Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 859
Filtrar
1.
Cell ; 186(26): 5826-5839.e18, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38101409

RESUMEN

Super-enhancers are compound regulatory elements that control expression of key cell identity genes. They recruit high levels of tissue-specific transcription factors and co-activators such as the Mediator complex and contact target gene promoters with high frequency. Most super-enhancers contain multiple constituent regulatory elements, but it is unclear whether these elements have distinct roles in activating target gene expression. Here, by rebuilding the endogenous multipartite α-globin super-enhancer, we show that it contains bioinformatically equivalent but functionally distinct element types: classical enhancers and facilitator elements. Facilitators have no intrinsic enhancer activity, yet in their absence, classical enhancers are unable to fully upregulate their target genes. Without facilitators, classical enhancers exhibit reduced Mediator recruitment, enhancer RNA transcription, and enhancer-promoter interactions. Facilitators are interchangeable but display functional hierarchy based on their position within a multipartite enhancer. Facilitators thus play an important role in potentiating the activity of classical enhancers and ensuring robust activation of target genes.


Asunto(s)
Regulación de la Expresión Génica , Súper Potenciadores , Transcripción Genética , Globinas alfa , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Globinas alfa/genética
2.
Mol Cell ; 81(5): 983-997.e7, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33539786

RESUMEN

Gene transcription occurs via a cycle of linked events, including initiation, promoter-proximal pausing, and elongation of RNA polymerase II (Pol II). A key question is how transcriptional enhancers influence these events to control gene expression. Here, we present an approach that evaluates the level and change in promoter-proximal transcription (initiation and pausing) in the context of differential gene expression, genome-wide. This combinatorial approach shows that in primary cells, control of gene expression during differentiation is achieved predominantly via changes in transcription initiation rather than via release of Pol II pausing. Using genetically engineered mouse models, deleted for functionally validated enhancers of the α- and ß-globin loci, we confirm that these elements regulate Pol II recruitment and/or initiation to modulate gene expression. Together, our data show that gene expression during differentiation is regulated predominantly at the level of initiation and that enhancers are key effectors of this process.


Asunto(s)
Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , Iniciación de la Transcripción Genética , Globinas alfa/genética , Globinas beta/genética , Animales , Diferenciación Celular , Exones , Feto , Regulación de la Expresión Génica , Biblioteca de Genes , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Intrones , Células K562 , Hígado/citología , Hígado/metabolismo , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Polimerasa II/metabolismo , Transducción de Señal , Globinas alfa/deficiencia , Globinas beta/deficiencia
3.
Nature ; 595(7865): 125-129, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34108683

RESUMEN

In higher eukaryotes, many genes are regulated by enhancers that are 104-106 base pairs (bp) away from the promoter. Enhancers contain transcription-factor-binding sites (which are typically around 7-22 bp), and physical contact between the promoters and enhancers is thought to be required to modulate gene expression. Although chromatin architecture has been mapped extensively at resolutions of 1 kilobase and above; it has not been possible to define physical contacts at the scale of the proteins that determine gene expression. Here we define these interactions in detail using a chromosome conformation capture method (Micro-Capture-C) that enables the physical contacts between different classes of regulatory elements to be determined at base-pair resolution. We find that highly punctate contacts occur between enhancers, promoters and CCCTC-binding factor (CTCF) sites and we show that transcription factors have an important role in the maintenance of the contacts between enhancers and promoters. Our data show that interactions between CTCF sites are increased when active promoters and enhancers are located within the intervening chromatin. This supports a model in which chromatin loop extrusion1 is dependent on cohesin loading at active promoters and enhancers, which explains the formation of tissue-specific chromatin domains without changes in CTCF binding.


Asunto(s)
Emparejamiento Base/genética , Genoma/genética , Animales , Sitios de Unión , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Elementos de Facilitación Genéticos/genética , Células Eritroides/citología , Células Eritroides/metabolismo , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Regiones Promotoras Genéticas/genética , Globinas alfa/genética , Cohesinas
4.
Blood ; 142(10): 918-932, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37339583

RESUMEN

Most cells can eliminate unstable or misfolded proteins through quality control mechanisms. In the inherited red blood cell disorder ß-thalassemia, mutations in the ß-globin gene (HBB) lead to a reduction in the corresponding protein and the accumulation of cytotoxic free α-globin, which causes maturation arrest and apoptosis of erythroid precursors and reductions in the lifespan of circulating red blood cells. We showed previously that excess α-globin is eliminated by Unc-51-like autophagy activating kinase 1 (ULK1)-dependent autophagy and that stimulating this pathway by systemic mammalian target of rapamycin complex 1 (mTORC1) inhibition alleviates ß-thalassemia pathologies. We show here that disrupting the bicistronic microRNA gene miR-144/451 alleviates ß-thalassemia by reducing mTORC1 activity and stimulating ULK1-mediated autophagy of free α-globin through 2 mechanisms. Loss of miR-451 upregulated its target messenger RNA, Cab39, which encodes a cofactor for LKB1, a serine-threonine kinase that phosphorylates and activates the central metabolic sensor adenosine monophosphate-activated protein kinase (AMPK). The resultant enhancement of LKB1 activity stimulated AMPK and its downstream effects, including repression of mTORC1 and direct activation of ULK1. In addition, loss of miR-144/451 inhibited the expression of erythroblast transferrin receptor 1, causing intracellular iron restriction, which has been shown to inhibit mTORC1, reduce free α-globin precipitates, and improve hematological indices in ß-thalassemia. The beneficial effects of miR-144/451 loss in ß-thalassemia were inhibited by the disruption of Cab39 or Ulk1 genes. Together, our findings link the severity of ß-thalassemia to a highly expressed erythroid microRNA locus and a fundamental, metabolically regulated protein quality control pathway that is amenable to therapeutic manipulation.


Asunto(s)
MicroARNs , Talasemia beta , Humanos , Talasemia beta/terapia , Proteínas Quinasas Activadas por AMP/metabolismo , Globinas alfa , Autofagia/genética , MicroARNs/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
5.
Bioessays ; 45(10): e2300047, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37404089

RESUMEN

Despite ever-increasing accumulation of genomic data, the fundamental question of how individual genes are switched on during development, lineage-specification and differentiation is not fully answered. It is widely accepted that this involves the interaction between at least three fundamental regulatory elements: enhancers, promoters and insulators. Enhancers contain transcription factor binding sites which are bound by transcription factors (TFs) and co-factors expressed during cell fate decisions and maintain imposed patterns of activation, at least in part, via their epigenetic modification. This information is transferred from enhancers to their cognate promoters often by coming into close physical proximity to form a 'transcriptional hub' containing a high concentration of TFs and co-factors. The mechanisms underlying these stages of transcriptional activation are not fully explained. This review focuses on how enhancers and promoters are activated during differentiation and how multiple enhancers work together to regulate gene expression. We illustrate the currently understood principles of how mammalian enhancers work and how they may be perturbed in enhanceropathies using expression of the α-globin gene cluster during erythropoiesis, as a model.


Asunto(s)
Elementos de Facilitación Genéticos , Globinas alfa , Animales , Elementos de Facilitación Genéticos/genética , Globinas alfa/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas/genética , Biología , Mamíferos/genética
6.
Hum Genomics ; 17(1): 38, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098594

RESUMEN

BACKGROUND: At present, the methods generally used to detect α-thalassemia mutations are confined to detecting common mutations, which may lead to misdiagnosis or missed diagnosis. The single-molecule real-time (SMRT) sequencing enables long-read single-molecule sequencing with high detection accuracy, and long-length DNA chain reads in high-fidelity read mode. This study aimed to identify novel large deletions and complex variants in the α-globin locus in Chinese population. METHODS: We used SMRT sequencing to detect rare and complex variants in the α-globin locus in four individuals whose hematological data indicated microcytic hypochromic anemia. However, the conventional thalassemia detection result was negative. Multiplex ligation-dependent probe amplification and droplet digital polymerase chain reaction were used to confirm SMRT sequencing results. RESULTS: Four novel large deletions were observed ranging from 23 to 81 kb in the α-globin locus. One patient also had a duplication of upstream of HBZ in the deletional region, while another, with a 27.31-kb deletion on chromosome 16 (hg 38), had abnormal hemoglobin Siriraj (Hb Siriraj). CONCLUSION: We first identified the four novel deletions in the α-globin locus using SMRT sequencing. Considering that the conventional methods might lead to misdiagnosis or missed diagnosis, SMRT sequencing proved to be an excellent method to discover rare and complex variants in thalassemia, especially in prenatal diagnosis.


Asunto(s)
Pueblos del Este de Asia , Globinas alfa , Humanos , Globinas alfa/genética , Talasemia alfa/genética , Anemia Hipocrómica/genética , Pueblos del Este de Asia/genética , Mutación
7.
Clin Chem Lab Med ; 62(3): 453-463, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-37845805

RESUMEN

OBJECTIVES: Accurate quantification of hemoglobin (Hb) A2 is vital for diagnosing ß-thalassemia carriers. This study aimed to assess the precision and diagnostic utility of HbA2 measurements using the new high-performance liquid chromatography (HPLC) method, Premier Resolution, in comparison to capillary electrophoresis (CE). METHODS: We analyzed 418 samples, previously identified as A2A by CE, using Premier Resolution-HPLC. We compared the results, established correlations, and determined an optimal HbA2 cutoff value for ß-thalassemia screening. Additionally, we prospectively evaluated the chosen cutoff value in 632 samples. Mutations in the ß- and α-globin genes were identified using polymerase chain reaction (PCR) techniques and DNA sequencing. RESULTS: HbA2 levels were consistently higher with Premier Resolution, yet there was a significant correlation with CE in all samples (bias, -0.33; r, 0.991), ß-thalassemia (bias, -0.27; r, 0.927), and non-ß-thalassemia carriers (bias, -0.36; r, 0.928). An HbA2 cutoff value of ≥4.0 % for ß-thalassemia screening achieved 100 % sensitivity and 99.6 % specificity. Further validation yielded sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 97.3 , 99.8, 97.3, 99.8, and 99.7 %, respectively. We also identified a rare ß-Hb variant, Hb La Desirade [HBB:c.389C>T], associated with ß-thalassemia and co-inherited with a single α-globin gene. CONCLUSIONS: The Premier Resolution HPLC is a reliable and accurate method for routine ß-thalassemia carrier screening, aligning with existing CE methods.


Asunto(s)
Hemoglobina Falciforme , Talasemia beta , Humanos , Talasemia beta/diagnóstico , Talasemia beta/genética , Hemoglobina A/análisis , Reproducibilidad de los Resultados , Hemoglobina A2/genética , Hemoglobina A2/análisis , Mutación , Globinas alfa/genética
8.
Mol Biol Rep ; 51(1): 612, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704770

RESUMEN

BACKGROUND: The α-Major Regulatory Element (α-MRE), also known as HS-40, is located upstream of the α-globin gene cluster and has a crucial role in the long-range regulation of the α-globin gene expression. This enhancer is polymorphic and several haplotypes were identified in different populations, with haplotype D almost exclusively found in African populations. The purpose of this research was to identify the HS-40 haplotype associated with the 3.7 kb α-thalassemia deletion (-α3.7del) in the Portuguese population, and determine its ancestry and influence on patients' hematological phenotype. METHODS AND RESULTS: We selected 111 Portuguese individuals previously analyzed by Gap-PCR to detect the presence of the -α3.7del: 50 without the -α3.7del, 34 heterozygous and 27 homozygous for the -α3.7del. The HS-40 region was amplified by PCR followed by Sanger sequencing. Four HS-40 haplotypes were found (A to D). The distribution of HS-40 haplotypes and genotypes are significantly different between individuals with and without the -α3.7del, being haplotype D and genotype AD the most prevalent in patients with this deletion in homozygosity. Furthermore, multiple correspondence analysis revealed that individuals without the -α3.7del are grouped with other European populations, while samples with the -α3.7del are separated from these and found more closely related to the African population. CONCLUSION: This study revealed for the first time an association of the HS-40 haplotype D with the -α3.7del in the Portuguese population, and its likely African ancestry. These results may have clinical importance as in vitro analysis of haplotype D showed a decrease in its enhancer activity on α-globin gene.


Asunto(s)
Haplotipos , Eliminación de Secuencia , Globinas alfa , Talasemia alfa , Femenino , Humanos , Masculino , Globinas alfa/genética , Talasemia alfa/genética , Población Negra/genética , Frecuencia de los Genes/genética , Genotipo , Haplotipos/genética , Portugal , Secuencias Reguladoras de Ácidos Nucleicos/genética , Eliminación de Secuencia/genética
9.
Clin Lab ; 70(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38965958

RESUMEN

BACKGROUND: New hemoglobin (Hb) variants are constantly being updated as assays are developed and the testing population expands. Here, we report a novel Hb variant, named Hb Guigang. METHODS: Hemoglobin (Hb) analysis was analyzed by capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC). Glycated hemoglobin was performed by CE and HPLC. Routine genetic analysis was done with Gap-PCR and PCR-reverse dot-blot hybridization. The hemoglobin variant was identified by Sanger sequencing. RESULTS: CE of three cases showed the presence of Hb variants in Zone 5 and Zone 12, respectively. HPLC indicated an elevated P3 peak, suggesting the possible presence of the Hb variant. Hb A1c was measured by CE and HPLC, and the results were 6.7% and 4.76%, respectively. Sanger sequencing confirmed an AAG˃AAT mutation at codon 90 of the HBA1 gene. This mutation was reported for the first time, and we named it Hb Guigang based on the proband's place of residence. CONCLUSIONS: Hb Guigang with normal hematological parameters was separated and quantified by CE, whereas HPLC suggested that Hb Guigang co-eluted with the P3 peaks and could not be quantified.


Asunto(s)
Electroforesis Capilar , Hemoglobina Glucada , Hemoglobinas Anormales , Globinas alfa , Humanos , Hemoglobinas Anormales/genética , Globinas alfa/genética , Cromatografía Líquida de Alta Presión , Hemoglobina Glucada/análisis , Hemoglobina Glucada/metabolismo , Masculino , Femenino , Mutación , Análisis Mutacional de ADN , Adulto
10.
Hemoglobin ; 48(1): 63-65, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38314585

RESUMEN

We report a novel hemoglobin (Hb) variant found in a 34-year-old Chinese male during a routine measurement of glycated hemoglobin. The variant resulted in a P3 peak of 27.5% of the total Hb on high performance liquid chromatography (HPLC) with a glycated hemoglobin mode. However, no abnormal Hb peaks were observed in capillary electrophoresis (CE) with 3.1% Hb A2 and 96.9% Hb A. The amino acid substitution was determined by Sanger sequencing as α20 (B1) His→Leu; the corresponding DNA mutation was identified as CAC > CTC at the first position of codon 20 of the α-chain. This is the first description of the mutation, and we have named it Hb Hebei for the region of origin of the proband.


Asunto(s)
Hemoglobinas Anormales , Globinas alfa , Masculino , Humanos , Adulto , Hemoglobina Glucada/genética , Globinas alfa/genética , Mutación , Hemoglobinas Anormales/genética , Hemoglobinas Anormales/análisis , Sustitución de Aminoácidos , Cromatografía Líquida de Alta Presión
11.
Hemoglobin ; 48(2): 129-132, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38626925

RESUMEN

Alpha and Beta Thalassemia are autosomal recessive anemias that cause significant morbidity and mortality worldwide, especially in the Middle East and North Africa (MENA) region where carrier rates reach up to 50%. We report the case of two siblings of Palestinian origin born who presented to our tertiary healthcare center for the management of severe transfusion dependent hemolytic anemia. Before presentation to our center, the siblings were screened for a-thalassemia using the Alpha-globin StripAssay. They were found to carry the α2 polyA-1 [AATAAA > AATAAG] mutation in the heterozygous form, which was insufficient to make a diagnosis. No pathogenic variants were detected on Sanger sequencing of the HBB gene. Full sequencing of the a-gene revealed compound heterozygous variants (HBA1:c.119_121delCCA and the previously detected HBA2:c.*+94A > G Poly A [A->G]) with trans inheritance. This report highlights the impact of non-deletional mutations on α-globin chain stability. The compound heterozygosity of a rare α-globin chain pathogenic variant with a polyadenylation mutation in the probands leads to clinically severe a-thalassemia. Due to the high carrier status, the identification of rare mutations through routine screening techniques in our populations may be insufficient. Ongoing collaboration among hematologists, medical geneticists, and counselors is crucial for phenotypic-genotypic correlation and assessment of adequate genetic testing schemes.


Asunto(s)
Hemoglobinas Anormales , Hermanos , Globinas alfa , Femenino , Humanos , Masculino , Globinas alfa/genética , Talasemia alfa/genética , Talasemia alfa/diagnóstico , Árabes/genética , Transfusión Sanguínea , Hemoglobinas Anormales/genética , Heterocigoto , Mutación , Preescolar , Niño
12.
Hemoglobin ; 48(2): 133-137, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38632978

RESUMEN

The first identification of a novel α1-Globin variant, Hb Ormylia in 11 Greeks originating from a small village, Ormylia, Chalkidiki, Greece is reported. The new genetic variant leads to the production of a hemoglobin variant that can be identified and quantified by High-Performance Liquid Chromatography. Capillary and classic electrophoresis were not informative. Direct DNA sequencing revealed a new mutation C > G mutation at codon 21 of α1 gene (His > Gln). The new variant has been named Hb Ormylia and this is the first description of this genetic variant of α1 gene in the literature.


Asunto(s)
Hemoglobinas Anormales , Globinas alfa , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Globinas alfa/genética , Talasemia alfa/genética , Talasemia alfa/diagnóstico , Sustitución de Aminoácidos , Grecia , Hemoglobinas Anormales/genética , Mutación
13.
Hemoglobin ; 48(1): 60-62, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38314576

RESUMEN

Patients with the genotype of ß0/ß0 for ß-thalassemia (ß-thal) usually behave as ß-thal major (ß-TM) phenotype which is transfusion-dependent. The pathophysiology of ß-thal is the imbalance between α/ß-globin chains. The degree of α/ß-globin imbalance can be reduced by the more effective synthesis of γ-globin chains, and increased Hb F levels, modifying clinical severity of ß-TM. We report a Chinese child who had homozygous ß0-thal and a heterozygous KLF1 mutation. The patient had a moderate anemia since 6 months old, keeping a baseline Hb value of 8.0-9.0 g/dL. She had normal development except for a short stature (3rd percentile) until 6 years old, when splenomegaly and facial bone deformities occurred. Although genetic alteration of KLF1 expression in ß0/ß0 patients can result in some degree of disease alleviation, our case shows that it is insufficient to ameliorate satisfactorily the presentation. This point should be borne in mind for physicians who provide the genetic counseling and prenatal diagnosis to at-risk families.


Asunto(s)
Globinas beta , Talasemia beta , Niño , Femenino , Humanos , Lactante , Globinas alfa/genética , Globinas beta/genética , Talasemia beta/genética , China , Estudios de Seguimiento , Genotipo , Mutación
14.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38542374

RESUMEN

In this short review, we presented and discussed studies on the expression of globin genes in ß-thalassemia, focusing on the impact of α-globin gene expression and α-globin modifiers on the phenotype and clinical severity of ß-thalassemia. We first discussed the impact of the excess of free α-globin on the phenotype of ß-thalassemia. We then reviewed studies focusing on the expression of α-globin-stabilizing protein (AHSP), as a potential strategy of counteracting the effects of the excess of free α-globin on erythroid cells. Alternative processes controlling α-globin excess were also considered, including the activation of autophagy by ß-thalassemia erythroid cells. Altogether, the studies reviewed herein are expected to have a potential impact on the management of patients with ß-thalassemia and other hemoglobinopathies for which reduction in α-globin excess is clinically beneficial.


Asunto(s)
Hemoglobinopatías , Talasemia beta , Humanos , Talasemia beta/genética , Globinas alfa/genética , Globinas alfa/metabolismo , Hemoglobinopatías/genética , Fenotipo , Expresión Génica , Proteínas Sanguíneas/genética , Chaperonas Moleculares/genética
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 669-676, 2024 Jun 10.
Artículo en Zh | MEDLINE | ID: mdl-38818550

RESUMEN

α-thalassemia is a type of microcytic hypochromic anemia caused by variants of alpha-globin gene, and is one of the most common monogenic disorders in southern China. The population screening model based on hematologic phenotype has achieved great results in areas with high incidence of thalassemia. However, with the continuous decline of the cost of genetic testing and implementation of screening programs for thalassemia gene carriers, more variants in the alpha-globin gene have been discovered, which also brings great challenges to clinical genetic counseling. From the perspective of alpha-globin genetic analysis, this consensus has discussed the contents of pre- and post-test genetic counseling, with an aim to provide standardized guidance for clinicians.


Asunto(s)
Asesoramiento Genético , Pruebas Genéticas , Talasemia alfa , Humanos , Talasemia alfa/genética , Talasemia alfa/diagnóstico , Globinas alfa/genética , Consenso
16.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 385-392, 2024 Apr 10.
Artículo en Zh | MEDLINE | ID: mdl-38565501

RESUMEN

OBJECTIVE: To analyze the mutations of globin genes among patients suspected for thalassemia from the Shanghai area. METHODS: A total of 4 644 patients diagnosed at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine between June 2016 and December 2019 were selected as the study subjects. The patients were tested for common mutations associated with thalassemia gene by Gap-PCR and reverse dot blotting (RDB). Patients were suspected to harbor rare mutations based on the inconsistency between hematological phenotypes and results of common mutation detection, and were further analyzed by Gap-PCR and Sanger sequencing. RESULTS: Among the 4 644 patients, 2 194 (47.24%) were found to carry common thalassemia mutations, among which 701 (15.09%) were α-thalassemia, 1 448 (31.18%) were ß-thalassemia, and 45 (0.97%) were both α- and ß-thalassemia. Forty six samples were found to harbor rare mutations, which included 17 α-globin gene and 29 ß-globin gene mutations. CD77(CCC>ACC) (HBA2: c.232C>A) of the α-globin gene, NG_000007.3: g.70567_71015del449, codon 102(-A) (HBB: c.308_308delA) and IVS-Ⅱ-636 (A>G) (HBB: c.316-215A>G) of the ß-globin gene were previously unreported new types of globin gene mutations. CONCLUSION: Among the 4 644 patients, the detection rate for common thalassemia mutations was 47.24%, whilst 46 samples were detected with rare gene mutations. The type of gene mutation types were diverse in the Shanghai area. The study has provided more accurate results for genetic diagnosis and counseling.


Asunto(s)
Talasemia alfa , Talasemia beta , Humanos , Talasemia beta/genética , Talasemia beta/diagnóstico , Genotipo , Globinas beta/genética , China , Mutación , Talasemia alfa/genética , Globinas alfa/genética
17.
BMC Bioinformatics ; 24(1): 236, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277726

RESUMEN

BACKGROUND: Biotite is a program library for sequence and structural bioinformatics written for the Python programming language. It implements widely used computational methods into a consistent and accessible package. This allows for easy combination of various data analysis, modeling and simulation methods. RESULTS: This article presents major functionalities introduced into Biotite since its original publication. The fields of application are shown using concrete examples. We show that the computational performance of Biotite for bioinformatics tasks is comparable to individual, special purpose software systems specifically developed for the respective single task. CONCLUSIONS: The results show that Biotite can be used as program library to either answer specific bioinformatics questions and simultaneously allow the user to write entire, self-contained software applications with sufficient performance for general application.


Asunto(s)
Simulación por Computador , Modelos Moleculares , Proteínas , Programas Informáticos , Lenguajes de Programación , Alineación de Secuencia , Secuencia de Bases , Proteínas/química , Globinas alfa/química , Humanos
18.
Ann Hum Genet ; 87(1-2): 9-17, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36317495

RESUMEN

INTRODUCTION: The α-globin fusion gene between the HBA2 and HBAP1 genes becomes clinically important in thalassemia screening because this fusion gene can cause severe hemoglobin (Hb) H disease when combining with α0 -thalassemia (α0 -thal). Due to its uncommon rearrangement in the α gene cluster without dosage changes, this fusion gene is undetectable by common molecular testing approaches used for α-thal diagnosis. METHODS: In this study, we used the single-molecule real-time (SMRT) sequencing technique to detect this fusion gene in 23 carriers identified by next-generation sequencing (NGS) among 16,504 screened individuals. Five primers for α and ß thalassemia were utilized. RESULTS: According to the NGS results, the 23 carriers include 14 pure heterozygotes, eight compound heterozygotes with common α-thal alleles, and one homozygote. By using SMRT, the fusion mutant was successfully detected in all 23 carriers. Furthermore, SMRT corrected the diagnosis in two "pure" heterozygotes: one was compound heterozygote with anti-3.7 triplication, and the other was homozygote. CONCLUSION: Our results indicate that SMRT is a superior method compared to NGS in detecting the α fusion gene, attributing to its efficient, accurate, and one-step properties.


Asunto(s)
Talasemia alfa , Talasemia beta , Humanos , Globinas alfa/genética , Heterocigoto , Homocigoto , Talasemia alfa/diagnóstico , Talasemia alfa/genética , Talasemia alfa/epidemiología , Talasemia beta/diagnóstico , Talasemia beta/genética , Talasemia beta/epidemiología
19.
Mol Genet Genomics ; 298(1): 131-141, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36326959

RESUMEN

Thalassemia is one of the most common single-gene disorder worldwide. An important genetic cause of thalassemia is copy number variations (CNVs) in the α-globin gene cluster. However, there is no unified summary and discussion on the detailed information and mechanisms of these CNVs. In this study, two novel CNVs, a tandem duplication (αααα159) and deletion (--259), were identified in two Chinese families with thalassemia patients, according to the results of hematologic analysis, routine genetic testing for thalassemia, multiplex ligation-dependent probe amplification (MLPA), next-generation sequencing (NGS) and other molecular methods. Co-inherited with ßCD41-42 mutation and --SEA deletion separately, αααα159 and --259 resulted in a patient with ß-thalassemia intermedia and a lethal fetus with Hb Bart's hydrops fetalis syndrome, respectively. Next, a literature review was performed to summarize all known CNVs involving the α-globin gene cluster. The molecular structure characteristics of these CNVs were analyzed and the possible mechanism was explored. It is the first time to analyze the generation mechanism of genome arrangements in the α-globin gene cluster systematically.


Asunto(s)
Variaciones en el Número de Copia de ADN , Talasemia , Humanos , Variaciones en el Número de Copia de ADN/genética , Globinas alfa/genética , Cromosomas Humanos Par 16/genética , Talasemia/genética , Familia de Multigenes
20.
Blood Cells Mol Dis ; 103: 102764, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37336681

RESUMEN

Inherited deletions of upstream regulatory elements of α-globin genes give rise to α-thalassemia, which is an autosomal recessive monogenic disease. However, conventional thalassemia target diagnosis often fails to identify these rare deletions. Here we reported a family with two previous pregnancies of Hb Bart's hydrops fetalis and was seeking for prenatal diagnosis during the third pregnancy. Both parents had low level of Hemoglobin A2 indicating α-thalassemia. Conventional Gap-PCR and PCR-reverse dot blot showed the father carried -SEA deletion but did not identify any variants in the mother. Multiplex ligation-dependent probe amplification identified a deletion containing two HS-40 probes but could not determine the exact region. Finally, a long-read sequencing (LRS)-based approach directly identified that the exact deletion region was chr16: 48,642-132,584, which was located in the α-globin upstream regulatory elements and named (αα)JM after the Jiangmen city. Gap-PCR and Sanger sequencing confirmed the breakpoint. Both the mother and fetus from the third pregnancy carried heterozygous (αα)JM, and the fetus was normally delivered at gestational age of 39 weeks. This study demonstrated that LRS technology had great advantages over conventional target diagnosis methods for identifying rare thalassemia variants and assisted better carrier screening and prenatal diagnosis of thalassemia.


Asunto(s)
Hemoglobinas Anormales , Talasemia alfa , Embarazo , Femenino , Humanos , Lactante , Talasemia alfa/diagnóstico , Talasemia alfa/genética , Globinas alfa/genética , Diagnóstico Prenatal/métodos , Hidropesía Fetal/genética , Reacción en Cadena de la Polimerasa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA