 5.3-fold in expression abundance, aerobic glycerol-3-phosphate dehydrogenase decreased 6.5-fold, ABC transporter ATP-binding protein decreased 6.2-fold, and recombinase A protein decreased 4.9-fold.


Asunto(s)
Antibacterianos/farmacología , Nanopartículas del Metal/química , Plata/farmacología , Staphylococcus aureus/efectos de los fármacos , Acetiltransferasas/metabolismo , Antibacterianos/química , Pared Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Glicerolfosfato Deshidrogenasa/metabolismo , Pruebas de Sensibilidad Microbiana , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo , Proteómica , Recombinasas/antagonistas & inhibidores , Recombinasas/metabolismo , Plata/química , Staphylococcus aureus/citología , Staphylococcus aureus/enzimología
14.
Biol Pharm Bull ; 34(4): 490-4, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21467634

RESUMEN

We previously reported that caffeic acid phenethyl ester (CAPE) suppresses 3T3-L1 differentiation to adipocytes through the inhibition of peroxisome proliferator-activated receptor (PPAR) gamma, CCAAT/enhancer-binding protein (C/EBP) alpha, fatty acid synthase (Fas) and adipocytes-specific fatty acid binding protein 2 (aP2) expressions (Juman et al., Biol. Pharm. Bull., 33, 1484-1488 (2010)). In the present study, we confirmed that CAPE had inhibitory effects on increased glycerol-3-phosphate dehydrogenase (GPDH) activity and an increased insulin receptor substrate 1 (IRS-1). Our data show that treatment with 50 µM CAPE significantly reduced the levels of leptin (p<0.05), resistin (p<0.05) and tumor necrosis factor (TNF)-alpha (p<0.05) which are known to aid adipocytokines production in adipocytes. In 3T3-L1 cells, treatment of CAPE decreased the triglyceride deposition similar to resveratrol, which is known to have an inhibitory effect on 3T3-L1 differentiation to adipocytes. In conclusion, we found that CAPE suppresses the production and secretion of adipocytokines from mature adipocytes in 3T3-L1 cells.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipoquinas/biosíntesis , Ácidos Cafeicos/farmacología , Leptina/biosíntesis , Alcohol Feniletílico/análogos & derivados , Própolis/química , Resistina/biosíntesis , Factor de Necrosis Tumoral alfa/biosíntesis , Células 3T3-L1 , Adipocitos/citología , Adipocitos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Proteínas Sustrato del Receptor de Insulina/antagonistas & inhibidores , Ratones , Alcohol Feniletílico/farmacología , Resveratrol , Estilbenos/farmacología , Triglicéridos/biosíntesis
15.
Diabetes ; 70(7): 1575-1580, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33849997

RESUMEN

Mitochondrial glycerol phosphate dehydrogenase (mGPD) is the rate-limiting enzyme of the glycerol phosphate redox shuttle. It was recently claimed that metformin, a first-line drug used for the treatment of type 2 diabetes, inhibits liver mGPD 30-50%, suppressing gluconeogenesis through a redox mechanism. Various factors cast doubt on this idea. Total-body knockout of mGPD in mice has adverse effects in several tissues where the mGPD level is high but has little or no effect in liver, where the mGPD level is the lowest of 10 tissues. Metformin has beneficial effects in humans in tissues with high levels of mGPD, such as pancreatic ß-cells, where the mGPD level is much higher than that in liver. Insulin secretion in mGPD knockout mouse ß-cells is normal because, like liver, ß-cells possess the malate aspartate redox shuttle whose redox action is redundant to the glycerol phosphate shuttle. For these and other reasons, we used four different enzyme assays to reassess whether metformin inhibited mGPD. Metformin did not inhibit mGPD in homogenates or mitochondria from insulin cells or liver cells. If metformin actually inhibited mGPD, adverse effects in tissues where the level of mGPD is much higher than that in the liver could prevent the use of metformin as a diabetes medicine.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Metformina/farmacología , Mitocondrias/enzimología , Animales , Gluconeogénesis/efectos de los fármacos , Humanos , Masculino , Metformina/uso terapéutico , Ratones , Ratones Endogámicos BALB C , NAD/metabolismo , Oxidación-Reducción , Fenformina/farmacología , Ratas
16.
J Mol Biol ; 357(3): 858-69, 2006 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-16460752

RESUMEN

Homo sapiens L-alpha-glycerol-3-phosphate dehydrogenase 1 (GPD1) catalyzes the reversible biological conversion of dihydroxyacetone (DHAP) to glycerol-3-phosphate. The GPD1 protein was expressed in Escherichia coli, and purified as a fusion protein with glutathione S-transferase. Here we report the apoenzyme structure of GPD1 determined by multiwavelength anomalous diffraction phasing, and other complex structures with small molecules (NAD+ and DHAP) by the molecular replacement method. This enzyme structure is organized into two distinct domains, the N-terminal eight-stranded beta-sheet sandwich domain and the C-terminal helical substrate-binding domain. An electrophilic catalytic mechanism by the epsilon-NH3+ group of Lys204 is proposed on the basis of the structural analyses. In addition, the inhibitory effects of zinc and sulfate on GPDHs are assayed and discussed.


Asunto(s)
Glicerolfosfato Deshidrogenasa/química , Catálisis , Cristalización , Cristalografía por Rayos X , Dihidroxiacetona/química , Dihidroxiacetona/metabolismo , Dimerización , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Glicerolfosfato Deshidrogenasa/metabolismo , Humanos , Cinética , NAD/química , NAD/metabolismo , Fosfatos/fisiología , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Zinc/fisiología
17.
J Endocrinol ; 228(3): R97-106, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26743209

RESUMEN

Metformin is a first-line oral anti-diabetic agent that has been used clinically to treat patients with type 2 diabetes for over 60 years. Due to its efficacy in therapy and affordable price, metformin is taken by more than 150 million people each year. Metformin improves hyperglycemia mainly through the suppression of hepatic gluconeogenesis along with the improvement of insulin signaling. However, its mechanism of action remains partially understood and controversial, especially in regard to the role of AMPK in metformin's action and the mechanism of AMPK activation. In this review, we discuss recent advances in the understanding of metformin's suppression of hepatic glucose production and the mechanism related to the improvement of insulin signaling.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes , Metformina/farmacología , Metformina/uso terapéutico , Proteínas Quinasas Activadas por AMP/fisiología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Inhibidores Enzimáticos , Microbioma Gastrointestinal/efectos de los fármacos , Gluconeogénesis/efectos de los fármacos , Glucosa/metabolismo , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Humanos , Insulina/metabolismo , Hígado/metabolismo , Transducción de Señal/efectos de los fármacos
18.
Biochim Biophys Acta ; 571(2): 177-85, 1979 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-228729

RESUMEN

alpha-L-Glycerolphosphate dehydrogenase (sn-glycerol-3-phosphate:NAD+ 2-oxidoreductase, EC 1.1.1.8) from Saccharomyces carlsbergensis was purified 400-fold. The enzyme preparation is free of interfering activities, such as glyceraldehyde phosphate dehydrogenase, alcohol dehydrogenase, triose phosphate isomerase and glycerolphosphatase. At pH 7.0 it is specific for NADH (Km = 0.027 mM with 0.8 mM dihydroxyacetone phosphate) and dihydroxyacetone phosphate (Km = 0.2 mM with 0.2 mM NADH). Between pH 5.0 and 6.0 the enzyme functions with NADPH, but only at 7% of the rate with NADH. Various anions (I- greater than SO42- greater than Br- greater than Cl-) act as inhibitors competing with the substrate dihydroxyacetone phosphate. Inorganic phosphate (Ki = 0.1 mM), pyrophosphate and arsenate are strong inhibitors. The nucleotides ATP and ADP are also inhibitory, but their action seems to be of the same type as the general anion competition (Ki = 0.73 mM for ATP). The results are consistent with the notion that the enzyme may regulate the redox potential of the NAD+/NADH couple during fermentation.


Asunto(s)
Glicerolfosfato Deshidrogenasa/metabolismo , Saccharomyces/enzimología , Nucleótidos de Adenina/farmacología , Dihidroxiacetona Fosfato , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Glicerolfosfato Deshidrogenasa/aislamiento & purificación , Iones , Cinética , NAD , Especificidad por Sustrato
19.
Biochim Biophys Acta ; 567(2): 269-77, 1979 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36150

RESUMEN

Glycerol-3-phosphate dehydrogenase (sn-glycerol-3-phosphate:NAD+ 2-oxido-reductase, EC 1.1.1.8) has been shown to be sensitive to inhibition by iodoacetate. The reaction of the enzyme with iodoacetate, which appears to be a simple bimolecular process, is accompanied by a corresponding loss of enzyme activity. In addition to changes in activity, the alkylation reaction was monitored by the incorporation of radioactivity from iodo[2-14C]acetate, by changes in amino acid composition, and by changes in the content of free sulfhydryl groups. It is concluded that there are two cysteine residues in the native dimeric enzyme which are essential for enzymic activity. The rate of inactivation was relatively insensitive to the presence of various compounds with the exception of NADH which markedly inhibited the reaction. Kinetic and binding studies showed that the binding of NADH prevents alkylation and, conversely, alkylation prevents NADH binding. From the pH dependence of the alkylation reaction, the pKa of the essential sulfhydryl groups was calculated to be 8.5 and it is suggested that the binding of coenzyme is independent of the state of ionization of these groups.


Asunto(s)
Cisteína , Glicerolfosfato Deshidrogenasa/metabolismo , Alquilación , Aminoácidos/análisis , Animales , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Glicerolfosfato Deshidrogenasa/aislamiento & purificación , Concentración de Iones de Hidrógeno , Yodoacetatos/farmacología , Cinética , Músculos/enzimología , NAD/farmacología , Conejos , Compuestos de Sulfhidrilo/farmacología
20.
Biochim Biophys Acta ; 1034(2): 180-5, 1990 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-1972335

RESUMEN

The NAD-dependent glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) of the salt-tolerant yeast Debaryomyces hansenii was purified by poly(ethylene glycol) precipitation and a combination of chromatographic procedures. The enzyme existed in two forms with different ionic characters and specific activity. On SDS-polyacrylamide gel electrophoresis, both forms yielded one predominant band with an apparent molecular weight of 42,000. The specific activity of the enzyme was dependent on the concentration of the enzyme and on the ionic strength of the dissolving medium. All ions tested stimulated the enzyme activity in the ionic strength range 0-100 mM, with glutamate yielding the highest activity. Above these concentrations, the dehydrogenase showed high tolerance for glutamate in concentrations up to 0.9 M, whereas malate, sulfate and chloride were inhibitory. Enzyme activity showed little sensitivity to the type of cation present and was only slightly affected by 5 M glycerol. The true Km values for the substrates were 6.6 microM for NADH, 130 microM for dihydroxyacetone phosphate, 0.3 mM for NAD and 1.2 mM for glycerol-3-phosphate, and the enzyme showed specificity for these four substrates only. It is proposed that the enzyme functions in cellular osmoregulation by providing glycerol 3-phosphate for the biosynthesis of glycerol, the main compatible solute in D. hansenii, and that the enzyme is well adapted to function in yeast cells exposed to osmotic stress.


Asunto(s)
Glicerolfosfato Deshidrogenasa/aislamiento & purificación , Saccharomycetales/enzimología , Sales (Química)/farmacología , Cationes , Cromatografía , Tolerancia a Medicamentos , Electroforesis en Gel de Poliacrilamida , Activación Enzimática/efectos de los fármacos , Glutamatos/farmacología , Ácido Glutámico , Glicerol/farmacología , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Glicerolfosfato Deshidrogenasa/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Magnesio/farmacología , Peso Molecular , NAD/metabolismo , Concentración Osmolar , Potasio/farmacología , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA