Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Phytomedicine ; 123: 155215, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039902

ABSTRACT

BACKGROUND: Vascular dementia (VD) is the second most common type of dementia after Alzheimer's disease. ß-asarone, a major component of Acorus tatarinowii Schott, is important in neurodegenerative and neurovascular diseases. Studies have confirmed that ß-asarone can mitigate autophagy and reduce damage in hypoxic cells. We also reported that ß-asarone improves learning and memory. This study further clarifies whether ß-asarone attenuates cerebral ischaemic injury by acting through the cAMP/PKA/CREB pathway in VD model mice. METHODS: Here, genes and potential pathways that may be targeted by ß-asarone for the treatment of transient cerebral ischaemia (TCI) and cognitive impairment (CI) were obtained using network pharmacology. The two-vessel occlusion method was used to establish the VD model. The Morris water maze test was used to evaluate the effects on memory. Then, the protein levels of mitofusin-2 (Mfn2), brain-derived neurotrophic factor (BDNF), optic atrophy 1 (OPA1), cyclic adenosine monophosphate (cAMP), myelin basic protein (MBP), matrix metalloproteinase-9 (MMP9) and neuron specific enolase (NSE) were determined by ELISA. The levels of superoxide dismutase (SOD) and malonaldehyde (MDA) were measured using commercial kits. Then, qRT-PCR was employed to investigate the expression of the candidate genes screened from the protein-protein interaction (PPI) network. Furthermore, the expression of the autophagy-related proteins Beclin-1, (microtubule-associated protein light chain 3) LC3, p62, postsynaptic density protein 95 (PSD95), protein kinase A (PKA), pPKA, cyclic-AMP response binding protein (CREB), and pCREB was determined by western blotting. The expression of autophagy-related proteins, PSD95 and translocase of outer mitochondrial membrane 20 (TOM20) was determined by immunofluorescence analyses. RESULTS: The network pharmacological analysis showed 234 targets related to ß-asarone, 1,118 genes related to TCI and 2,039 genes associated with CI. Our results confirm that ß-asarone treatment not only alleviated brain damage in the VD model by improving mitochondrial and synaptic function, reducing neuronal injury and upregulating the expression of antioxidants but also effectively improved the cognitive behaviour of VD model mice. Moreover, ß-asarone downregulated VD-induced RELA and CCND1 mRNA expression. In addition, we validated that ß-asarone increased the phosphorylation of PKA and CREB and upregulated cAMP protein expression. The results showed that the cAMP/PKA/CREB signalling pathway was upregulated. Moreover, ß-asarone administration decreased the protein expression levels of Beclin-1 and LC3 and increased the expression levels of p62 in VD model mice. CONCLUSIONS: ß-asarone inhibits Beclin-1-dependent autophagy and upregulates the cAMP/PKA/CREB signalling pathway to attenuate mitochondrial and synaptic damage from cerebral ischaemia and improve learning and cognitive abilities in VD model mice.


Subject(s)
Allylbenzene Derivatives , Anisoles , Cognitive Dysfunction , Dementia, Vascular , Mice , Animals , Dementia, Vascular/drug therapy , Beclin-1/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Autophagy , Hippocampus
2.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6115-6127, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114219

ABSTRACT

This study aimed to explore the mechanism of Zhongfeng Xingnao Decoction(ZFXN) in intervening microcirculatory di-sorders in cerebral hemorrhage by network pharmacology and molecular docking techniques. The information on the components of ZFXN was obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) database, and the predicted targets of chemical components were obtained from PubChem and SwissTargetPrediction. The relevant targets of cerebral hemorrhage and microcirculatory disorders were collected from the GeneCards database, and the common targets of the components and diseases were analyzed by the Database for Annotation, Visualization, and Integrated Discovery(DAVID) for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses. Visualization of the correlation network was carried out using Cytoscape software to further screen important chemical components for molecular docking prediction with disease targets. The animal experiment validation was performed using modified neurological severity score(mNSS), enzyme-linked immunosorbent assay(ELISA), quantitative real-time polymerase chain reaction(qRT-PCR), immunofluorescence, and Western blot to detect the effects of ZFXN intervention in mice with cerebral hemorrhage. The results showed that there were 31 chemical components and 856 targets in the four drugs contained in ZFXN, 173 targets for microcirculatory disorders in cerebral hemorrhage, and 57 common targets for diseases and components. The enrichment analysis showed that common targets were mainly involved in biological processes, such as cell proliferation and apoptosis, and signaling pathways, such as tumor pathway, viral infection, phosphoinositide-3-kinase/protein kinase B(PI3K/AKT) signaling pathway, and mitogen-activated protein kinase(MAPK) signaling pathway. Molecular docking results revealed that the common components ß-sitosterol of Rhei Radix et Rhizoma, Notoginseng Radix et Rhizoma, and Ginseng Radix et Rhizoma Rubra showed good docking with proto-oncogene tyrosine-protein kinase(SRC), signal transducer and activator of transcription 3(STAT3), phosphoinositide-3-kinase catalytic alpha polypeptide gene(PIK3CA), recombinant protein tyrosine phosphatase non receptor type 11(PTPN11), AKT1, epidermal growth factor receptor(EGFR), calcium adhesion-associated protein beta 1(CTNNB1), vascular endothelial growth factor A(VEGFA), and tumor protein p53(TP53). Moreover, sennoside E of Rhei Radix et Rhizoma showed good docking with MAPK1. The results revealed that the ZFXN relieved the neural injury in mice with cerebral hemorrhage, decreased the expression of S100 calcium-binding protein B(S100ß), neuron specific enolase(NSE), matrix metalloproteinase 9(MMP9), tumor necrosis factor α(TNF-α), interleukin 1ß(IL-1ß), SRC, EGFR, CTNNB1, VEGFA, TP53, glial fibrillary acidic protein(GFAP), and leukocyte differentiation antigen 86(CD86), and increased the expression of p-PI3K, p-AKT, and zona occludens 1(ZO-1). The results indicate that ZFXN may inhibit neuronal apoptosis and inflammatory response through PI3K/AKT/p53 pathway to protect the blood-brain barrier, thereby slowing down microcirculatory impairment in cerebral hemorrhage.


Subject(s)
Drugs, Chinese Herbal , Neoplasms , Animals , Mice , Tumor Suppressor Protein p53 , Proto-Oncogene Proteins c-akt , Molecular Docking Simulation , Network Pharmacology , Vascular Endothelial Growth Factor A , Microcirculation , Phosphatidylinositol 3-Kinases/genetics , Tumor Necrosis Factor-alpha , ErbB Receptors , Cerebral Hemorrhage/drug therapy , Phosphatidylinositols , Drugs, Chinese Herbal/pharmacology
3.
Nat Prod Res ; : 1-7, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37688474

ABSTRACT

Seven compounds, named ß-sitosterol (1), daucosterol (2), (+)-pinoresinol-ß-D-glucoside (3), (-)-syringaresinol 4-O-ß-D-apiofuranosyl-(1→2)- ß-D-glucopyranoside (4), 4-hydroxybenzoic acid (5), 2-(3', 4'-dihydroxyphenyl)-1, 3-pepper ring-5-aldehyde (6) and spinosin (7) were isolated from the rhizome of Acorus calamus var. angustatus Besser. 3, 4, 6 and 7 were isolated from this medicinal plant for the first time. Structures were elucidated by physicochemical properties and extensive spectroscopic analysis, as well as by comparison with literature data. The anti-inflammatory activity and related mechanisms of the seven compounds showed that compounds 1-7 all increased the levels of GSH-PX and SOD and decreased the levels of MDA, TNF-α, IL-1ß and IL-6. Compound 4 showed the best effect of anti-inflammatory and Beclin-1 inhibition. These results suggest that compound 4 has stronger anti-inflammatory effect and provide preliminary evidence that the mechanism of action of compound 4 in attenuating LPS-induced inflammatory damage may be related to the inhibition of Beclin-1-dependent autophagy.

4.
Phytomedicine ; 103: 154214, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35689902

ABSTRACT

BACKGROUND: Oxidative stress plays an important role in the pathology of ischemic stroke. Studies have confirmedthat scutellarin has antioxidant effects against ischemic injury, and we also reported that the involvement of Aldose reductase (AR) in oxidative stress and cerebral ischemic injury, in this study we furtherly explicit whether the antioxidant effect of scutellarin on cerebral ischemia injury is related to AR gene regulation and its specific mechanism. METHODS: C57BL/6N mice (Wild-type, WT) and AR knockout (AR-/-) mice suffered from transient middle cerebral artery occlusion (tMCAO) injury (1 h occlusion followed by 3 days reperfusion), and scutellarin was administered from 2 h before surgery to 3 days after surgery. Subsequently, neurological function was assessed by the modified Longa score method, the histopathological morphology observed with 2,3,5-triphenyltetrazolium chloride (TTC) and hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (Elisa) was used to detect the levels of ROS, 4-hydroxynonenal (4-HNE), 8-hydroxydeoxyguanosine (8-OHDG), Neurotrophin-3 (NT-3), poly ADP-ribose polymerase-1 (PARP1) and 3-nitrotyrosine (3-NT) in the ischemic penumbra regions. Quantitative proteomics profiling using quantitative nano-HPLC-MS/MS were performed to compare the protein expression difference between AR-/- and WT mice with or without tMCAO injury. The expression of AR, nicotinamide adenine dinucleotide phosphate oxidases (NOX1, NOX2 and NOX4) in the ipsilateral side of ischemic brain were detected by qRT-PCR, Western blot and immunofluorescence co-staining with NeuN. RESULTS: Scutellarin treatment alleviated brain damage in tMCAO stroke model such as improved neurological function deficit, brain infarct area and neuronal injury and reduced the expression of oxidation-related products, moreover, also down-regulated tMCAO induced AR mRNA and protein expression. In addition, the therapeutic effect of scutellarin on the reduction of cerebral infarction area and neurological function deficits abolished in AR-/- mice under ischemia cerebral injury, which indicated that the effect of scutellarin treatment on tMCAO injury is through regulating AR gene. Proteomic analysis of AR-/- and WT mice indicated AR knockout would affect oxidation reaction even as NADPH related process and activity in mice under cerebral ischemia conditions. Moreover, NOX isoforms (NOX1, NOX2 and NOX4) mRNA and protein expression were significant decreased in neurons of penumbra region in AR-/- mice compared with that in WT mice at 3d after tMCAO injury, which indicated that AR should be the upstream protein regulating NOX after cerebral ischemia. CONCLUSIONS: We first reported that AR directly regulates NOX subtypes (not only NOX2 but also NOX1 and NOX4) after cerebral ischaemic injury. Scutellarin specifically targets the AR-NOX axis and has antioxidant effects in mice with cerebral ischaemic injury, providing a theoretical basis and accurate molecular targets for the clinical application of scutellarin.


Subject(s)
Aldehyde Reductase , Apigenin , Brain Ischemia , Glucuronates , Infarction, Middle Cerebral Artery , NADPH Oxidase 1 , Oxidative Stress , Reperfusion Injury , Aldehyde Reductase/metabolism , Animals , Antioxidants/metabolism , Apigenin/pharmacology , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/pathology , Disease Models, Animal , Glucuronates/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 1/metabolism , Oxidative Stress/drug effects , Proteomics , RNA, Messenger/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Tandem Mass Spectrometry
5.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2729-2737, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35718493

ABSTRACT

The study aimed to investigate the effects of galangin on learning and memory impairments and Akt/MEF2 D/Beclin-1 signaling pathway in APP/PS1 double-transgenic mice. The mice in this experiment were divided into the normal group, model group, low-(25 mg·kg~(-1)), medium-(50 mg·kg~(-1)), and high-dose(100 mg·kg~(-1)) galangin groups, donepezil(3 mg·kg~(-1)) group, Akt inhibitor(25 mg·kg~(-1)) group, and autophagy inhibitor(30 mg·kg~(-1)) group, with ten in each group, and administered with the corresponding drugs for 30 successive days. On the 24 th day of medication, the water maze and dark avoidance tests were performed. The levels of p-tau, ß-amyloid peptide 1-42(Aß_(42)), acetylcholinesterase(AChE), ß-site amyloid precursor protein cleaving enzyme 1(BACE1), and amyloid precursor protein(APP) in hippocampus were detected by ELISA, the Beclin-1 mRNA expression by RT-PCR, the expression of Aß_(42) and glial fibrillary acidic protein(GFAP) by immunohistochemistry, and the expression of myocyte enhancer factor 2 D(MEF2 D) by immunofluorescence assay. The pathological changes in hippocampus were observed after HE staining, and the expression of Akt, MEF2 D, and Beclin-1 in hippocampus were assayed by Western blot. These results showed that compared with the normal group, the model group exhibited prolonged swimming time, increased number of errors and electric shocks, up-regulated p-tau, Aß_(42), APP, AChE, BACE1, GFAP, and Beclin-1, shortened incubation period, decreased p-Akt and MEF2 D, and obvious hippocampal injury. Compared with the model group, donepezil and galangin shortened the swimming time, reduced the number of errors and electric shocks, down-regulated the expression of p-tau, Aß_(42), APP, AChE, BACE1, GFAP, and Beclin-1, prolonged the incubation period, up-regulated p-Akt and MEF2 D, and improved the pathological changes in hippocampus. Compared with the autophagy inhibitor group, galangin prolonged the swimming time, elevated the number of errors and electric shocks, enhanced the expression of p-tau, Aß_(42), APP, AChE, BACE1, GFAP, and Beclin-1, shortened the incubation period, and diminished the expression of p-Akt and MEF2 D. In conclusion, galangin improves the learning and memory impairments and hippocampal neuron injury of APP/PS1 mice, which may be related to its regulation of Akt/MEF2 D/Beclin-1 signaling pathway.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Acetylcholinesterase , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Beclin-1/genetics , Beclin-1/metabolism , Beclin-1/pharmacology , Disease Models, Animal , Donepezil/metabolism , Donepezil/pharmacology , Donepezil/therapeutic use , Flavonoids , Hippocampus , MEF2 Transcription Factors , Maze Learning , Memory Disorders , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
6.
Int Immunopharmacol ; 84: 106559, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32402951

ABSTRACT

Accumulating clinical and epidemiological evidence indicates a close relationship between diabetes mellitus and dysfunction in memory and cognition. Neferine (NE) is a unique bis-benzylisoquinoline alkaloid derived from the seed embryo of Nelumbo nucifera (Lotus), an herbal medicine with a long history of use in used in China. NE has been reported to ameliorate diabetes mellitus and exert considerable protective effects on the central nervous system. Thus, this study aimed to investigate the effects of NE on memory and cognitive dysfunction in db/db mouse model of diabetes. First, we found that NE treatments significantly ameliorated behavioral impairment and cognitive dysfunction in the Morris water maze, Y-maze, and fear conditioning test in db/db mice. Additionally, in these diabetic mice, NE decreased fasting glucose and insulin resistance while promoting lipid metabolism. Furthermore, NE treatments alleviated oxidative stress and inhibited inflammatory responses in the hippocampus. Further investigations showed that NE suppressed the NOD-like receptor protein 3 (NLRP3) inflammasome pathway via down-regulating the levels of thioredoxin-interacting protein (TXNIP), NLRP3 inflammasomes, apoptosis-associated speck-like protein containing a CARD (ASC), and mature interleukin-1ß (IL-1ß) in the hippocampus. Moreover, NE alleviated endoplasmic-reticulum (ER) stress via down-regulating the levels of immunoglobulin heavy-chain-binding protein (GRP78), C/EBP homologous protein (CHOP), proteins kinase R-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6) in the hippocampus. In conclusion, these results suggest that NE ameliorated memory and cognitive dysfunction, possibly through modulating the NLRP3 inflammasome pathways and alleviating ER stress.


Subject(s)
Benzylisoquinolines/therapeutic use , Cognitive Dysfunction/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Memory Disorders/drug therapy , Neuroprotective Agents/therapeutic use , Animals , Benzylisoquinolines/pharmacology , Cognitive Dysfunction/metabolism , Cytokines/metabolism , Diabetes Mellitus, Experimental/metabolism , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Female , Hippocampus/drug effects , Hippocampus/metabolism , Inflammasomes/metabolism , Lipid Metabolism/drug effects , Memory/drug effects , Memory Disorders/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroprotective Agents/pharmacology , Spatial Learning/drug effects
7.
Zhong Yao Cai ; 35(5): 765-9, 2012 May.
Article in Chinese | MEDLINE | ID: mdl-23213742

ABSTRACT

OBJECTIVE: To study the effect of Dendrobium mixture on hypoglycemic and the apoptosis of islet in rats with type 2 diabetic mellitus. METHODS: Type 2 diabetes mellitus models were induced by high sugar and fat diet and low dose intraperitoneal injection of streptozotocin (STZ) in rats, and treated with Dendrobium mixture (5, 10, 20 g/kg) by intragastric administration. Observed islet cell morphology with histopathological techniques and tested the apoptosis of islet cells by MTT and Annexin V/PI method. CONCLUSION: Dendrobium mixture could reduce the levels of blood glucose, triglyceride and glucosylated serum protein effectively and significantly improve the modeling structure and function of rat pancreatic tissue. The apoptotic islet cells was significantly reduced (P < 0.01) in treatment group compared with the model group. RESULTS: Dendrobium mixture have a hypoglycemic effect on rat models of type 2 diabetes. It can protect and restore the structure and function of pancreatic tissue.


Subject(s)
Apoptosis/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Drugs, Chinese Herbal/therapeutic use , Hypoglycemic Agents/therapeutic use , Plants, Medicinal/chemistry , Administration, Oral , Animals , Blood Glucose/metabolism , Cells, Cultured , Dendrobium/chemistry , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Drug Combinations , Drugs, Chinese Herbal/pharmacology , Female , Glucagon-Like Peptide 1/blood , Hypoglycemic Agents/pharmacology , Insulin/blood , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Rats , Rats, Sprague-Dawley , Streptozocin , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL