Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Affiliation country
Publication year range
1.
Food Res Int ; 163: 112182, 2023 01.
Article in English | MEDLINE | ID: mdl-36596123

ABSTRACT

Despite some studies on tea leaf cuticular wax, their component changes during dehydration and withering treatments in tea processing and suspected relation with tea flavor quality formation remain unknown. Here, we showed that tea leaf cuticular wax changed drastically in tea leaf development, dehydration, or withering treatment during tea processing, which affected tea flavor formation. Caffeine was found as a major component of leaf cuticular wax. Caffeine and inositol contents in leaf cuticular wax increased during dehydration and withering treatments. Comparisons showed that tea varieties with higher leaf cuticular wax loading produced more aroma than these with lower cuticular wax loading, supporting a positive correlation between tea leaf cuticular wax loading and degradation with white tea aroma formation. Dehydration or withering treatment of tea leaves also increased caffeine and inositol levels in leaf cuticular wax and triggered cuticular wax degradation into various molecules, that could be related to tea flavor formation. Thus, tea leaf cuticular waxes not only protect tea plants but also contribute to tea flavor formation. The study provides new insight into the dynamic changes of tea leaf cuticular waxes for tea plant protection and tea flavor quality formation in tea processing.


Subject(s)
Camellia sinensis , Dehydration , Dehydration/metabolism , Camellia sinensis/metabolism , Caffeine/metabolism , Plant Leaves/metabolism , Waxes , Inositol , Tea/metabolism
2.
BMC Genomics ; 24(1): 27, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36650452

ABSTRACT

BACKGROUND: As an economically important crop, tea is strongly nitrogen (N)-dependent. However, the physiological and molecular mechanisms underlying the response of N deficiency in tea are not fully understood. Tea cultivar "Chunlv2" [Camellia sinensis (L.) O. Kuntze] were cultured with a nutrient solution with 0 mM [N-deficiency] or 3 mM (Control) NH4NO3 in 6 L pottery pots containing clean river sands. RESULTS: N deficiency significantly decreased N content, dry weight, chlorophyll (Chl) content, L-theanine and the activities of N metabolism-related enzymes, but increased the content of total flavonoids and polyphenols in tea leaves. N deficiency delayed the sprouting time of tea buds. By using the RNA-seq technique and subsequent bioinformatics analysis, 3050 up-regulated and 2688 down-regulated differentially expressed genes (DEGs) were isolated in tea leaves in response to N deficiency. However, only 1025 genes were up-regulated and 744 down-regulated in roots. Gene ontology (GO) term enrichment analysis showed that 205 DEGs in tea leaves were enriched in seven GO terms and 152 DEGs in tea roots were enriched in 11 GO items based on P < 0.05. In tea leaves, most GO-enriched DEGs were involved in chlorophyll a/b binding activities, photosynthetic performance, and transport activities. But most of the DEGs in tea roots were involved in the metabolism of carbohydrates and plant hormones with regard to the GO terms of biological processes. N deficiency significantly increased the expression level of phosphate transporter genes, which indicated that N deficiency might impair phosphorus metabolism in tea leaves. Furthermore, some DEGs, such as probable anion transporter 3 and high-affinity nitrate transporter 2.7, might be of great potential in improving the tolerance of N deficiency in tea plants and further study could work on this area in the future. CONCLUSIONS: Our results indicated N deficiency inhibited the growth of tea plant, which might be due to altered N metabolism and expression levels of DEGs involved in the photosynthetic performance, transport activity and oxidation-reduction processes.


Subject(s)
Camellia sinensis , Camellia sinensis/metabolism , Chlorophyll A , Nitrogen/metabolism , Tea/metabolism , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
3.
Int J Mol Sci ; 25(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38203412

ABSTRACT

Leaf color variations in tea plants were widely considered due to their attractive phenotypes and characteristic flavors. The molecular mechanism of color formation was extensively investigated. But few studies focused on the transformation process of leaf color change. In this study, four strains of 'Baijiguan' F1 half-sib generation with similar genetic backgrounds but different colors were used as materials, including Green (G), Yellow-Green (Y-G), Yellow (Y), and Yellow-Red (Y-R). The results of broadly targeted metabolomics showed that 47 metabolites were differentially accumulated in etiolated leaves (Y-G, Y, and Y-R) as compared with G. Among them, lipids were the main downregulated primary metabolites in etiolated leaves, which were closely linked with the thylakoid membrane and chloroplast structure. Flavones and flavonols were the dominant upregulated secondary metabolites in etiolated leaves, which might be a repair strategy for reducing the negative effects of dysfunctional chloroplasts. Further integrated analysis with the transcriptome indicated different variation mechanisms of leaf phenotype in Y-G, Y, and Y-R. The leaf color formation of Y-G and Y was largely determined by the increased content of eriodictyol-7-O-neohesperidoside and the enhanced activities of its modification process, while the color formation of Y-R depended on the increased contents of apigenin derivates and the vigorous processes of their transportation and transcription factor regulation. The key candidate genes, including UDPG, HCT, CsGSTF1, AN1/CsMYB75, and bHLH62, might play important roles in the flavonoid pathway.


Subject(s)
Camellia sinensis , Camellia sinensis/genetics , Camellia sinensis/metabolism , Metabolome , Plant Leaves/metabolism , Transcriptome
4.
BMC Plant Biol ; 21(1): 506, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34727870

ABSTRACT

BACKGROUND: Nitrogen (N) fertilizer is commonly considered as one of the most important limiting factors in the agricultural production. As a result, a large amount of N fertilizer is used to improve the yield in modern tea production. Unfortunately, the large amount of N fertilizer input has led to increased plant nitrogen-tolerance and decreased amplitude of yield improvement, which results in significant N loss, energy waste and environment pollution. However, the effects of N-deficiency on the metabolic profiles of tea leaves and roots are not well understood. RESULTS: In this study, seedlings of Camellia sinensis (L.) O. Kuntze Chunlv 2 were treated with 3 mM NH4NO3 (Control) or without NH4NO3 (N-deficiency) for 4 months by sandy culture. The results suggested that N-deficiency induced tea leaf chlorosis, impaired biomass accumulation, decreased the leaf chlorophyll content and N absorption when they were compared to the Control samples. The untargeted metabolomics based on GC-TOF/MS approach revealed a discrimination of the metabolic profiles between N-deficient tea leaves and roots. The identification and classification of the altered metabolites indicated that N deficiency upregulated the relative abundances of most phenylpropanoids and organic acids, while downregulated the relative abundances of most amino acids in tea leaves. Differentially, N-deficiency induced the accumulation of most carbohydrates, organic acids and amino acids in tea roots. The potential biomarkers screened in N-deficient leaves compared to Control implied that N deficiency might reduce the tea quality. Unlike the N-deficient leaves, the potential biomarkers in N-deficient roots indicated an improved stress response might occur in tea roots. CONCLUSIONS: The results demonstrated N deficiency had different effects on the primary and secondary metabolism in tea leaves and roots. The findings of this study will facilitate a comprehensive understanding of the N-deficient tea plants and provide a valuable reference for the optimized N nutrient management and the sustainable development in the tea plantations.


Subject(s)
Camellia sinensis/chemistry , Camellia sinensis/growth & development , Camellia sinensis/metabolism , Nitrogen/deficiency , Nitrogen/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Chromatography, Gas , Crops, Agricultural/chemistry , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Mass Spectrometry , Metabolome , Metabolomics , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Roots/chemistry , Plant Roots/growth & development
5.
J Agric Food Chem ; 68(41): 11389-11401, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32852206

ABSTRACT

Tea trichomes contain special flavor-determining metabolites; however, little is known about how and why tea trichomes produce them. Integrated metabolite and transcriptome profiling on tea trichomes in comparison with that on leaves showed that trichomes contribute to tea plant defense and tea flavor and nutritional quality. These unicellular, nonglandular, and unbranched tea trichomes produce a wide array of tea characteristic metabolites, such as UV-protective flavonoids, insect-toxic caffeine, herbivore-defensive volatiles, and theanine, as evidenced by the expression of whole sets of genes involved in different metabolic pathways. Both dry and fresh trichomes contain several volatiles and flavonols that were not found or at much low levels in trichome-removed leaves, including benzoic acid derivatives, lipid oxidation derivatives, and monoterpene derivatives. Trichomes also specifically expressed many disease signaling genes and various antiherbivore or antiabiotic peptides. Trichomes are one of the domestication traits in tea plants. Tea trichomes contribute to tea plant defenses and tea flavors.


Subject(s)
Camellia sinensis/metabolism , Flavoring Agents/chemistry , Trichomes/chemistry , Camellia sinensis/chemistry , Camellia sinensis/genetics , Flavonoids/chemistry , Flavonoids/metabolism , Flavoring Agents/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/metabolism , Tea/chemistry , Transcriptome , Trichomes/genetics , Trichomes/metabolism , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism
6.
Sci Rep ; 10(1): 6696, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317754

ABSTRACT

Cuticle is the major transpiration barrier that restricts non-stomatal water loss and is closely associated with plant drought tolerance. Although multiple efforts have been made, it remains controversial what factors shape up the cuticular transpiration barrier. Previously, we found that the cuticle from the tender tea leaf was mainly constituted by very-long-chain-fatty-acids and their derivatives while alicyclic compounds dominate the mature tea leaf cuticle. The presence of two contrasting cuticle within same branch offered a unique system to investigate this question. In this study, tea seedlings were subjected to water deprivation treatment, cuticle structures and wax compositions from the tender leaf and the mature leaf were extensively measured and compared. We found that cuticle wax coverage, thickness, and osmiophilicity were commonly increased from both leaves. New waxes species were specifically induced by drought; the composition of existing waxes was remodeled; the chain length distributions of alkanes, esters, glycols, and terpenoids were altered in complex manners. Drought treatment significantly reduced leaf water loss rates. Wax biosynthesis-related gene expression analysis revealed dynamic expression patterns dependent on leaf maturity and the severity of drought. These data suggested that drought stress-induced structural and compositional cuticular modifications improve cuticle water barrier property. In addition, we demonstrated that cuticle from the tender leaf and the mature leaf were modified through both common and distinct modes.


Subject(s)
Camellia sinensis/physiology , Droughts , Plant Epidermis/physiology , Plant Leaves/physiology , Plant Transpiration/physiology , Stress, Physiological , Camellia sinensis/genetics , Crystallization , Dehydration , Gene Expression Regulation, Plant , Plant Epidermis/ultrastructure , Plant Leaves/ultrastructure , Plant Proteins/genetics , Plant Proteins/metabolism , Soil/chemistry , Water/chemistry , Waxes/chemistry
7.
Sci Rep ; 8(1): 14944, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30297696

ABSTRACT

The goal of the present study was to compare the structural and compositional differences of cuticle between tender leaf and fully-expanded leaf in Camellia sinensis, and provide metabolic base for the further characterization of wax biosynthesis in this economically important crop species. The tender second leaf and the fully-expanded fifth leaf from new twig were demonstrated to represent two different developmental stages, their cuticle thickness were measured by transmission electron microscopy. The thickness of the adaxial cuticle on the second and fifth leaf was 1.15 µm and 2.48 µm, respectively; the thickness of the abaxial cuticle on the second and fifth leaf was 0.47 µm and 1.05 µm, respectively. The thickness of the epicuticular wax layer from different leaf position or different sides of same leaf were similar. However, the intracuticular wax layer of the fifth leaf was much thicker than that of the second leaf. Total wax lipids were isolated from the second leaf and the fifth leaf, respectively. Gas chromatography-mass spectrometry analysis identified 51 wax constituents belonging to 13 chemical classes, including esters, glycols, terpenoids, fatty acids and their derivatives. Wax coverage on the second and fifth leaf was 4.76 µg/cm2 and 15.38 µg/cm2, respectively. Primary alcohols dominated in the tender second leaf. However, triterpenoids were the major components from the fully-expanded fifth leaf. The predominant carbon chains varied depending on chemical class. These data showed that the wax profiles of Camellia sinensis leaves are development stage dependent, suggesting distinct developmental dependent metabolic pathways and regulatory mechanisms.


Subject(s)
Camellia sinensis/chemistry , Lipids/analysis , Plant Leaves/chemistry , Tea/chemistry , Waxes/chemistry , Camellia sinensis/growth & development , Camellia sinensis/metabolism , Camellia sinensis/ultrastructure , Esterification , Esters/analysis , Esters/metabolism , Gas Chromatography-Mass Spectrometry , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Tea/growth & development , Tea/metabolism , Tea/ultrastructure , Terpenes/analysis , Terpenes/metabolism , Waxes/metabolism
8.
BMC Genomics ; 19(1): 289, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29695246

ABSTRACT

BACKGROUND: Self-incompatibility (SI) is a major barrier that obstructs the breeding process in most horticultural plants including tea plants (Camellia sinensis). The aim of this study was to elucidate the molecular mechanism of SI in tea plants through a high throughput transcriptome analysis. RESULTS: In this study, the transcriptomes of self- and cross-pollinated pistils of two tea cultivars 'Fudingdabai' and 'Yulv' were compared to elucidate the SI mechanism of tea plants. In addition, the ion components and pollen tube growth in self- and cross-pollinated pistils were investigated. Our results revealed that both cultivars had similar pollen activities and cross-pollination could promote the pollen tube growth. In tea pistils, the highest ion content was potassium (K+), followed by calcium (Ca2+), magnesium (Mg2+) and phosphorus (P5+). Ca2+ content increased after self-pollination but decreased after cross-pollination, while K+ showed reverse trend with Ca2+. A total of 990 and 3 common differentially expressed genes (DEGs) were identified in un-pollinated vs. pollinated pistils and self- vs. cross-pollinated groups after 48 h, respectively. Function annotation indicated that three genes encoding UDP-glycosyltransferase 74B1 (UGT74B1), Mitochondrial calcium uniporter protein 2 (MCU2) and G-type lectin S-receptor-like serine/threonine-protein kinase (G-type RLK) might play important roles during SI process in tea plants. CONCLUSION: Ca2+ and K+ are important signal for SI in tea plants, and three genes including UGT74B1, MCU2 and G-type RLK play essential roles during SI signal transduction.


Subject(s)
Camellia sinensis/genetics , Pollination/genetics , Transcriptome , Calcium/metabolism , Calcium Channels/genetics , Camellia sinensis/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Glycosyltransferases/genetics , Ions/metabolism , Plant Proteins/genetics , Pollen/cytology , Pollen/genetics , Pollen/growth & development , Potassium/metabolism , RNA, Plant/chemistry , RNA, Plant/genetics , RNA, Plant/metabolism , Sequence Analysis, RNA , Signal Transduction/genetics
9.
J Sci Food Agric ; 96(15): 4951-4961, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27407065

ABSTRACT

BACKGROUND: The tea plant, Camellia sinensis (L.) O. Kuntz, is a perennial woody plant widely cultivated for the production of a popular non-alcoholic beverage. To rapidly identify and evaluate two different color tea varieties (yellowish and purplish), the main phenotypic traits and quality components were tested in the present study. The metabolic profiles of tea shoots and leaves were also analyzed using liquid chromatography-tandem mass spectrometry. RESULTS: The yellowish variation had a higher active level with respect to metabolism of catechins, and the contents of luteolin and kaempferol 3-α-d-glucoside were much higher compared to in the other variations. However, the purplish variation had a low content of theanine and a high content of caffeine. The contents of quercetin and kaempferol 3-α-d-galactoside were highest in purplish leaves. Moreover, the yellowish variation had the highest total quality scores for green teas and black teas, whereas the purplish variation had the highest scores for oolong teas. CONCLUSION: Both the yellowish variation and the purplish variation represent excellent breeding materials and are worthy of breeding as new tea cultivars. The yellowish variation is more suitable for making high-grade green teas or black teas, whereas the purplish variation is suitable for producing fine quality oolong teas. © 2016 Society of Chemical Industry.


Subject(s)
Camellia sinensis/chemistry , Color , Flavonoids/analysis , Tea/chemistry , Breeding , Catechin/metabolism , Chromatography, Liquid , Galactosides/analysis , Glucosides/analysis , Kaempferols/analysis , Luteolin/analysis , Phenotype , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Shoots/chemistry , Species Specificity , Tandem Mass Spectrometry
10.
J Proteomics ; 130: 160-9, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26344129

ABSTRACT

To uncover the mechanisms that underlie the chlorina phenotype of the tea plant, this study employs morphological, biochemical, transcriptomic, and iTRAQ-based proteomic analyses to compare the green tea cultivar LJ43 and the yellow-leaf tea cultivar ZH1. ZH1 exhibited the chlorina phenotype, with significantly decreased chlorophyll content and abnormal chloroplast development compared with LJ43. ZH1 also displayed higher theanine and free amino acid content and lower carotenoid and catechin content. Microarray and iTRAQ analyses indicated that the differentially expressed genes and proteins could be mapped to the following pathways: 'phenylpropanoid biosynthesis,' 'glutathione metabolism,' 'phenylalanine metabolism,' 'photosynthesis,' and 'flavonoid biosynthesis.' Altered gene and protein levels in these pathways may account for the increased amino acid content and reduced chlorophyll and flavonoid content of ZH1. Altogether, this study combines transcriptomic and proteomic approaches to better understand the mechanisms responsible for the chlorina phenotype.


Subject(s)
Chlorophyll/chemistry , Proteome/metabolism , Tea/metabolism , Transcriptome , Amino Acids/chemistry , Camellia sinensis/metabolism , Carotenoids/chemistry , Catechin/chemistry , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Glutamates/chemistry , Metabolic Networks and Pathways , Microscopy, Electron, Transmission , Oligonucleotide Array Sequence Analysis , Phenotype , Plant Leaves/metabolism , Plant Proteins/metabolism , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL