Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
ACS Chem Biol ; 17(10): 2744-2752, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36149353

ABSTRACT

Recently determined structures of class C G protein-coupled receptors (GPCRs) revealed the location of allosteric binding sites and opened new opportunities for the discovery of novel modulators. In this work, molecular docking screens for allosteric modulators targeting the metabotropic glutamate receptor 5 (mGlu5) were performed. The mGlu5 receptor is activated by the main excitatory neurotransmitter of the nervous central system, L-glutamate, and mGlu5 receptor activity can be allosterically modulated by negative or positive allosteric modulators. The mGlu5 receptor is a promising target for the treatment of psychiatric and neurodegenerative diseases, and several allosteric modulators of this GPCR have been evaluated in clinical trials. Chemical libraries containing fragment- (1.6 million molecules) and lead-like (4.6 million molecules) compounds were docked to an allosteric binding site of mGlu5 identified in X-ray crystal structures. Among the top-ranked compounds, 59 fragments and 59 lead-like compounds were selected for experimental evaluation. Of these, four fragment- and seven lead-like compounds were confirmed to bind to the allosteric site with affinities ranging from 0.43 to 8.6 µM, corresponding to a hit rate of 9%. The four compounds with the highest affinities were demonstrated to be negative allosteric modulators of mGlu5 signaling in functional assays. The results demonstrate that virtual screens of fragment- and lead-like chemical libraries have complementary advantages and illustrate how access to high-resolution structures of GPCRs in complex with allosteric modulators can accelerate lead discovery.


Subject(s)
Receptor, Metabotropic Glutamate 5 , Small Molecule Libraries , Receptor, Metabotropic Glutamate 5/metabolism , Allosteric Regulation , Molecular Docking Simulation , Small Molecule Libraries/pharmacology , Ligands , Glutamic Acid , Allosteric Site , Receptors, G-Protein-Coupled
2.
J Am Chem Soc ; 144(7): 2905-2920, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35142215

ABSTRACT

Drugs targeting SARS-CoV-2 could have saved millions of lives during the COVID-19 pandemic, and it is now crucial to develop inhibitors of coronavirus replication in preparation for future outbreaks. We explored two virtual screening strategies to find inhibitors of the SARS-CoV-2 main protease in ultralarge chemical libraries. First, structure-based docking was used to screen a diverse library of 235 million virtual compounds against the active site. One hundred top-ranked compounds were tested in binding and enzymatic assays. Second, a fragment discovered by crystallographic screening was optimized guided by docking of millions of elaborated molecules and experimental testing of 93 compounds. Three inhibitors were identified in the first library screen, and five of the selected fragment elaborations showed inhibitory effects. Crystal structures of target-inhibitor complexes confirmed docking predictions and guided hit-to-lead optimization, resulting in a noncovalent main protease inhibitor with nanomolar affinity, a promising in vitro pharmacokinetic profile, and broad-spectrum antiviral effect in infected cells.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , Small Molecule Libraries/pharmacology , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacokinetics , Catalytic Domain , Chlorocebus aethiops , Coronavirus 3C Proteases/chemistry , Cysteine Proteinase Inhibitors/metabolism , Cysteine Proteinase Inhibitors/pharmacokinetics , Drug Evaluation, Preclinical , Humans , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Molecular Docking Simulation , Protein Binding , SARS-CoV-2/enzymology , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacokinetics , Vero Cells
3.
Angew Chem Int Ed Engl ; 60(33): 18022-18030, 2021 08 09.
Article in English | MEDLINE | ID: mdl-33904641

ABSTRACT

Many diseases are polygenic and can only be treated efficiently with drugs that modulate multiple targets. However, rational design of compounds with multi-target profiles is rarely pursued because it is considered too difficult, in particular if the drug must enter the central nervous system. Here, a structure-based strategy to identify dual-target ligands of G-protein-coupled receptors is presented. We use this approach to design compounds that both antagonize the A2A adenosine receptor and activate the D2 dopamine receptor, which have excellent potential as antiparkinson drugs. Atomic resolution models of the receptors guided generation of a chemical library with compounds designed to occupy orthosteric and secondary binding pockets in both targets. Structure-based virtual screens identified ten compounds, of which three had affinity for both targets. One of these scaffolds was optimized to nanomolar dual-target activity and showed the predicted pharmacodynamic effect in a rat model of Parkinsonism.


Subject(s)
Antiparkinson Agents/pharmacology , Drug Design , Receptor, Adenosine A2A/metabolism , Receptors, Dopamine D2/metabolism , Small Molecule Libraries/pharmacology , Animals , Antiparkinson Agents/chemical synthesis , Antiparkinson Agents/chemistry , Drug Evaluation, Preclinical , Humans , Ligands , Molecular Structure , Rats , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry
4.
ACS Pharmacol Transl Sci ; 3(2): 361-370, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32296774

ABSTRACT

G protein-coupled receptors (GPCRs) are intensively studied due to their therapeutic potential as drug targets. Members of this large family of transmembrane receptor proteins mediate signal transduction in diverse cell types and play key roles in human physiology and health. In 2013 the research consortium GLISTEN (COST Action CM1207) was founded with the goal of harnessing the substantial growth in knowledge of GPCR structure and dynamics to push forward the development of molecular modulators of GPCR function. The success of GLISTEN, coupled with new findings and paradigm shifts in the field, led in 2019 to the creation of a related consortium called ERNEST (COST Action CA18133). ERNEST broadens focus to entire signaling cascades, based on emerging ideas of how complexity and specificity in signal transduction are not determined by receptor-ligand interactions alone. A holistic approach that unites the diverse data and perspectives of the research community into a single multidimensional map holds great promise for improved drug design and therapeutic targeting.

5.
J Med Chem ; 61(12): 5269-5278, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29792714

ABSTRACT

Modulation of multiple biological targets with a single drug can lead to synergistic therapeutic effects and has been demonstrated to be essential for efficient treatment of CNS disorders. However, rational design of compounds that interact with several targets is very challenging. Here, we demonstrate that structure-based virtual screening can guide the discovery of multi-target ligands of unrelated proteins relevant for Parkinson's disease. A library with 5.4 million molecules was docked to crystal structures of the A2A adenosine receptor (A2AAR) and monoamine oxidase B (MAO-B). Twenty-four compounds that were among the highest ranked for both binding sites were evaluated experimentally, resulting in the discovery of four dual-target ligands. The most potent compound was an A2AAR antagonist with nanomolar affinity ( Ki = 19 nM) and inhibited MAO-B with an IC50 of 100 nM. Optimization guided by the predicted binding modes led to the identification of a second potent dual-target scaffold. The two discovered scaffolds were shown to counteract 6-hydroxydopamine-induced neurotoxicity in dopaminergic neuronal-like SH-SY5Y cells. Structure-based screening can hence be used to identify ligands with specific polypharmacological profiles, providing new avenues for drug development against complex diseases.


Subject(s)
Antiparkinson Agents/pharmacology , Drug Evaluation, Preclinical/methods , Molecular Docking Simulation/methods , Monoamine Oxidase/chemistry , Receptor, Adenosine A2A/chemistry , Adenosine A2 Receptor Antagonists/chemistry , Adenosine A2 Receptor Antagonists/pharmacology , Animals , Antiparkinson Agents/chemistry , Binding Sites , CHO Cells , Cell Line , Cell Survival/drug effects , Cricetulus , Cyclic AMP/metabolism , Humans , Ligands , Molecular Targeted Therapy , Monoamine Oxidase/metabolism , Parkinson Disease/drug therapy , Receptor, Adenosine A2A/metabolism , Structure-Activity Relationship
6.
Cell Signal ; 38: 85-96, 2017 10.
Article in English | MEDLINE | ID: mdl-28668722

ABSTRACT

Frizzleds (FZDs) are unconventional G protein-coupled receptors, which activate diverse intracellular signaling pathways via the phosphoprotein Disheveled (DVL) and heterotrimeric G proteins. The interaction interplay of FZDs with DVL and G proteins is complex, involves different regions of FZD and the potential dynamics are poorly understood. In the present study, we aimed to characterize the function of a highly conserved tyrosine (Y2502.39) in the intracellular loop 1 (IL1) of human FZD4. We have found Y2502.39 to be crucial for DVL2 interaction and DVL2 translocation to the plasma membrane. Mutant FZD4-Y2502.39F, impaired in DVL2 binding, was defective in both ß-catenin-dependent and ß-catenin-independent WNT signaling induced in Xenopus laevis embryos. The same mutant maintained interaction with the heterotrimeric G proteins Gα12 and Gα13 and was able to mediate WNT-induced G protein dissociation and G protein-dependent YAP/TAZ signaling. We conclude from modeling and dynamics simulation efforts that Y2502.39 is important for the structural integrity of the FZD-DVL, but not for the FZD-G protein interface and hypothesize that the interaction network of Y2502.39 and H3484.46 plays a role in specifying downstream signaling pathways induced by the receptor.


Subject(s)
Conserved Sequence , Dishevelled Proteins/chemistry , Dishevelled Proteins/metabolism , Frizzled Receptors/chemistry , Frizzled Receptors/metabolism , Tyrosine/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , DNA Mutational Analysis , Embryo, Nonmammalian/metabolism , HEK293 Cells , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Molecular Dynamics Simulation , Neoplasms/metabolism , Neoplasms/pathology , Polymerization , Protein Binding , Signal Transduction , Structural Homology, Protein , Structure-Activity Relationship , Wnt Signaling Pathway , Xenopus laevis/embryology
7.
J Chem Inf Model ; 55(3): 550-63, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25625646

ABSTRACT

Crystal structures of G protein-coupled receptors (GPCRs) have recently revealed the molecular basis of ligand binding and activation, which has provided exciting opportunities for structure-based drug design. The A2A adenosine receptor (A2AAR) is a promising therapeutic target for cardiovascular diseases, but progress in this area is limited by the lack of novel agonist scaffolds. We carried out docking screens of 6.7 million commercially available molecules against active-like conformations of the A2AAR to investigate whether these structures could guide the discovery of agonists. Nine out of the 20 predicted agonists were confirmed to be A2AAR ligands, but none of these activated the ARs. The difficulties in discovering AR agonists using structure-based methods originated from limited atomic-level understanding of the activation mechanism and a chemical bias toward antagonists in the screened library. In particular, the composition of the screened library was found to strongly reduce the likelihood of identifying AR agonists, which reflected the high ligand complexity required for receptor activation. Extension of this analysis to other pharmaceutically relevant GPCRs suggested that library screening may not be suitable for targets requiring a complex receptor-ligand interaction network. Our results provide specific directions for the future development of novel A2AAR agonists and general strategies for structure-based drug discovery.


Subject(s)
Adenosine A2 Receptor Agonists/chemistry , Drug Discovery/methods , Molecular Docking Simulation , Structure-Activity Relationship , Adenosine A2 Receptor Agonists/metabolism , Adenosine A2 Receptor Agonists/pharmacology , Adenosine A2 Receptor Antagonists/chemistry , Adenosine A2 Receptor Antagonists/pharmacology , Animals , CHO Cells/drug effects , Cricetulus , Drug Design , Drug Evaluation, Preclinical/methods , Humans , Ligands , Prospective Studies , Protein Conformation , Receptor, Adenosine A2A/chemistry , Receptor, Adenosine A2A/genetics , Receptor, Adenosine A2A/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism
8.
Mol Pharmacol ; 84(5): 670-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23950219

ABSTRACT

GABA(A) receptors play a crucial role in the actions of general anesthetics. The recently published crystal structure of the general anesthetic propofol bound to Gloeobacter violaceus ligand-gated ion channel (GLIC), a bacterial homolog of GABA(A) receptors, provided an opportunity to explore structure-based ligand discovery for pentameric ligand-gated ion channels (pLGICs). We used molecular docking of 153,000 commercially available compounds to identify molecules that interact with the propofol binding site in GLIC. In total, 29 compounds were selected for functional testing on recombinant GLIC, and 16 of these compounds modulated GLIC function. Active compounds were also tested on recombinant GABA(A) receptors, and point mutations around the presumed binding pocket were introduced into GLIC and GABA(A) receptors to test for binding specificity. The potency of active compounds was only weakly correlated with properties such as lipophilicity or molecular weight. One compound was found to mimic the actions of propofol on GLIC and GABA(A), and to be sensitive to mutations that reduce the action of propofol in both receptors. Mutant receptors also provided insight about the position of the binding sites and the relevance of the receptor's conformation for anesthetic actions. Overall, the findings support the feasibility of the use of virtual screening to discover allosteric modulators of pLGICs, and suggest that GLIC is a valid model system to identify novel GABA(A) receptor ligands.


Subject(s)
Anesthetics, General/pharmacology , Ligand-Gated Ion Channels/drug effects , Animals , Binding Sites , Drug Evaluation, Preclinical , Female , Ligand-Gated Ion Channels/chemistry , Molecular Docking Simulation , Mutation , Receptors, GABA-A/drug effects , Xenopus laevis
9.
Biochemistry ; 46(9): 2466-79, 2007 Mar 06.
Article in English | MEDLINE | ID: mdl-17284015

ABSTRACT

The carboxylate of Glu35 in the active site of potato epoxide hydrolase StEH1 interacts with the catalytic water molecule and is the first link in a chain of hydrogen bonds connecting the active site with bulk solvent. To probe its importance to catalysis, the carboxylate was replaced with an amide through an E35Q mutation. Comparing enzyme activities using the two trans-stilbene oxide (TSO) enantiomers as substrates revealed the reaction with R,R-TSO to be the one more severely affected by the E35Q mutation, as judged by determined kinetic parameters describing the pre-steady states or the steady states of the catalyzed reactions. The hydrolysis of S,S-TSO afforded by the E35Q mutant was comparable with that of the wild-type enzyme, with only a minor decrease in activity, or a change in pH dependencies of kcat, and the rate of alkylenzyme hydrolysis, k3. The pH dependence of E35Q-catalyzed hydrolysis of R,R-TSO, however, exhibited an inverted titration curve as compared to that of the wild-type enzyme, with a minimal catalytic rate at pH values where the wild-type enzyme exhibited maximum rates. To simulate the pH dependence of the E35Q mutant, a shift in the acidity of the alkylenzyme had to be invoked. The proposed decrease in the pKa of His300 in the E35Q mutant was supported by computer simulations of the active site electrostatics. Hence, Glu35 participates in activation of the Asp nucleophile, presumably by facilitating channeling of protons out of the active site, and during the hydrolysis half-reaction by orienting the catalytic water for optimal hydrogen bonding, to fine-tune the acid-base characteristics of the general base His300.


Subject(s)
Epoxide Hydrolases/metabolism , Solanum tuberosum/enzymology , Amino Acid Sequence , Binding Sites , Epoxide Hydrolases/chemistry , Epoxide Hydrolases/genetics , Epoxide Hydrolases/isolation & purification , Glutamic Acid/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL