Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Plants (Basel) ; 13(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38202347

ABSTRACT

Botanical surveys in all parts of Pakistan are mainly focused on ethnomedicinal uses of plants, and very little attention has been paid to documenting edible wild fruit species (EWFs). Multiple methodologies and tools were used for data collection. In a recent survey 74 EWF species belonging to 29 families were documented, including their medicinal uses for the treatment of various diseases. The most cited (23%) preparation method was raw, fresh parts. The UV and RFC of EWF species ranged from 0.08 to 0.4 and from 0.02 to 0.18, respectively. In terms of specific disease treatments and their consensus, the ICF ranged from 0 to 0.38. Sexual, gastrointestinal, and respiratory disorders had the highest use reports, and 11 species of plants had the highest FL of 100%. On the basis of uses reported by the inhabitants of seven districts of Southern Khyber Pakhtunkhwa Province, the CSI ranged from the lowest 1.3 to the highest 41. It is concluded that the traditional uses of EWF species depend mainly on socio-economic factors rather than climatic conditions or the number of species. However, there is a gradual loss of traditional knowledge among the younger generations. The present survey is the first baseline study about the socio-economic dimension of local communities regarding the use of EWF species for food as well as medicine.

2.
Front Pharmacol ; 12: 511078, 2021.
Article in English | MEDLINE | ID: mdl-35126097

ABSTRACT

An ethnopharmacological metanalysis was conducted with a large database available on antidiabetic activities of plant foods and medicines from the northern boreal forest, which are traditionally used by the indigenous Cree of James Bay, Quebec, Canada. The objective was to determine which bioassays are closely associated with the traditional knowledge of the Cree and which pharmacological metrics and phytochemical signals best define these plants and their groups. Data from 17 plant species, ethnobotanically ranked by syndromic importance value for treatment of 15 diabetic symptoms, was used along with 49 bioassay endpoints reported across numerous pharmacological studies and a metabolomics dataset. Standardized activities were separated into primary, secondary and safety categories and summed to produce a Pharmacological Importance Value (PIV) in each of the three categories for each species. To address the question of which pharmacological metrics and phytochemical signals best define the CEI anti-diabetes plants, multivariate analyses were undertaken to determine groupings of plant families and plant parts. The analysis identified Larix larcina as the highest PIV species in primary assays, Salix planifolia in secondary assays, and Kalmia angustifolia in safety assays, as well as a ranking of other less active species by PIV. Multivariate analysis showed that activity in safety PIV monitored mainly with cytochrome P450 inhibition patterns best reflected patterns of traditional medicine importance in Cree traditional knowledge, whereas potent primary bioactivities were seen in individual plants determined to be most important to the Cree for anti-diabetes purposes. In the secondary anti-diabetes assays, pharmacological variability was better described by plant biology, mostly in terms of the plant part used. Key signal in the metabolomics loadings plots for activity were phenolics especially quercetin derivatives. Traditional Indigenous knowledge in this analysis was shown to be able to guide the identification of plant pharmacological qualities in scientific terms.

3.
BMC Complement Altern Med ; 19(1): 137, 2019 Jun 18.
Article in English | MEDLINE | ID: mdl-31215420

ABSTRACT

BACKGROUND: The Cree of Eeyou Istchee (James Bay area of northern Quebec) suffer from a high rate of diabetes and its complications partly due to the introduction of the western lifestyle within their culture. As part of a search for alternative medicine based on traditional practice, this project evaluates the biological activity of Picea mariana (Mill.) Britton, Sterns & Poggenb. needle, bark, and cone, in preventing glucose toxicity to PC12-AC cells in vitro (a diabetic neurophathy model) and whether habitat and growth environment influence this activity. METHODS: Three different organs (needle, bark, and cone) of P. mariana were collected at different geographical locations and ecological conditions and their 80% ethanolic extracts were prepared. Extracts were then tested for their ability to protect PC12-AC cells from hyperglycaemic challenge at physiologically relevant concentrations of 0.25, 0.5, 1.0 and 2.0 µg/mL. Folin-Ciocalteu method was used to determine the total phenolic content of P. mariana extracts. RESULTS: All extracts were well-tolerated in vitro exhibiting LD50 of 25 µg/mL or higher. Extracts from all tested organs showed a cytoprotective concentration-dependent response. Furthermore, the cytoprotective activity was habitat- and growth environment-dependent with plants grown in bog or forest habitats in coastal or inland environments exhibiting different cytoprotective efficacies. These differences in activity correlated with total phenolic content but not with antioxidant activity. In addition, this paper provides the first complete Ultra-Performance Liquid Chromatography-quadrupole time-of-flight (UPLC-QTOF) mass spectrometry analysis of Picea mariana's bark, needles and cones. CONCLUSIONS: Together, these results provide further understanding of the cytoprotective activity of Canadian boreal forest plants identified by the Cree healers of Eeyou Istchee in a cell model of diabetic neuropathy. Their activity is relevant to diabetic peripheral neuropathic complications and shows that their properties can be optimized by harvesting in optimal growth environments.


Subject(s)
Diabetes Mellitus/physiopathology , Glucose/toxicity , Hypoglycemic Agents/pharmacology , Picea/chemistry , Plant Extracts/pharmacology , Protective Agents/pharmacology , Animals , Cell Survival/drug effects , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Glucose/metabolism , Hypoglycemic Agents/analysis , PC12 Cells , Plant Extracts/analysis , Protective Agents/analysis , Quebec , Rats
4.
PeerJ ; 4: e2645, 2016.
Article in English | MEDLINE | ID: mdl-27833811

ABSTRACT

Mountain ash (Sorbus decora and S. americana) is used by the Cree Nation of the James Bay region of Quebec (Eeyou Istchee) as traditional medicine. Its potential as an antidiabetic medicine is thought to vary across its geographical range, yet little is known about the factors that affect its antioxidant capacity. Here, we examined metabolite gene expression in relation to antioxidant activity, linking phytochemistry and medicinal potential. Samples of leaf and bark from S. decora and S. americana were collected from 20 populations at four different latitudes. Two genes known to produce antidiabetic substances, flavonol synthase and squalene synthase, were analyzed using quantitative real time PCR. Gene expression was significantly higher for flavonol synthase compared to squalene synthase and increased in the most Northern latitude. Corresponding differences observed in the antioxidant capacity of ethanolic extracts from the bark of Sorbus spp. confirm that plants at higher latitudes increase production of stress-induced secondary metabolites and support Aboriginal perceptions of their higher medicinal potential. Modern genetic techniques such as quantitative real time PCR offer unprecedented resolution to substantiate and scrutinise Aboriginal medicinal plant perception. Furthermore, it offers valuable insights into how environmental stress can trigger an adaptive response resulting in the accumulation of secondary metabolites with human medicinal properties.

5.
J Ethnopharmacol ; 194: 651-657, 2016 Dec 24.
Article in English | MEDLINE | ID: mdl-27773798

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Larix laricina, a native tree of North America, is a highly respected medicinal plant used for generations by Indigenous Peoples across its range, including the Cree of northern Québec who use the bark to treat symptoms of diabetes. This study investigates the antioxidant capacity and bioavailability of active constituents identified in L. laricina bark extracts. MATERIALS AND METHODS: (1) Oxygen radical absorbance capacity (ORAC) assay was employed to test antioxidant capacity of organic extracts (80% ethanol) from bark of L. laricina as well as fractions, isolated compounds, and media samples collected during permeability assays. (2) Caco-2 cell monolayer cultures were used to determine the permeability of identified antioxidants, which were quantified in basolateral media samples using liquid chromatography - tandem mass spectrometry (HPLC-ESI-MS/MS). RESULTS: Crude ethanolic extract possessed strong antioxidant potential in vitro (7.1±0.3 Trolox equivalents (TE) µM/mg). Among the 16 L. laricina fractions obtained by chromatographic separation, fraction 10 (F10) showed the highest antioxidant capacity (21.8±1.7µm TE/mg). Among other identified antioxidants, the stilbene rhaponticin (isolated from F10) was the most potent (24.6±1.1µm TE/mg). Caco-2 transport studies revealed that none of the identified compounds were detectable in basolateral samples after 2-h treatment with crude extract. In monolayers treated with F10 (60% rhaponticin), small quantities of rhaponticin were increasingly detected over time in basolateral samples with an apparent permeability coefficient (Papp) of 1.86×10-8cm/s (0-60min). To model potential effects on blood redox status, we evaluated the antioxidant capacity of collected basolateral samples and observed enhanced activity over time after exposure to both extract and F10 (75µg/mL) relative to control. CONCLUSIONS: By profiling the antioxidant constituents of L. laricina bark, we identified rhaponticin as the most potent oxygen radical scavenger and observed low permeability in Caco-2 cell monolayers but an increase in basolateral antioxidant capacity.


Subject(s)
Larix/chemistry , Medicine, Traditional , Plant Bark/chemistry , Caco-2 Cells , Chromatography, High Pressure Liquid , Humans , Indians, North American , Spectrometry, Mass, Electrospray Ionization
6.
Planta Med ; 82(14): 1302-7, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27163231

ABSTRACT

Sorbus decora and Sorbus americana are used traditionally as medicine by the Eeyou Istchee Cree First Nation of the James Bay region of Quebec, Canada. Because the ethanol extracts of the bark and the isolated terpenes of these plants have shown promising in vivo antidiabetic effects, an analytical method was developed and validated by RP-HPLC-ELSD for the identification and quantification of eight lupane- and ursane-type terpenes. The extraction method reproducibly recovered the compounds above 70 % and the chromatographic separation of betulin, 23-hydroxy-betulin, 23,28-dihydroxylupan-20(29)-ene-3ß-caffeate, betulinic acid, α-amyrin, uvaol, 3ß,23,28-trihydroxy-12-ursene, and 23,28-dihydroxyursan-12-ene-3ß-caffeate was achieved within 27 min by linear gradient. The method produced highly reproducible quantitative data at interday and intraday levels. The limits of detection were in the ng level on-column with remarkable range and linearity. The target compounds were present at mg levels in the populations, collected from inland (Mistissini and Nemaska) and costal (Waskagnish and Chisasibi) Cree communities of northern Quebec. A triterpene, 23-hydroxybetulin, was the most abundant, while betulinic acid and uvaol were minor constituents. Overall, HPLC-ELSD analyses produced very similar profiles and contents of the eight compounds in the plants collected from four geographic locations. The developed HPLC-ELSD method can be used as a targeted analysis of triterpenes in these medicinal plants.


Subject(s)
Chromatography, High Pressure Liquid/methods , Sorbus/chemistry , Triterpenes/isolation & purification , Canada , Humans , Indians, North American , Light , Molecular Structure , Plant Bark/chemistry , Scattering, Radiation , Triterpenes/chemistry
7.
J Ethnopharmacol ; 178: 251-7, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26707751

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Rhododendron groenlandicum (Oeder) Kron & Judd (Labrador tea) was identified as an antidiabetic plant through an ethnobotanical study carried out with the close collaboration of Cree nations of northern Quebec in Canada. OBJECTIVES: In a previous study the plant showed glitazone-like activity in a 3T3-L1 adipogenesis bioassay. The current study sought to identify the active compounds responsible for this potential antidiabetic activity using bioassay guided fractionation based upon an in vitro assay that measures the increase of triglycerides content in 3T3-L1 adipocyte. MATERIALS AND METHODS: Isolation and identification of the crude extract's active constituents was carried out. The 80% ethanol extract was fractionated using silica gel column chromatography. Preparative HPLC was then used to isolate the constituents. The identity of the isolated compounds was confirmed by UV and mass spectrometry. RESULTS: Nine chemically distinct fractions were obtained and the adipogenic activity was found in fraction 5 (RGE-5). Quercetins, (+)-catechin and (-)-epicatechin were detected and isolated from this fraction. While (+)-catechin and (-)-epicatechin stimulated adipogenesis (238±26% and 187±21% relative to vehicle control respectively) at concentrations equivalent to their concentrations in the active fraction RGE-5, none afforded biological activity similar to RGE-5 or the plant's crude extract when used alone. When cells were incubated with a mixture of the two compounds, the adipogenic activity was close to that of the crude extract (280.7±27.8 vs 311± 30%). CONCLUSION: Results demonstrate that the mixture of (+)-catechin and (-)-epicatechin is responsible for the adipogenic activity of Labrador tea. This brings further evidence for the antidiabetic potential of R. groenlandicum and provides new opportunities to profile active principles in biological fluids or in traditional preparations.


Subject(s)
Adipogenesis/drug effects , Catechin/pharmacology , Hypoglycemic Agents/pharmacology , Ledum/chemistry , Plant Extracts/pharmacology , Rhododendron/chemistry , 3T3 Cells , Animals , Bays , Cell Line , Medicine, Traditional/methods , Mice , Plants, Medicinal/chemistry , Quebec
8.
J Pharm Pharm Sci ; 18(4): 484-93, 2015.
Article in English | MEDLINE | ID: mdl-26626246

ABSTRACT

PURPOSE: The Cree of Eeyou Istchee in Northern Quebec identified Sarracenia purpurea L. as an important plant for the treatment of Type 2 diabetes. Traditionally the plant is used as a decoction (boiling water extract) of the leaf, however, in order to study the extract in a laboratory setting, an 80% ethanol extract was used. In this study, the phytochemistry of both extracts of the leaves was compared and quantified. METHODS: Two S. purpurea leaf extracts were prepared, one a traditional hot water extract and the other an 80% ethanol extract. Using UPLC-ESI-MS, the extracts were phytochemically compared for 2 triterpenes, betulinic acid and ursolic acid, using one gradient method and for 10 additional substances, including the actives quercetin-3-O-galactoside and morroniside, using a different method. RESULTS: The concentrations of the nine phenolic substances present, as well as an active principle, the iridoid glycoside morroniside, were very similar between the two extracts, with generally slightly higher concentrations of phenolics in the ethanol extract as expected. However, two triterpenes, betulinic acid and ursolic acid, were 107 and 93 times more concentrated, respectively, in the ethanol extract compared to the water extract. CONCLUSION: The main phytochemical markers and most importantly the antidiabetic active principles, quercetin-3-O-galactoside and morroniside, were present in similar amounts in the two extracts, which predicts similar bioactivity.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.


Subject(s)
Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Sarraceniaceae/chemistry , Diabetes Mellitus, Type 2/drug therapy , Ethanol/chemistry , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Indians, North American , Medicine, Traditional , Plant Leaves , Quebec , Spectrometry, Mass, Electrospray Ionization/methods , Water/chemistry
9.
J Pharm Pharm Sci ; 18(4): 562-77, 2015.
Article in English | MEDLINE | ID: mdl-26626249

ABSTRACT

PURPOSE: The purpose of this study was to assess safety of the traditional antidiabetic extracts of either S. purpurea or its lead active principle, morroniside at the transcriptional level. The overarching objective was to profile and validate transcriptional changes in the cytochrome P450 family of genes, in response to treatment with S. purpurea ethanolic extract or its lead active, morroniside. METHODS: Transcriptional activity was profiled using a 19K human cDNA microarray in C2BBe1 cells, clone of Caco-2 intestinal cells, which are a model of first-pass metabolism (1, 2). Cells were treated with S. purpurea extract for 4 and 24 hrs, as well as the pure compound morroniside for 4 hrs, to determine their effects. RESULTS: No evidence of cytochrome P450 transcriptome regulation or of transcriptional activation of other diabetes relevant mRNA was detected after rigorous quantitative-PCR validation of microarray results. CONCLUSION: Our data do not support a transcriptional mechanism of action for either S. purpurea extract or its lead active, morroniside. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Glycosides/toxicity , Plant Extracts/toxicity , Sarraceniaceae/chemistry , Caco-2 Cells , DNA, Complementary/genetics , Glycosides/isolation & purification , Humans , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/toxicity , Indians, North American , Medicine, Traditional , Oligonucleotide Array Sequence Analysis/methods , Plant Extracts/isolation & purification , Polymerase Chain Reaction , Quebec , RNA, Messenger/metabolism , Time Factors
10.
J Ethnobiol Ethnomed ; 11: 81, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26607753

ABSTRACT

BACKGROUND: This aim of this study is to report upon traditional knowledge and use of wild medicinal plants by the Highlanders of Lukomir, Bjelasnica, Bosnia and Herzegovina (B&H). The Highlanders are an indigenous community of approximately 60 transhumant pastoralist families who speak Bosnian (Bosanski) and inhabit a highly biodiverse region of Europe. This paper adds to the growing record of traditional use of wild plants within isolated communities in the Balkans. METHODS: An ethnobotanical study using consensus methodology was conducted in Lukomir in Bjelasnica's mountains and canyons. Field work involved individual semi-structured interviews during which informants described plants, natural product remedies, and preparation methods on field trips, garden tours, while shepherding, or in settings of their choice. Plant use categories were ranked with informant consensus factor and incorporated into a phylogenetic tree. Plants cited were compared to other ethnobotanical surveys of the country. RESULTS: Twenty five people were interviewed, resulting in identification of 58 species (including two subspecies) from 35 families, which were cited in 307 medicinal, 40 food, and seven material use reports. Individual plant uses had an average consensus of five and a maximum consensus of 15 out of 25. There were a number of rare and endangered species used as poisons or medicine that are endemic to Flora Europaea and found in Lukomir. Ten species (including subspecies) cited in our research have not previously been reported in the systematic ethnobotanical surveys of medicinal plant use in B&H: (Elymus repens (L.) Gould, Euphorbia myrsinites L., Jovibarba hirta (L.) Opiz, Lilium bosniacum (Beck) Fritsch, Matricaria matricarioides (Less.) Porter ex Britton, Phyllitis scolopendrium (L.) Newman, Rubus saxatilis L., Silene uniflora Roth ssp. glareosa (Jord.) Chater & Walters, Silene uniflora Roth ssp. prostrata (Gaudin) Chater & Walters, Smyrnium perfoliatum L.). New uses not reported in any of the aforementioned systematic surveys were cited for a total of 28 species. Thirteen percent of medicinal plants cited are endemic: Helleborus odorus Waldst. et Kit., Gentiana lutea L., Lilium bosniacum (Beck) Fritsch, Silene uniflora Roth ssp. glareosa (Jord.) Chater & Walters., Silene uniflora Roth ssp. prostrata (Gaudin) Chater & Walters, Salvia officinalis L., Jovibarba hirta (L.) Opiz, and Satureja montana L. CONCLUSIONS: These results report on the cohesive tradition of medicinal plant use among healers in Lukomir, Bosnia and Herzegovina. This work facilitates the community's development by facilitating local and international conversations about their traditional medicine and sharing insight for conservation in one of Europe's most diverse endemic floristic regions, stewarded by one of Europe's last traditional Highland peoples.


Subject(s)
Plants, Medicinal/classification , Biodiversity , Bosnia and Herzegovina , Ethnobotany , Ethnopharmacology , Humans , Medicine, Traditional , Phytotherapy , Plant Preparations/therapeutic use , Surveys and Questionnaires
11.
Article in English | MEDLINE | ID: mdl-26508979

ABSTRACT

The traditional medicinal plant, Labrador tea (Rhododendron groenlandicum (Oeder) Kron & Judd; Ericaceae), present in the pharmacopoeia of the Cree of Eeyou Istchee, has shown glitazone-like activity in the 3T3-L1 adipogenesis bioassay. This activity has been attributed to phenolic compounds, which have been shown to vary in this plant as a function of insolation parameters. The goal of this study was to determine if these changes in phenolic content were pharmacologically significant. Leaves were harvested in 2006 throughout the James Bay region of Northern Quebec and ethanol extracts were tested in vitro using the 3T3-L1 murine cell line adipogenesis bioassay. This traditional medicinal plant was found active in the assay. However, there was no detectable spatial pattern in the accumulation of intracellular triglycerides, suggesting that such patterns previously observed in the phenolic profile of Labrador tea were not pharmacologically significant. Nonetheless, a reduction in the adipogenic activity was observed and associated with higher concentrations of quercetin for which selected environmental variables did not appropriately explain its variation.

12.
PLoS One ; 10(8): e0135721, 2015.
Article in English | MEDLINE | ID: mdl-26263160

ABSTRACT

We evaluated and compared the antidiabetic potential and molecular mechanisms of 17 Cree plants' ethanol extracts (EE) and hot water extracts (HWE) on glucose homeostasis in vitro and used metabolomics to seek links with the content of specific phytochemicals. Several EE of medical plants stimulated muscle glucose uptake and inhibited hepatic G6Pase activity. Some HWE partially or completely lost these antidiabetic activities in comparison to EE. Only R. groenlandicum retained similar potential between EE and HWE in both assays. In C2C12 muscle cells, EE of R. groenlandicum, A. incana and S. purpurea stimulated glucose uptake by activating AMP-activated protein kinase (AMPK) pathway and increasing glucose transporter type 4 (GLUT4) expression. In comparison to EE, HWE of R. groenlandicum exhibited similar activities; HWE of A. incana completely lost its effect on all parameters; interestingly, HWE of S. purpurea activated insulin pathway instead of AMPK pathway to increase glucose uptake. In the liver, for a subset of 5 plants, HWE and EE activated AMPK pathway whereas the EE and HWE of S. purpurea and K. angustifolia also activated insulin pathways. Quercetin-3-O-galactoside and quercetin 3-O-α-L-arabinopyranoside, were successfully identified by discriminant analysis as biomarkers of HWE plant extracts that stimulate glucose uptake in vitro. More importantly, the latter compound was not identified by previous bioassay-guided fractionation.


Subject(s)
Metabolome , Metabolomics , Plant Extracts/chemistry , Plants, Medicinal/chemistry , AMP-Activated Protein Kinases/metabolism , Animals , Canada , Cell Line , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Glucose-6-Phosphatase/metabolism , Humans , Insulin/metabolism , Liver/drug effects , Liver/metabolism , Mass Spectrometry , Metabolomics/methods , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Phosphorylation/drug effects , Plant Extracts/pharmacology , Plants, Medicinal/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
13.
Planta Med ; 80(8-9): 732-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24963620

ABSTRACT

A method was developed to distinguish Vaccinium species based on leaf extracts using nuclear magnetic resonance spectroscopy. Reference spectra were measured on leaf extracts from several species, including lowbush blueberry (Vaccinium angustifolium), oval leaf huckleberry (Vaccinium ovalifolium), and cranberry (Vaccinium macrocarpon). Using principal component analysis, these leaf extracts were resolved in the scores plot. Analysis of variance statistical tests demonstrated that the three groups differ significantly on PC2, establishing that the three species can be distinguished by nuclear magnetic resonance. Soft independent modeling of class analogies models for each species also showed discrimination between species. To demonstrate the robustness of nuclear magnetic resonance spectroscopy for botanical identification, spectra of a sample of lowbush blueberry leaf extract were measured at five different sites, with different field strengths (600 versus 700 MHz), different probe types (cryogenic versus room temperature probes), different sample diameters (1.7 mm versus 5 mm), and different consoles (Avance I versus Avance III). Each laboratory independently demonstrated the linearity of their NMR measurements by acquiring a standard curve for chlorogenic acid (R(2) = 0.9782 to 0.9998). Spectra acquired on different spectrometers at different sites classifed into the expected group for the Vaccinium spp., confirming the utility of the method to distinguish Vaccinium species and demonstrating nuclear magnetic resonance fingerprinting for material validation of a natural health product.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Metabolomics , Plant Extracts/isolation & purification , Vaccinium/chemistry , Chlorogenic Acid/standards , Plant Extracts/chemistry , Plant Leaves/chemistry , Principal Component Analysis , Reference Standards , Species Specificity , Vaccinium/classification
14.
Plant Foods Hum Nutr ; 69(1): 71-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24448675

ABSTRACT

Evidence supports the health promoting benefits of berries, particularly with regard to the prevention and management of chronic diseases such cardio- and cerebrovascular disease, diabetes and Alzheimer's disease. Two related pathophysiological features common to many of these conditions are oxidative stress and the accumulation of advanced glycation endproducts (AGEs). Whereas antioxidant properties are well-established in several species of berries and are believed central to their protective mechanisms, few studies have investigated the effects of berries on AGE formation. Here, employing a series of complementary in vitro assays, we evaluated a collection of wild berry extracts for 1) inhibitory effects on fluorescent-AGE and Nε- (carboxymethyl)lysine-albumin adduct formation, 2) radical scavenging activity and 3) total phenolic and anthocyanin content. All samples reduced AGE formation in a concentration-dependent manner that correlated positively with each extract's total phenolic content and, to a lesser degree, total anthocyanin content. Inhibition of AGE formation was similarly related to radical scavenging activities. Adding antiglycation activity to the list of established functional properties ascribed to berries and their phenolic metabolites, our data provide further insight into the active compounds and protective mechanisms through which berry consumption may aid in the prevention and treatment of chronic diseases associated with AGE accumulation and toxicity. As widely available, safe and nutritious foods, berries represent a promising dietary intervention worthy of further investigation.


Subject(s)
Anthocyanins/pharmacology , Antioxidants/pharmacology , Diet , Fruit/chemistry , Glycation End Products, Advanced/metabolism , Phenols/pharmacology , Plant Extracts/pharmacology , Dose-Response Relationship, Drug , Free Radical Scavengers/pharmacology , Functional Food , Humans , Plants, Edible/chemistry
15.
J Ethnopharmacol ; 150(3): 1087-95, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24184081

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Interactions between conventional drug and traditional medicine therapies may potentially affect drug efficacy and increase the potential for adverse reactions. Cree traditional healing is holistic and patients may use medicinal plants simultaneously with the conventional drugs. However, there is limited information that these medicinal plants may interact with drugs and additional mechanistic information is required. In this study, extracts from traditionally used Cree botanicals were assessed for their potential interaction that could alter the disposition of two blood glucose lowering drugs, gliclazide (Diamicron) and repaglinide (Gluconorm) though inhibition of either metabolism or transport across cell membranes. MATERIALS AND METHODS: The effect of 17 extracts on metabolism was examined in a human liver microsome assay by HPLC and individual cytochrome P450s 2C9, 2C19, 2C8 and 3A4 in a microplate fluorometric assay. Gliclazide, rhaponticin and its aglycone derivative, rhapontigenin were also examined in the fluorometric assay. The effect on transport was examined with 11 extracts using the intestinal epithelial Caco-2 differentiated cell monolayer model at times up to 180 min. RESULTS: Both blood glucose lowering medications, gliclazide and repaglinide traversed the Caco-2 monolayer in a time-dependent manner that was not affected by the Cree plant extracts. Incubation of the Cree plant extracts inhibited CYP2C9, 2C19, 2C8 and 3A4-mediated metabolism, and the formation of four repaglinide metabolites: M4, m/z 451-A, m/z 451-B and the glucuronide of repaglinide in the human liver microsome assay. Gliclazide caused no significant inhibition. Likewise, rhaponticin had little effect on the enzymes causing changes of less than 10% with an exception of 17% inhibition of CYP2C19. By contrast, the aglycone rhapontigenin showed the greatest effects on all CYP-mediated metabolism. Its inhibition ranged from a mean of 58% CYP3A4 inhibition to 89% inhibition of CYP2C9. While rhaponticin and the aglycone did not show significant effects on repaglinide metabolism, they demonstrated inhibition of gliclazide metabolism. The aglycone significantly affected levels of gliclazide and its metabolites. CONCLUSION: These studies demonstrate that the Cree plant extracts examined have the potential in vitro to cause drug interactions through effects on key metabolic enzymes.


Subject(s)
Carbamates/pharmacology , Gliclazide/pharmacology , Hypoglycemic Agents/pharmacology , Piperidines/pharmacology , Plant Extracts/pharmacology , Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Aryl Hydrocarbon Hydroxylases/metabolism , Caco-2 Cells , Drug Interactions , Glucuronosyltransferase/metabolism , Humans , Intestinal Absorption , Medicine, Traditional , Microsomes, Liver/metabolism , Plants, Medicinal , Quebec , Stilbenes/metabolism
16.
Planta Med ; 79(15): 1385-91, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23975866

ABSTRACT

Rhodiola rosea is a medicinal plant used by the indigenous Inuit people of Nunavik and Nunatsiavut, Eastern Canada, as a mental and physical rejuvenating agent. This traditional use led to the present investigation of R. rosea in the context of anxiety disorders. An alcohol extract of R. rosea roots was characterized phytochemically and orally administered for three consecutive days to Sprague-Dawley rats at 8 mg/kg, 25 mg/kg, and 75 mg/kg body weight. The rats were subjected to three behavioral paradigms of anxiety, including the elevated plus maze, social interaction, and contextual conditioned emotional response tests. Rhodiola rosea showed dose-dependent anxiolytic activity in the elevated plus maze and conditioned emotional response tests, with moderate effects in the higher-anxiety SI test. The active dose varied according to the anxiety test. In order to elucidate a mechanism, the extract was further tested in an in vitro GABAA-benzodiazepine receptor-binding assay, where it demonstrated low activity. This study provides the first comparative assessment of the anxiolytic activity of Nunavik R. rosea in several behaviour models and suggests that anxiolytic effects may be primarily mediated via pathways other than the GABAA-benzodiazepine site of the GABAA receptor.


Subject(s)
Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Phytotherapy , Plant Extracts/therapeutic use , Rhodiola , Administration, Oral , Animals , Anti-Anxiety Agents/pharmacology , Anxiety/metabolism , Behavior, Animal/drug effects , Canada , Carrier Proteins/metabolism , Dose-Response Relationship, Drug , Humans , Indians, North American , Male , Maze Learning , Medicine, Traditional , Plant Extracts/pharmacology , Plant Roots , Plants, Medicinal , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/metabolism
17.
J AOAC Int ; 95(5): 1406-11, 2012.
Article in English | MEDLINE | ID: mdl-23175973

ABSTRACT

A single-laboratory-validated NMR spectroscopy method was established for determining the quantity of chlorogenic acid and hyperoside from crude extract material of blueberry leaves of the species Vaccinium angustifolium var. laevifolium House. The calibration curve of chlorogenic acid showed a highly linear regression, R = 0.99998. NMR spectroscopy identification and quantification of the constituents directly from the mixture, within the error of HPLC-diode array detector analysis, were determined as 7.53 mM chlorogenic acid (64.0 mg chlorogenic acid/g powdered leaf) and 0.77 mM hyperoside (8.58 mg hyperoside/g powdered leaf). The LOD was calculated to be 0.01 mM and the LOQ 0.01 mM by the 9 min and 13 s NMR spectroscopy experiment utilized. The assay showed no significant interference from different field strengths, extraction mesh size, gravimetric scale precision, NMR spectroscopy tube type, pulse program, amount of starting dry material, or day-to-day operation. The robustness of NMR spectroscopy as a means of definitively monitoring chlorogenic acid and hyperoside content directly from crude extracts was demonstrated by Youden statistical analysis.


Subject(s)
Chlorogenic Acid/chemistry , Magnetic Resonance Spectroscopy , Plant Extracts/chemistry , Plant Leaves/chemistry , Quercetin/analogs & derivatives , Vaccinium/chemistry , Molecular Structure , Quercetin/chemistry , Reproducibility of Results , Sensitivity and Specificity
18.
J Ethnopharmacol ; 141(3): 1051-7, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22542642

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetes is a growing epidemic worldwide, especially among indigenous populations. Larix laricina was identified through an ethnobotanical survey as a traditional medicine used by Healers and Elders of the Cree of Eeyou Istchee of northern Quebec to treat symptoms of diabetes and subsequent in vitro screening confirmed its potential. MATERIALS AND METHODS: We used a bioassay-guided fractionation approach to isolate the active principles responsible for the adipogenic activity of the organic extract (80% EtOH) of the bark of Larix laricina. Post-confluent 3T3-L1 cells were differentiated in the presence or absence of the crude extract, fractions or isolates of Larix laricina for 7 days, then triglycerides content was measured using AdipoRed reagent. RESULTS: We identified a new cycloartane triterpene (compound 1), which strongly enhanced adipogenesis in 3T3-L1 cells with an EC(50) of 7.7 µM. It is responsible for two thirds of the activity of the active fraction of Larix laricina. The structure of compound 1 was established on the basis of spectroscopic methods (IR, HREIMS, 1D and 2D NMR) as 23-oxo-3α-hydroxycycloart-24-en-26-oic acid. We also identified several known compounds, including three labdane-type diterpenes (compounds 2-4), two tetrahydrofuran-type lignans (compounds 5-6), three stilbenes (compounds 7-9), and taxifolin (compound 10). Compound 2 (13-epitorulosol) also potentiated adipogenesis (EC(50) 8.2 µM) and this is the first report of a biological activity for this compound. CONCLUSIONS: This is the first report of putative antidiabetic principles isolated from Larix laricina, therefore increasing the interest in medicinal plants from the Cree pharmacopeia.


Subject(s)
Adipogenesis/drug effects , Hypoglycemic Agents/pharmacology , Larix , Plant Extracts/pharmacology , Triterpenes/pharmacology , 3T3-L1 Cells , Animals , Diabetes Mellitus, Type 2/drug therapy , Humans , Hypoglycemic Agents/analysis , Indians, North American , Medicine, Traditional , Mice , Plant Bark/chemistry , Plant Extracts/analysis , Plants, Medicinal , Quebec , Triterpenes/analysis
19.
Article in English | MEDLINE | ID: mdl-22235232

ABSTRACT

Canadian Aboriginals, like others globally, suffer from disproportionately high rates of diabetes. A comprehensive evidence-based approach was therefore developed to study potential antidiabetic medicinal plants stemming from Canadian Aboriginal Traditional Medicine to provide culturally adapted complementary and alternative treatment options. Key elements of pathophysiology of diabetes and of related contemporary drug therapy are presented to highlight relevant cellular and molecular targets for medicinal plants. Potential antidiabetic plants were identified using a novel ethnobotanical method based on a set of diabetes symptoms. The most promising species were screened for primary (glucose-lowering) and secondary (toxicity, drug interactions, complications) antidiabetic activity by using a comprehensive platform of in vitro cell-based and cell-free bioassays. The most active species were studied further for their mechanism of action and their active principles identified though bioassay-guided fractionation. Biological activity of key species was confirmed in animal models of diabetes. These in vitro and in vivo findings are the basis for evidence-based prioritization of antidiabetic plants. In parallel, plants were also prioritized by Cree Elders and healers according to their Traditional Medicine paradigm. This case study highlights the convergence of modern science and Traditional Medicine while providing a model that can be adapted to other Aboriginal realities worldwide.

20.
Planta Med ; 77(14): 1655-62, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21472650

ABSTRACT

Northern Labrador tea, Rhododendron tomentosum ssp. subarcticum, is one of the most commonly used medicinal plants by Inuit and other First Nations peoples of Canada. The phenolic profile and seasonal variation of this commonly used medicinal plant remains largely unknown. To assess optimal harvesting time, R. tomentosum was collected in accordance with traditional knowledge practices bimonthly throughout the snow-free summer in Iqaluit, Nunavut. The antioxidant potency was measured in a DPPH radical scavenging assay, and the anti-inflammatory activity was determined with a TNF-α production assay. The seasonal variation of phenolic content was assessed with HPLC-DAD for fifteen of the most abundant phenolic compounds; (+)-catechin, chlorogenic acid, PARA-coumaric acid, quercetin 3-O-galactoside (hyperoside), quercetin 3-O-glucoside (isoquercitrin), quercetin 3-O-rhamnoside (quercitrin), quercetin pentoside, myricetin, quercetin, 3 procyanidins, and 3 caffeic acid derivatives. The most abundant constituent was (+)-catechin, which made up 19 % of the total weight of characterized phenolics. There was significant seasonal variation in the quantity of all fifteen constituents assessed, whereas there was no seasonal variation of their total sum. The antioxidant activity was positively correlated with phenolic content and negatively correlated with daylight hours. The anti-inflammatory activity was negatively correlated with caffeic acid derivative 1 and daylight hours. Together these results demonstrate that the timing of harvest of R. tomentosum impacts the plant's phenolic content and its antioxidant and anti-inflammatory activities.


Subject(s)
Anti-Inflammatory Agents/metabolism , Antioxidants/metabolism , Phenols/metabolism , Plant Extracts/pharmacology , Rhododendron/metabolism , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Canada , Cell Line, Tumor , Free Radical Scavengers/metabolism , Humans , Inuit , Medicine, Traditional , Phenols/analysis , Phenols/chemistry , Phenols/pharmacology , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , Rhododendron/chemistry , Seasons , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL