Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Oleo Sci ; 73(2): 239-251, 2024.
Article in English | MEDLINE | ID: mdl-38311413

ABSTRACT

Frog oil has been recognized for its nutritional and medicinal value. However, there is limited research on the role of frog oil in preventing obesity. In this study, we aimed to investigate the lipid composition of Quasipaa spinosa oil (QSO) and Rana catesbeiana oil (RCO) using lipidomics analysis. We compared the lipid accumulation effects of these two kinds of frog oils and soybean oil (SO) in Caenorhabditis elegans (C. elegans). Additionally, we determined the gene expression related to lipid metabolism and used the nhr-49 mutant (RB1716) and sir-2.1 mutant (VC199) for validation experiments. The results showed that the lipid composition of QSO and RCO was significantly different (p < 0.05), and QSO was rich in more polyunsaturated fatty acids (PUFAs). After feeding C. elegans, the lipid accumulation of the QSO group was the lowest among the three dietary oil groups. In addition, compared with RCO and SO, QSO significantly inhibited the production of malondialdehyde (MDA) and increased the activity of superoxide dismutase (SOD). The effects of three kinds of dietary oils on the fatty acid composition of C. elegans were significantly different. Compared with SO and RCO, QSO significantly up-regulated (p < 0.05) the expression of sir-2.1 and ech-1 genes. The results showed that QSO might reduce lipid accumulation through the SIRT1 and nuclear hormone signaling pathways. Such a situation was verified experimentally by the nhr-49 mutant (RB1716) and sir-2.1 mutant (VC199). This study proposed a new functional oil, laying the groundwork for developing functional foods from Quasipaa spinosa.


Subject(s)
Caenorhabditis elegans , Dietary Fats, Unsaturated , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Rana catesbeiana/metabolism , Fatty Acids/metabolism , Fatty Acids, Unsaturated/metabolism , Dietary Fats, Unsaturated/pharmacology , Soybean Oil/metabolism , Lipid Metabolism/genetics
2.
Molecules ; 27(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35745026

ABSTRACT

In this study, the volatile compound profiles of gurum seed oil were determined using two methods: supercritical CO2 extraction (SFE) and the screw press process (SPP). For volatile compounds extraction and identification, headspace solid-phase micro-extraction (HS-SPME) and GC-MS were used, respectively. A total number of 56 volatile compounds were revealed and identified in oil extracted by SFE, while only 40 compounds were detected in extracted oil by SPP. Acids, aldehydes, esters, ketones, furans, and other components were present in the highest ratio in oil extracted by SFE. In contrast, alcohols and alkenes were found in the highest proportion in oil extracted by SPP. In this study, it was observed that SFE showed an increase in the amounts of volatile compounds and favorably impacted the aroma of gurum seed oil. The results reveal that different extraction methods significantly impact the volatile components of gurum seed oil, and this study can help evaluate the quality of the oil extracted from gurum seeds.


Subject(s)
Solid Phase Microextraction , Volatile Organic Compounds , Esters/analysis , Gas Chromatography-Mass Spectrometry/methods , Plant Oils , Seeds/chemistry , Solid Phase Microextraction/methods , Volatile Organic Compounds/analysis
3.
J Oleo Sci ; 70(12): 1741-1748, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34759115

ABSTRACT

In this study, the effect of altitude on oil amounts, antioxidant activity, polyphenol content and mineral contents of Acacia seeds collected from two different locations (up to 1100 m above sea level) was investigated. Total carotenoid and flavonoid contents of Acacia seeds were detected as 0.76 (Konya) and 1.06 µg/g (Tasucu-Mersin) to 1343.60 (Konya) and 184.53 mg/100 g (Tasucu-Mersin), respectively. Total phenol contents and antioxidant activity values of Acacia seeds were identified as 255.11 (Konya) and 190.00 mgGAE/Tasucu-Mersin) to 64.18% (Konya) and 75.21% (Tasucu-Mersin), respectively. The oils extracted from Acacia seeds in Konya and Mersin province contained 62.70% and 70.39% linoleic, 23.41% and 16.03% oleic, 6.45%and 6.04% palmitic and 2.93% and 4.94% stearic acids, respectively. While 3,4-dihydroxybenzoic acid amounts of seeds are determined as 3.89 (Konya) and 4.83 mg/100 g (Tasucu-Mersin), (+)-catechin contents of Acacia seeds were identified as 3.42 (Konya) and 9.51 mg/100 g (Tasucu-Mersin). Also, rutintrihydrate and ferulic contents of Acacia seeds were found as 23.37 (Konya) and 11.87 mg/100 g (Tasucu-Mersin) to 14.74 mg/100 g (Konya) and 1.12 mg/100 g (Tasucu-Mersin), respectively. Acacia seeds collected from Konya and Mersin contained 4003.75 and 3540.89 mg/kg P, 9819.12 and 16175.69 mg/kg K, 4347.47 and 5078.81 mg/kg P, 2195.77 and 2317.90 mg/kg Mg, 1015.75 and 2665.60 mg/kg S and 187.53 and 905.52 mg/kg Na, respectively.


Subject(s)
Acacia/chemistry , Phytochemicals/analysis , Seeds/chemistry , Solid Waste/analysis , Antioxidants/analysis , Carotenoids/analysis , Fatty Acids/analysis , Flavonoids/analysis , Minerals/analysis , Plant Oils/analysis , Polyphenols/analysis , Turkey
4.
J Oleo Sci ; 70(11): 1607-1614, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34645752

ABSTRACT

Oil contents of seeds changed between 15.89 g/100 g (purslane) and 38.97 g/100 g (black radish). Palmitic acid contents of oil samples were found between 2.2 g/100 g (turnip) and 15.0 g/100 g (purslane). While oleic acid contents of oil samples change between 12.1% (turnip) and 69.8% (purple carrot), linoleic acid contents of oils were determined between 8.9% (black radish) and 57.0% (onion). The highest linolenic acid was found in purslane oil (26.7%). While α-tocopherol contents of oil samples range from 2.01 mg/kg (purple carrot) to 903.01 mg/kg (onion), γ-tocopherol contents of vegetable seed oils changed between 1.14 mg/kg (curly lettuce) and 557.22 mg/kg (purslane). While campesterin contents of seed oils change between 203.2 mg/kg (purple carrot) and 2808.5 mg/kg (cabbage Yalova), stosterin contents of oil samples varied from 981.5 (curly lettuce) to 4843.3 mg/kg (purslane). The highest brassicasterin and δ5-avenasterin were found in red cabbage oil (894.5 mg/kg) and purslane seed oils (971.3 mg/kg), respectively. Total sterol contents of seed oils changed between 2960.4 mg/kg (purple carrot) and 9185.1 mg/kg (purslane). According to the results, vegetable seeds have different bioactive compound such as fatty acid, tocopherol and phytosterol.


Subject(s)
Fatty Acids/analysis , Phytochemicals/analysis , Phytosterols/analysis , Plant Oils/chemistry , Seeds/chemistry , Tocopherols/analysis , Vegetables/chemistry , Linoleic Acid/analysis , Oleic Acid/analysis , Palmitic Acid/analysis , Plant Oils/isolation & purification
5.
J Oleo Sci ; 70(5): 607-613, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33840664

ABSTRACT

The oil recovery from Alyanak apricot kernel was 36.65% in control (unroasted) and increased to 43.77% in microwave-roasted kernels. The total phenolic contents in extracts from apricot kernel were between 0.06 (oven-roasted) and 0.20 mg GAE/100 g (microwave-roasted) while the antioxidant activity varied between 2.55 (oven-roasted) and 19.34% (microwave-roasted). Gallic acid, 3,4-dihydroxybenzoic acid, (+)-catechin and 1,2-dihydroxybenzene were detected as the key phenolic constituents in apricot kernels. Gallic acid contents varied between 0.53 (control) and 1.10 mg/100 g (microwave-roasted) and 3,4-dihydroxybenzoic acid contents were between 0.10 (control) and 0.35 mg/100 g (microwave-roasted). Among apricot oil fatty acids, palmitic acid contents ranged from 4.38 (oven-roasted) to 4.76% (microwave-roasted); oleic acid contents were between 65.73% (oven-roasted) and 66.15% (control) and linoleic acid contents varied between 26.55 (control) and 27.12% (oven-roasted).


Subject(s)
Antioxidants/analysis , Catechin/isolation & purification , Catechols/isolation & purification , Gallic Acid/isolation & purification , Hydroxybenzoates/isolation & purification , Linoleic Acids/isolation & purification , Microwaves , Oleic Acid/isolation & purification , Plant Oils/analysis , Plant Oils/isolation & purification , Prunus armeniaca/chemistry , Seeds/chemistry
6.
J Oleo Sci ; 69(11): 1367-1371, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33055447

ABSTRACT

In this study, bioactive lipid components such as fatty acid composition, tocopherol and total phenolics content and antioxidant activity of few wild plant seed extracts were determined. The oil contents of seed samples changed between 3.75 g/100 g (Onobrychis viciifolia Scop) and 17.94 g/100 g (Pimpinella saxifrage L.). While oleic acid contents of seed oils change between 10.4% (Trifolium repens) and 29.5% (Onobrychis viciifolia Scop), linoleic acid contents of oil samples varied from 16.3% (Onobrychis viciifolia Scop) and 64.2% (Trifolium repens) (p < 0.05). While α-tocopherol contents of oil samples change between 2.112 (Pimpinella saxifrage L.) and 228.279 mg/100 g (Trifolium pratense), É£-tocopherol contents ranged from 0.466 (Phleum pratense) to 67.128 mg/100 g (Onobrychis viciifolia Scop). Also, α-tocotrienol contents of Onobrychis viciifolia Scop and Phleum pratense were 30.815 and 23.787 mg/100 g, respectively. Results showed some differences in total phenol contents and antioxidant activity values of extracts depending on plant species. The present study indicates that this seed oils are rich in fatty acid and tocopherol.


Subject(s)
Antioxidants/analysis , Fabaceae/chemistry , Fatty Acids/analysis , Phleum/chemistry , Pimpinella/chemistry , Plant Oils/chemistry , Seeds/chemistry , Tocopherols/analysis , Trifolium/chemistry , Oleic Acid/analysis
7.
J Oleo Sci ; 69(11): 1381-1388, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33055451

ABSTRACT

The oil content and the fatty acid composition of roasted and unroasted melon seed and oils were determined. The oil contents of roasted melon seeds changed between 26.4% (Type 12) and 38.7% (Type 4). In general, oil contents of roasted melon seeds were found higher than that of unroasted seeds that could be due to the evaporation of water during roasting processes which consequently lead to increased concentrations of other seed components including oils. Saturated fatty acid contents of unroasted melon seed samples change between 13.5% (Type 6) and 17.1% (Type 20). In addition, polyunsaturated fatty acids of unroasted melon seed oils ranged from 51.9% (Type 13) to 70.2% (Type 6). Palmitic acid contents of roasted seed oils varied between 7.8% (Type 5) and 15.1% (Type 17). In addition, the oleic acid contents ranged from 15.4% (Type 10) to 37.7% (Type17). Also, linoleic acid contents were found between 34.7% (Type 17) and 70.3% (Type 6). Saturated fatty acid contents of roasted melon seed oils ranged from 13.5% (Type 6) to 16.7% (Type 13). The major tocopherols in both roasted and unroasted melon seed oils were α-tocopherol, É£-tocopherol and δ-tocopherols. Melon seed oils are rich in linoleic, oleic acids and É£-tocopherol.


Subject(s)
Cooking , Cucurbitaceae/chemistry , Fatty Acids, Unsaturated/analysis , Fatty Acids/analysis , Hot Temperature , Plant Oils/chemistry , Seeds/chemistry , Tocopherols/analysis , Chromatography, Gas , Chromatography, High Pressure Liquid , Linoleic Acid/analysis , Oleic Acid/analysis , Palmitic Acid/analysis
8.
J Oleo Sci ; 69(9): 985-992, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32788517

ABSTRACT

The oxidative stability of sunflower oil containing rosemary essential oil and extracts in the oil during frying were followed by measuring peroxide value. Variation in the values of L* of the frying oil containing extract was less than that of frying oil containing essential oil. a*-Value of the fried oil containing extract highly significant decreased. Increase in the value of b* of 1. and 2. frying oil with 0.5 % rosemary essential oil was less. b* Value of the frying oils containing rosemary extract increased compared to b* values of frying oils containing essential oil. b* Value of the frying oil that the essential oil of rosemary added showed less increase than b* value of the frying oil that extract of rosemary. The viscosity values of frying oils containing rosemary extract changed between 30.3 mPas (1. frying oil containing 0.5% extract) and 35.5 mPas (2. frying oil containing 0.5% extract). In addition, free fatty acidity values of frying oils containing essential oil at 0.1, 0.3 and 0.5% levels ranged from 0.160% (1. frying oil containing 0.5% essential oil) to 0.320% (1. frying oil containing 0.3% essential oil). Peroxide values of frying oils containing rosemary extracts were determined between 12.84 meq O2/kg (1. frying oil containing 0.1% extract) and 28.98 meq O2/kg (2. frying oil containing 0.1% extract). Peroxide value of frying made with 0.3 % the rosemary essential oil increased less than that of made with the raw sunflower oil (control) (p < 0.05). Whenever rosemary essential oil and rosemary extract compare, the essential oil seems to be more effective on the peroxide value of the frying oil. The essential oil of rosemary have been effected more from the extracts of rosemary on the oxidative stability of sunflower oil.


Subject(s)
Cooking , Hot Temperature , Oils, Volatile/chemistry , Sunflower Oil/chemistry , Food Quality , Oxidation-Reduction , Peroxides/analysis , Plant Extracts/chemistry , Plant Oils/chemistry
9.
J Oleo Sci ; 69(8): 795-800, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32641612

ABSTRACT

In this study, chemical properties, amino acid contents, fatty acid compositions of sesame seeds dependin on growing locations of sesame plants were evaluated. Protein contents of sesame seeds changed between 20.80% (Afghanistan) and 26.01% (India). Oil contents of seeds were changed between 44.69% (Mozambique) and 55.37% (Niger-Kany). Crude fiber contents of sesame seeds ranged from 17.30% (Ethiopia-Volega) to 28.78% (Mozambique). The highest protein, crude oil and crude fiber were found in India, Niger-Kany and Mozambique sesame seed samples, respectively. In addition, while glutamic acid contends of seeds change between 3.28% (Uganda and Niger-Benje) and 4.57% (India), arginine contents of seeds ranged from 2.36% (Uganda) to 3.10% (India). The total amino acid contents of sesame seeds ranged from 18.12% (Uganda) to 23.51% (India). Palmitic acid contents of sesame oils ranged from 7.93% (Uganda) to 9.55% (Burkina Faso). While oleic acid contents of sesame seed oils are found between 35.88% (Mozambique) and 44.54% (Afghanistan), linoleic acid contents of oils ranged from 37.41% (Afghanistan) to 47.44% (Mozambique). The high amount of protein, oil contents, amino acids and unsaturated fatty acids can be positively considered from the nutritional point of view.


Subject(s)
Amino Acids/analysis , Fatty Acids/analysis , Food Analysis , Seeds/chemistry , Sesamum/chemistry , Afghanistan , Africa , India , Plant Oils/analysis , Plant Proteins/analysis
10.
Food Chem ; 333: 127531, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32679420

ABSTRACT

The effect of roasting of chia seed at different temperatures (90, 120, 150 and 180 °C) on bioactive constituents in extracts and on the quality of oil was evaluated. At higher temperatures, crude protein and ash contents increased, whereas total phenolic, flavonoid, carotenoid, and antioxidant activities decreased. The predominant phenolic constituents were myrcetin, and rosmarinic, 3, 4-dihydroxybenzoic, caffeic, and gallic acids, which all decreased with increasing temperatures. Notably, myrcetin content ranged from 75.59 mg/100 g (at 100 °C) to 85.49 mg/100 g (for control). Tocopherols (É£ and α type) were predominant nutrients and their levels ranged from 654.86 mg/100 g (at 180 °C) to 698.32 mg/100 g (for control). Concentrations of linolenic (59.84%), linoleic (20.57%), and oleic (10.09%) acids from unroasted chia seeds were higher than those from roasted ones. This study revealed that chia seeds should be heated at temperatures below or equal to 90 °C in order to preserve their nutrient profile.


Subject(s)
Fatty Acids/chemistry , Food Handling , Hot Temperature , Plant Oils/chemistry , Salvia/chemistry , Seeds/chemistry , Food Quality
11.
J Oleo Sci ; 69(4): 307-315, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32132351

ABSTRACT

The acidity values changed between 1.03 mgKOH/100g (control) and 1.11 mgKOH/100g (0.1% extract) for orange oil, 1.06 mgKOH/100g (0.5% extract) and 1.13 mgKOH/100g (0.1% extract) and 1.25 mgKOH/100g (0.5% extract) and 1.31 mgKOH/100g (control) for mandarin oil. The peroxide values were determined between1.37 meqO2/kg (0.5% extract) and 1.43 meqO2/kg (0.1% extract) for orange oil, between 1.24 meqO2/kg (control) and 1.27 meqO2/kg (0.1% extract) for lemon and 1.60 meqO2/kg (0.5% extract) and 1.71 meqO2/kg (control) in mandarin oil samples. The viscosity values of samples changed between 0.051 Pa.S (control) and 0.065 Pa.S (0.5% extract) for orange, 0.051 Pa.S (control) and 0.067 Pa.S (0.5% extract) lemon and 0.044 Pa.S (control) and 0.057 Pa.S (0.5% extract) in mandarin oil samples. At the end of storage study (28th day), the acidity values significantly changed, and their values ranged between 2.28 mgKOH/100g (0.5% extract) and 3.64 mgKOH/100g (control) in orange, 1.67 mgKOH/100g (0.5% extract) and 2.28 mgKOH/100g (control) in lemon and 1.74 mgKOH/100g (0.5% extract) and 2.36 mgKOH/100g (control) in mandarin oil samples. While peroxide values vary between 11.68 meqO2/kg (0.5% extract) and 32.57 meqO2/kg (control) for orange, 12.55 meqO2/kg (0.5% extract) and 34.63 meqO2/kg (control) for lemon and between 17.56 meqO2/kg (0.5% extract) and 37.81 meqO2/kg (control) for mandarin oils, viscosity values after 28 day storage changed between 0.123 Pa.S (0.5% extract) and 0.675 Pa.S (control) in orange, 0.257 Pa.S (0.5% extract) and 0.697 Pa.S (control) in lemon and 0.215 Pa.S (0.5% extract) and 0.728 Pa.S (control) in mandarin oil samples.


Subject(s)
Chemical Phenomena , Citrus/chemistry , Peroxides/analysis , Plant Extracts/chemistry , Rhus/chemistry , Seeds/chemistry , Cold Temperature , Hydroxides/analysis , Oxidation-Reduction , Potassium Compounds/analysis , Viscosity
12.
J Oleo Sci ; 68(11): 1099-1104, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31611512

ABSTRACT

The aim of this study was to determine the effect of different extraction solvents (petroleum benzene, hexane, diethyl ether and acetone) and extraction methods (hot and cold) on oil yield of safflower seeds and its fatty acid compositions. Oil contents of safflower seeds extracted by hot extraction system were changed between 37.40% (acetone) and 39.53% (petroleum benzene), while that of cold extraction was varied between 39.96% (petroleum benzene) and 39.40% (diethyl ether). Regarding the extraction solvents, the highest oil yield (39.53%) was obtained with petroleum benzene, while the minimum value (37.40%) was found with acetone under hot extraction condition. The main fatty acids observed in all extracted oil samples were linoleic, oleic and palmitic acids. Oleic acid contents of safflower oils extracted by hot extraction system was ranged between 41.20% (acetone) and 42.54% (hexane), its content in oils obtained by cold extraction method was varied between 40.58% (acetone) and 42.10% (hexane and diethyl ether). Linoleic content of safflower oil extracted by hot extraction system was found between 48.23% (acetone) and 49.62% (hexane), while that oil extracted by cold method range from 48.07 (hexane) to 49.09% (acetone). The fatty acid composition of safflower seeds oil showed significant (p < 0.05) differences depending on solvent type and extraction method. The results of this study provide relevant information that can be used to improve organic solvent extraction processes of vegetable oil.


Subject(s)
Carthamus tinctorius/chemistry , Liquid-Liquid Extraction/methods , Safflower Oil/isolation & purification , Seeds/chemistry , Solvents , Acetone , Benzene , Cold Temperature , Ether , Hot Temperature , Linoleic Acid/analysis , Linoleic Acid/isolation & purification , Organophosphates , Palmitic Acids/analysis , Palmitic Acids/isolation & purification , Petroleum , Safflower Oil/chemistry
13.
J Oleo Sci ; 68(2): 167-173, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30651416

ABSTRACT

In this study, physico-chemical properties, fatty acid composition, and tocopherol contents of several walnut kernel oils obtained through cold-press and Soxhlet extractions were investigated. The acidity, peroxide, and unsaponifiable matter of oil samples extracted in the Soxhlet system were found higher. Total phenol contents of the oils obtained in cold press and Soxhlet extraction systems were 121.9 mg GAE/100g (Kaman-2) and 154.6 mg GAE/ 100g (Büyükoba), and between 135.9 mg GAE/100g (Kaman-2) and 163.8 mg GAE/100g (Büyükoba), respectively (p < 0.05). In addition, antioxidant activity valuesof walnut oils obtained in cold press and Soxhlet extractions varied between 17.3% (Kaman-2) and 19.7% (Kaman-5), and between 18.4% (Kaman-2) and 23.8% (Büyükoba), respectively (p < 0.05). Linoleic acid contents of the oil samples extracted in cold-press varied between 55.19% (Kaman-5) and 56.71% (Kaman-2), while that extracted from Soxhlet extraction system varied between 54.47% (Kaman-2) and 55.93% (Büyükoba). É£-Tocopherol contents of walnut oils extracted in cold press and Soxhlet extraction ranged between 9.41 mg/100g (Büyükoba) and 10.83 mg/100g (Kaman-2), and 8.76 mg/100g (Kaman-5) and 9.33 mg/100g (Kaman-2), respectively, and were statistically significant (p < 0.05).


Subject(s)
Antioxidants/analysis , Fatty Acids/analysis , Juglans/chemistry , Phenols/analysis , Plant Oils/analysis , Tocopherols/analysis , Fruit/chemistry , Liquid-Liquid Extraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL