Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Bioorg Chem ; 145: 107225, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38402797

ABSTRACT

The study presents a significant advancement in drug delivery and therapeutic efficacy through the successful synthesis of Gliricidia sepium(Jacq.) Kunth. ex. Walp., stem zinc oxide nanoparticles(GSS ZnONPs). The phenolic compounds present in Gliricidia sepium stem (GSS) particularly vanillic acid, apegnin-7-O-glucoside, syringic acid, and p-coumaric acid which were identified by HPLC. These compounds shown antioxidant and anti-inflammatory properties. GSS ZnONPs demonstrate pronounced gastroprotective effects against ethanol-induced gastritis, evidenced by the reduction in gastric lesions and mucosal injury upon its treatment. Histopathological evaluation and immunohistochemical analysis of nuclear factor erythroid 2-related factor 2 (Nrf2) expression further validate these results, revealing the amelioration of ethanol-induced gastritis and improved gastric tissue condition due to their treatment. Noteworthy is the dose-dependent response of GSS ZnONPs, showcasing their efficacy even at lower doses against ethanol-induced gastritis which is confirmed by different biomarkers. These findings have substantial implications for mitigating dosage-related adverse effects while preserving therapeutic benefits, offering a more favorable treatment approach. This study aims to investigate the potential gastroprotective activity of GSS ZnONPs against gastritis.


Subject(s)
Gastritis , Stomach Ulcer , Zinc Oxide , Rats , Animals , Ethanol , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Gastritis/chemically induced , Gastritis/drug therapy , Anti-Inflammatory Agents/therapeutic use , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology
2.
Molecules ; 27(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36500468

ABSTRACT

Almost one-third of all infectious diseases are caused by viruses, and these diseases account for nearly 20% of all deaths globally. It is becoming increasingly clear that highly contagious viral infections pose a significant threat to global health and economy around the world. The need for innovative, affordable, and safe antiviral therapies is a must. Zinc oxide nanoparticles are novel materials of low toxicity and low cost and are known for their antiviral activity. The genus Pelargonium was previously reported for its antiviral and antimicrobial activity. In this work, Pelargonium zonale leaf extract chemical profile was studied via high-performance liquid chromatography (HPLC) and was used for the biosynthesis of zinc oxide nanoparticles. Furthermore, the antiviral activity of the combination of P. zonale extract and the biosynthesized nanoparticles of ZnO against the human corona 229E virus was investigated. Results revealed that ZnONPs had been biosynthesized with an average particle size of about 5.5 nm and characterized with UV, FTIR, TEM, XRD, and SEM. The antiviral activity showed significant activity and differences among the tested samples in favor of the combination of P. zonale extract and ZnONPs (ZnONPs/Ex). The lowest IC50, 2.028 µg/mL, and the highest SI, 68.4 of ZnONPs/Ex, assert the highest antiviral activity of the combination against human coronavirus (229E).


Subject(s)
Metal Nanoparticles , Nanoparticles , Pelargonium , Viruses , Zinc Oxide , Humans , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Antiviral Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Nanoparticles/chemistry , Metal Nanoparticles/chemistry
3.
Sci Rep ; 12(1): 10595, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35732649

ABSTRACT

Musa acuminata (MA) is a popular fruit peels in the world. Non-food parts of the plant have been investigated for their antioxidant and anti-ulcerative colitis activity. Metabolomic approaches were found to be informative as a screening tool. It discovered different metabolites depending on statistical analysis. The antioxidant activity content was measured by colorimetric method. Seventy six investigated metabolites were observed. The identities of some of these markers were confirmed based on their MS2 fragmentation and NMR spectroscopy. These include: cinnamic acid and its dimer 2-hydroxy-4-(4-methoxyphenyl)-1H-phenalen-1-one beside; gallic acid and flavonoids; quercetin, quercetin-3-O-ß-D-glucoside, luteolin-7-O-ß-D-glucopyranoside. GC/MS analysis of MA peels essential oil led to identification of 37 compounds. The leaves, pseudostem and fruit peels extracts were tested for their safety and their anti-ulcerative colitis efficacy in rats. Rats were classified into: normal, positive, prednisolone reference group, MA extracts pretreated groups (250-500 mg/kg) for 2 weeks followed by induction of ulcerative colitis by per-rectal infusion of 8% acetic acid. Macroscopic and microscopic examinations were done. Inflammatory markers (ANCA, CRP and Ilß6) were measured in sera. The butanol extracts showed good antioxidant and anti-inflammatory activities as they ameliorated macroscopic and microscopic signs of ulcerative colitis and lowered the inflammatory markers compared to untreated group. MA wastes can be a potential source of bioactive metabolites for industrial use and future employment as promising anti-ulcerative colitis food supplements.


Subject(s)
Colitis, Ulcerative , Musa , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Colitis, Ulcerative/drug therapy , Plant Extracts/chemistry , Quercetin/therapeutic use , Rats
4.
Oxid Med Cell Longev ; 2022: 3486257, 2022.
Article in English | MEDLINE | ID: mdl-35387261

ABSTRACT

We previously annotated the phytochemical constituents of a root extract from Ximenia americana var. caffra and highlighted its hepatoprotective and hypoglycemic properties. We here extended our study on the leaf extract and identified its phytoconstituents using HPLC-PDA-ESI-MS/MS. In addition, we explored its antioxidant, antibacterial, and antiaging activities in vitro and in an animal model, Caenorhabditis elegans. Results from HPLC-PDA-ESI-MS/MS confirmed that the leaves contain 23 secondary metabolites consisting of condensed tannins, flavonol glycosides, flavone glycosides, and flavonol diglycosides. The leaf extract demonstrated significant antioxidant activity in vitro with IC50 value of 5 µg/mL in the DPPH assay and 18.32 µg/mL in the FRAP assay. It also inhibited four enzymes (collagenase, elastase, hyaluronidase, and tyrosinase) crucially involved in skin remodeling and aging processes with comparable activities to reference drugs along with four pure secondary metabolites identified from the extract. In accordance with the in vitro result, in vivo tests using two transgenic strains of C. elegans demonstrated its ability to reverse oxidative stress. Evidence included an increased survival rate in nematodes treated with the prooxidant juglone to 68.9% compared to the 24.8% in untreated worms and a reduced accumulation of intracellular reactive oxygen species (ROS) in a dose-dependent manner to 77.8%. The leaf extract also reduced levels of the expression of HSP 16.2 in a dose-dependent manner to 86.4%. Nuclear localization of the transcription factor DAF-16 was up to 10 times higher in worms treated with the leaf extract than in the untreated worms. The extract also inhibited the biofilm formation of Pseudomonas aeruginosa (a pathogen in skin infections) and reduced the swimming and swarming mobilities in a dose-dependent fashion. In conclusion, leaves of X. americana are a promising candidate for preventing oxidative stress-induced conditions, including skin aging.


Subject(s)
Cosmeceuticals , Olacaceae , Animals , Anti-Bacterial Agents/pharmacology , Antioxidants/metabolism , Caenorhabditis elegans/metabolism , Cosmeceuticals/metabolism , Cosmeceuticals/pharmacology , Glycosides/pharmacology , Olacaceae/metabolism , Oxidative Stress , Phytochemicals/pharmacology , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism , Tandem Mass Spectrometry
5.
Nat Prod Res ; 36(10): 2625-2629, 2022 May.
Article in English | MEDLINE | ID: mdl-33957828

ABSTRACT

Jasminum multiflorum Burm. f. (J. multiflorum) is an ornamental plant with traditional medicinal importance. This study aims to evaluate the activity of J. multiflorum isolated compounds against hepatocellular carcinoma cells infected with hepatitis C virus (HCV) in vitro. The in vitro anti-viral and anti-oncogenic-related activity were validated by anchorage-independent assay plus transwell migration/invasion and spreading assay. In addition to chromatographic isolation of the active metabolites. The flower extract demonstrated a significant antiviral potential through reducing active viral replication by more than 90%. Study results credit this to specific reduction of viral NS5A and cellular EphA2 protein levels. Molecular docking analysis proved the role of the isolated compounds especially multifloroside, jasfloroside A and jasfloroside B as possible anti HCV molecules.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C , Jasminum , Liver Neoplasms , Antiviral Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Flowers/chemistry , Hepacivirus , Humans , Jasminum/chemistry , Liver Neoplasms/drug therapy , Molecular Docking Simulation
6.
Molecules ; 28(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36615461

ABSTRACT

SARS-CoV-2 has caused more than 596 million infections and 6 million fatalities globally. Looking for urgent medication for prevention, treatment, and rehabilitation is obligatory. Plant extracts and green synthesized nanoparticles have numerous biological activities, including antiviral activity. HPLC analysis of C. dirnum L. leaf extract showed that catechin, ferulic acid, chlorogenic acid, and syringic acid were the most major compounds, with concentrations of 1425.16, 1004.68, 207.46, and 158.95 µg/g, respectively. Zinc nanoparticles were biosynthesized using zinc acetate and C. dirnum extract. TEM analysis revealed that the particle size of ZnO-NPs varied between 3.406 and 4.857 nm. An XRD study showed the existence of hexagonal crystals of ZnO-NPs with an average size of 12.11 nm. Both ZnO-NPs (IC50 = 7.01 and CC50 = 145.77) and C. dirnum L. extract (IC50 = 61.15 and CC50 = 145.87 µg/mL) showed antiviral activity against HCOV-229E, but their combination (IC50 = 2.41 and CC50 = 179.23) showed higher activity than both. Molecular docking was used to investigate the affinity of some metabolites against the HCOV-229E main protease. Chlorogenic acid, solanidine, and catchin showed high affinity (-7.13, -6.95, and -6.52), compared to the ligand MDP (-5.66 Kcal/mol). Cestrum dinurum extract and ZnO-NPs combination should be subjected to further studies to be used as an antiviral drug.


Subject(s)
COVID-19 , Cestrum , Metal Nanoparticles , Nanoparticles , Zinc Oxide , Humans , Zinc Oxide/chemistry , Metal Nanoparticles/chemistry , Antiviral Agents/pharmacology , Molecular Docking Simulation , Zinc , SARS-CoV-2/metabolism , Nanoparticles/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
7.
Int J Nanomedicine ; 16: 8221-8233, 2021.
Article in English | MEDLINE | ID: mdl-34955639

ABSTRACT

INTRODUCTION: Plumbago indica L. is considered a valuable source in the Plumbaginaceae family for various types of active compound such as alkaloids, phenolics and saponins. To promote the usage of P. indica in the bionanotechnology field, zinc oxide nanoparticles (ZnONPs) were biosynthesized by using its alcoholic extract. The inhibitory effects of ZnONPs and the plant extract were also evaluated against HSV-1. METHODS: ZnONPs were described by the following techniques, UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). The phenolic and flavonoid contents of P. indica extract, which are accountable for bioreduction, formation and stabilization of the nanoparticles, were analyzed by HPLC technique. The antiviral assessment was implemented on both agents by using Vero cell lines. RESULTS: DLS revealed that the average size of ZnONPs was 32.58 ± 7.98 nm and the zeta potential was -20.8 mV. The observation of TEM analysis revealed that the particle size of ZnONPs varied from 2.56 to 8.83 nm. The XRD analysis verified the existence of pure crystals of hexagonal shapes of nanoparticles of ZnO with a main average size of 35.28 nm that is approximating to the values of particle size acquired by SEM analysis (19.64 and 23.21 nm). The HPLC analysis of P. indica ethanolic extract showed that gallic acid, chlorogenic acid and rutin were the major compounds, with concentrations equal to 8203.99, 2965.95 and 1144.99 µg/g, respectively. Regarding the antiviral assessment, the synthesized uncalcinated ZnONPs were found to exhibit a promising activity against HSV-1, with CC50 and IC50 values equal to 43.96 ± 1.39 and 23.17 ± 2.29 µg/mL, respectively. CONCLUSION: The green synthesized ZnONPs are considered promising adjuvants to enhance the efficacy of HSV-1 drugs.


Subject(s)
Antiviral Agents , Herpesvirus 1, Human , Metal Nanoparticles , Plumbaginaceae , Zinc Oxide , Antiviral Agents/pharmacology , Herpesvirus 1, Human/drug effects , Plant Extracts/pharmacology , Plumbaginaceae/chemistry , Zinc Oxide/pharmacology
8.
Biomed Pharmacother ; 143: 112120, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34649330

ABSTRACT

The goal of this work aimed to evaluate the protective effects of pea (Pisum sativum) peels extract versus doxorubicin-induced oxidative myocardial injury in male mice. The mice were divided into seven groups (n = 7): (I) control group; (II) P. sativum 250 group; (III) P. sativum 500 group; (IV) DOX (3 times alternately of 2.5 mg/kg/week, i.p. for a continuous two-week period) group; (V) Vit. E 100 + DOX group; (VI) P. sativum 250 + DOX group, and (VII) P. sativum 500 + DOX group). Twenty polyphenolic compounds, mainly flavonoid glycosides such as quercetin, kaempferol apigenin, and phenolics compounds were characterized by LC-MS/MS analysis in the examined extract. DOX administration elevated the activities of serum biomarkers of myocardial dysfunction (ALT, AST, ALP, LDH, troponin, CPK, and CK-MB), lipid profile, and proinflammatory cytokines. Also, it decreased cardiac antioxidants (GSH, SOD, GPX, CAT) and increased myocardial markers of oxidative stress (NO and MDA) and inflammatory marker (MPO). As well as it downregulated and upregulated the Bcl-2 (anti-apoptotic gene) and the Bax (pro-apoptotic gene) expressions, respectively. Pre-treatment of DOX-exposed mice with P. sativum or vitamin E (as a reference protective antioxidant) alleviated the changes dose-dependently via DOX-induced cardiotoxicity. These data show that P. sativum has a cardio-protective impact against DOX-induced cardiomyocyte damage in mice via boosting endogenous antioxidants, decreasing inflammation, and regulating BcL-2 and Bax apoptosis pathway, which might be related to the presence of flavonoid glycosides. P. sativum peels are a by-product that could be suggested for further screening as a possible new candidate for therapeutic use.


Subject(s)
Antioxidants/pharmacology , Heart Diseases/prevention & control , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , Phytochemicals/pharmacology , Pisum sativum , Plant Extracts/pharmacology , Animals , Antioxidants/isolation & purification , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cardiotoxicity , Disease Models, Animal , Doxorubicin , Heart Diseases/chemically induced , Heart Diseases/metabolism , Heart Diseases/pathology , Inflammation Mediators/metabolism , Male , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Pisum sativum/metabolism , Phytochemicals/isolation & purification , Plant Extracts/isolation & purification , Secondary Metabolism , Seeds , Signal Transduction
9.
Anticancer Agents Med Chem ; 21(18): 2572-2582, 2021.
Article in English | MEDLINE | ID: mdl-34488594

ABSTRACT

BACKGROUND: The plants of high phenolic contents are perfect antioxidant and anti-inflammatory agents and participate in biological studies as effective agents towards different cancer cell lines. OBJECTIVE: To investigate the antioxidant, anti-inflammatory, and cytotoxic activities of the hydromethanolic leaf extract of Jasminum multiflorum (Burm. f.) Andrews. (J. multiflorum), and phenolic profiling of the extract. METHODS: The antioxidant activity for the extract was estimated using ß-Carotene-linoleic and Ferric Reducing Antioxidant Power (FRAP) assays. The anti-inflammatory activity was evaluated by histamine release assay. Cytotoxicity of J. multiflorum was performed using a neutral red uptake assay towards breast cancer (MCF-7) and colorectal cancer (HCT 116) cell lines. Phenolic profiling of the leaves was characterized using high performance liquid chromatography coupled to photodiode array detector-mass spectroscopy-mass spectroscopy (HPLC-PDA-MS/MS), and chromatographic isolation and identification of the isolated compounds were performed using spectroscopic and NMR data, and virtual docking was performed to the isolated compounds against HSP90 (HEAT SHOCK PROTEIN 90). RESULTS: At a concentration of 75 µg mL-1, J. multiflorum extract showed high antioxidant power; 68.23±0.35 % inhibition and 60.30±0.60 a TEAC (µmol Trolox g-1) for ß-Carotene-linoleic assay and FRAP assay; respectively, and possessed anti-inflammatory activity with IC50 67.2 µg/ml. J. multiflorum showed high cytotoxic activity with IC50 of 24.81 µg/ml and 11.38 µg/ml for MCF-7 and HCT 116 cell lines, respectively. HPLC-PDA-MS/MS analysis tentatively identified 39 compounds; major compounds are secoiridoid glycosides, kaempferol, and quercetin glycosides, in addition to simple phenylethanoid compounds. Isolation of active metabolites was performed and led to the isolation and identification of four compounds. On the basis of docking study using HSP90 legend, kaempferol neohesperidoside showed a high cytotoxic potential supported by a high affinity score towards HSP90 legend protein. CONCLUSION: Jasminum multiflorum is a good candidate to isolate cytotoxic agents.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Jasminum/chemistry , Phenols/pharmacology , Plant Extracts/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female , HCT116 Cells , Histamine/metabolism , Humans , Jasminum/metabolism , MCF-7 Cells , Molecular Docking Simulation , Molecular Structure , Phenols/chemistry , Phenols/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism
10.
Biomed Pharmacother ; 142: 112085, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34463263

ABSTRACT

The protective effect of Syzygium jambos (SJ) bark extract against streptozotocin-induced diabetes was tested in rats. Animals were treated with 100 or 200 mg/kg of the extract or glibenclamide, 0.5 mg/kg per os, once daily: started 2 days before streptozotocin (STZ) injection and lasted for 14 days after STZ injection. The effect of the extract was also evaluated on normal rats in comparison with glibenclamide. Diabetic animals showed an elevated blood glucose level, positive glycosuria, elevated fructosamine, pancreatic malondialdehyde, pancreatic TNF-a, and pancreatic caspase-3 levels and decreased serum insulin, pancreatic IL-10, pancreatic BCL-2, reduced glutathione (GSH), liver insulin substrate-2, liver phosphorylated protein kinase B (p-AKT) and liver glucose transporter 4 (GLUT4) levels. Histopathological examination of diabetic rats revealed islets destruction and vacuolation and collagen fibers deposition. All these changes were mitigated dose dependently by the extract. The high dose of the extract exerted comparable effects with glibenclamide in most studied parameters. These results indicated the protective role of SJ against the STZ diabetogenic action. In the pancreatic and hepatic tissue of diabetic rats, SJ effectively recovered pancreatic cells by reducing hyperglycemia through activating endogenous antioxidants, dynamic insulin production, and suppressing inflammation and apoptosis. The observed results might be attributed to the existence of 10 secondary metabolites as annotated by LC-MS. Taken together, S. jambos is a potential candidate for further studies to confirm its activities as a therapeutic agent for diabetic patients.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Syzygium/chemistry , Animals , Apoptosis/drug effects , Diabetes Mellitus, Experimental/physiopathology , Dose-Response Relationship, Drug , Glucose Transporter Type 4/metabolism , Glyburide/pharmacology , Hypoglycemic Agents/administration & dosage , Inflammation/drug therapy , Inflammation/pathology , Insulin Receptor Substrate Proteins/metabolism , Liver/drug effects , Liver/metabolism , Male , Oxidative Stress/drug effects , Pancreas/drug effects , Pancreas/pathology , Plant Extracts/administration & dosage , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects , Streptozocin
11.
Molecules ; 26(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34443414

ABSTRACT

Natural antioxidants, especially those of plant origins, have shown a plethora of biological activities with substantial economic value, as they can be extracted from agro-wastes and/or under exploited plant species. The perennial hydrophyte, Potamogeton perfoliatus, has been used traditionally to treat several health disorders; however, little is known about its biological and its medicinal effects. Here, we used an integrated in vitro and in vivo framework to examine the potential effect of P. perfoliatus on oxidative stress, nociception, inflammatory models, and brewer's yeast-induced pyrexia in mice. Our results suggested a consistent in vitro inhibition of three enzymes, namely 5-lipoxygenase, cyclooxygenases 1 and 2 (COX-1 and COX-2), as well as a potent antioxidant effect. These results were confirmed in vivo where the studied extract attenuated carrageenan-induced paw edema, carrageenan-induced leukocyte migration into the peritoneal cavity by 25, 44 and 64% at 200, 400 and 600 mg/kg, p.o., respectively. Moreover, the extract decreased acetic acid-induced vascular permeability by 45% at 600 mg/kg, p.o., and chemical hyperalgesia in mice by 86% by 400 mg/kg, p.o., in acetic acid-induced writhing assay. The extract (400 mg/kg) showed a longer response latency at the 3 h time point (2.5 fold of the control) similar to the nalbuphine, the standard opioid analgesic. Additionally, pronounced antipyretic effects were observed at 600 mg/kg, comparable to paracetamol. Using LC-MS/MS, we identified 15 secondary metabolites that most likely contributed to the obtained biological activities. Altogether, our findings indicate that P. perfoliatus has anti-inflammatory, antioxidant, analgesic and antipyretic effects, thus supporting its traditional use and promoting its valorization as a potential candidate in treating oxidative stress-associated diseases.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Antipyretics/pharmacology , Plant Extracts/pharmacology , Potamogetonaceae/chemistry , Acetic Acid , Animals , Antioxidants/pharmacology , Behavior, Animal/drug effects , Capillary Permeability/drug effects , Carrageenan , Cell Movement/drug effects , Chromatography, High Pressure Liquid , Drug Evaluation, Preclinical , Edema/pathology , Fever/pathology , Iridoid Glucosides/pharmacology , Leukocytes/drug effects , Male , Mice , Peritoneal Cavity/pathology , Phenylpropionates/pharmacology , Phytochemicals/analysis , Rats , Saccharomyces cerevisiae
12.
Antioxidants (Basel) ; 10(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208063

ABSTRACT

Aluminum (Al) is an omnipresent mineral element in the environment. The brain is a central target of Al toxicity, being highly susceptible to oxidative damage. Therefore, recognition of drugs or natural products that guard against Al-mediated neuronal cell death is a powerful strategy for prevention and treatment of neurodegenerative disorders. This work aimed to explore the potential of a leaf extract from Harrisonia abyssinica to modulate the neurobehavioral, biochemical and histopathological activities induced experimentally by Al in vivo. Rats subjected to Al treatment displayed a reduction in learning and memory performance in a passive avoidance test accompanied by a decrease in the hippocampal monoamine and glutamate levels in addition to suppression of Bcl2 expression. Moreover, malondialdehyde (MDA), inflammatory markers (TNF-α, IL-1ß), apoptotic markers (caspase-3 and expression of Bax) and extracellular regulated kinase (ERK1/2) levels were elevated along with acetylcholinesterase (AChE) activity, histological changes and marked deposition of amyloid ß plaques in the hippocampus region of the brain tissues being observed in Al-treated animals. Concomitant administration of the high dose of H. abyssinica (200 mg/kg b.w.) restored nearly normal levels of all parameters measured, rather than the low dose (100 mg/kg b.w.), an effect that was comparable to the reference drug (rivastigmine). Molecular docking revealed the appropriate potential of the extract components to block the active site of AChE and ERK2. In conclusion, H. abyssinica leaf extract conferred neuroprotection against Al-induced neurotoxic effects, most likely due to its high phenolic and flavonoid content.

13.
Colloids Surf B Biointerfaces ; 203: 111724, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33838582

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the coronavirus (COVID-19), is the virus responsible for over 69,613,607 million infections and over 1,582,966 deaths worldwide. All treatment measures and protocols were considered to be supportive only and not curative. During this current coronavirus pandemic, searching for pharmaceutical or traditional complementary and integrative medicine to assist with prevention, treatment, and recovery has been advantageous. These phytopharmaceuticals and nutraceuticals can be more economic, available, safe and lower side effects. This is in silico comparison study of ten phenolic antiviral agents against SARS-CoV-2, as well as isolation of the most active metabolite from natural sources. Zinc oxide nanoparticles (ZnO NPs) were also then prepared using these metabolite as a reducing agent. All tested compounds showed predicted anti-SARS-CoV-2 activity. Hesperidin showed the highest docking score, this leads us to isolate it from the orange peels and we confirmed its structure by conventenional spectroscopic analysis. In addition, synthesis of hesperidin zinc oxide nanoparticles was characterized by UV, IR, XRD and TEM. In vitro antiviral activity of hesperidin and ZnO NPs was evaluated against hepatitis A virus as an example of RNA viruses. However, ZnO NPs and hesperidin showed antiviral activity against HAV but ZnO NPs showed higher activity than hesperidin. Thus, hesperidin and its mediated ZnO nanoparticles are willing antiviral agents and further studies against SARS-CoV-2 are required to be used as a potential treatment.


Subject(s)
COVID-19 , Hesperidin , Nanoparticles , Zinc Oxide , Antiviral Agents/pharmacology , Computer Simulation , Hesperidin/pharmacology , Humans , SARS-CoV-2 , Zinc Oxide/pharmacology
14.
Molecules ; 26(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808553

ABSTRACT

Infections associated with the emergence of multidrug resistance and mosquito-borne diseases have resulted in serious crises associated with high mortality and left behind a huge socioeconomic burden. The chemical investigation of Lavandulacoronopifolia aerial parts extract using HPLC-MS/MS led to the tentative identification of 46 compounds belonging to phenolic acids, flavonoids and their glycosides, and biflavonoids. The extract displayed larvicidal activity against Culex pipiens larvae (LC50 = 29.08 µg/mL at 72 h). It significantly inhibited cytochrome P-450 monooxygenase (CYP450), acetylcholinesterase (AChE), and carboxylesterase (CarE) enzymes with the comparable pattern to the control group, which could explain the mode of larvae toxification. The extract also inhibited the biofilm formation of Pseudomonas aeruginosa by 17-38% at different Minimum Inhibitory Concentrations (MICs) (0.5-0.125 mg/mL) while the activity was doubled when combined with ciprofloxacin (ratio = 1:1 v:v). In conclusion, the wild plant, L.coronopifolia, can be considered a promising natural source against resistant bacteria and infectious carriers.


Subject(s)
Anti-Bacterial Agents , Biofilms/drug effects , Culex/growth & development , Insecticides , Lavandula/chemistry , Plant Extracts , Plant Leaves/chemistry , Pseudomonas aeruginosa/physiology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Insecticides/chemistry , Insecticides/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology
15.
Nat Prod Res ; 35(22): 4663-4668, 2021 Nov.
Article in English | MEDLINE | ID: mdl-31841029

ABSTRACT

This study focused on the profiling of phenolic constituents in 80% methanolic extracts of the leaves of some Jasminum species cultivated in Egypt and their antioxidant activities. Phenolic profiling was performed by total phenolic contents, total flavonoid contents and HPLC-DAD for selected species in comparison to authentic standards. DPPH assay was used to estimate the antioxidant activities of Jasminum azoricum L., Jasminum humile L., Jasminum multiflorum (Burm.f.) Andrew, Jasminum officinale L., Jasminum sambac (Ait) L. "Arabian Nights cultivar" and Jasminum sambac (Ait) L. "Grand Duke of Tuscany cultivar". Jasminum multiflorum showed the highest antioxidant activity among selected species with IC50 of 34.8 µg/ml. J. multiflorum showed high concentrations of hydroxytyrosol, protocatechuic acid, hydroxybenzoic acid, kaempferol-3-O- neohesperidoside, and quercetin-3-O-glucoside with concentrations of 977.1 µg/g, 2224.7 µg/g, 714.8 µg/g, 1738.8 µg/g, and 4356.1 µg/g, respectively.


Subject(s)
Jasminum , Antioxidants/pharmacology , Egypt , Flavonoids , Phenols/analysis , Plant Extracts/pharmacology
16.
PLoS One ; 15(10): e0240856, 2020.
Article in English | MEDLINE | ID: mdl-33064762

ABSTRACT

UPLC-MS/MS profiling of Cassia glauca leaves extract revealed the identification of 10 flavonoids. Kaempferol 3-O-ß-D-rutinoside was isolated and studied for its cytotoxic activity. It showed high cytotoxic effects against MCF-7 (IC50 of 4.6±0.038 µg/ml) and HepG-2 (IC50 of 8.2±0.024 µg/ml) cancer cell lines, compared to the leaves extracts, their Ag nanoparticles, and doxorubicin. Moreover, Kaempferol 3-O-ß-D-rutinoside exerted a synergistic cytotoxic effect with doxorubicin on MCF-7 cell lines. It was discovered as kinases and aldose reductase inhibitor while rationalizing its cytotoxic activity through molecular docking study. Thus, it is expected that the cardiotoxic effects of doxorubicin can be also decreased by using Kaempferol 3-O-ß-D-rutinoside due to its aldose reductase inhibitory effect. These findings suggested that Kaempferol 3-O-ß-D-rutinoside could be used in combination with chemotherapeutic drugs to increase the sensitivity to their cytotoxic activity and protect against their side effects.


Subject(s)
Aldehyde Reductase/antagonists & inhibitors , Cassia/chemistry , Enzyme Inhibitors/chemistry , Metal Nanoparticles/chemistry , Molecular Docking Simulation , Silver/chemistry , Aldehyde Reductase/metabolism , Binding Sites , Cassia/metabolism , Catalytic Domain , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Doxorubicin/pharmacology , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Humans , Kaempferols/pharmacology , Metal Nanoparticles/toxicity , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Tandem Mass Spectrometry
17.
Biomed Pharmacother ; 120: 109541, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31629949

ABSTRACT

The phenolic profile of the leaves of Beta vulgaris subspecies vulgaris variety rubra was investigated by high-performance liquid chromatography (HPLC) coupled to electrospray ionization high resolution mass spectrometric (ESI-HRMS-MS) detection. Mass spectrometry-based molecular networking was employed to dereplicate the known compounds. Twelve known compounds, seven of which are previously undescribed as constituents in the B. vulgaris leaves were dereplicated and assigned with various levels of identification confidence. The ameliorative effects of the aqueous methanolic extract of the leaves were assessed against alloxan induced diabetic rats. It was found that the extract significantly decreased (p < 0.001) serum glucose, lipid profile, ALT, AST, TNF-α, IL-1ß, IL-6, and hepatic MDA levels; and significantly increased (p < 0.001) hepatic TAO and GSH; and down-regulated the expression of hepatic NF-κB versus the untreated diabetic groups, in a dose-dependent manner. In molecular docking, all identified compounds exhibited good glide score against the PPAR-É£ target, confirming the in vivo observed activities. In conclusion, B. vulgaris has immunomodulatory / antioxidant effects that could be helpful in slowing the progression of diabetic complications.


Subject(s)
Beta vulgaris/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Animals , Antioxidants/metabolism , Atherosclerosis/blood , Blood Glucose/metabolism , Body Weight/drug effects , Chromatography, High Pressure Liquid , Cytokines/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Type 1/blood , Female , Glutathione/metabolism , Humans , Inflammation Mediators/metabolism , Lipids/blood , Liver/metabolism , Male , Malondialdehyde/metabolism , Molecular Docking Simulation , PPAR gamma/metabolism , Phenols/analysis , Phytochemicals/analysis , Phytotherapy , Plant Extracts/pharmacology , Rats, Wistar , Toxicity Tests, Acute
18.
Sci Rep ; 9(1): 11122, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31366955

ABSTRACT

Reactive oxygen species (ROS) are involved in the pathophysiology of several health disorders, among others inflammation. Polyphenols may modulate ROS related disorders. In this work, thirty-two phenolic compounds were tentatively identified in a leaf extract from Eugenia supra-axillaris Spring. ex Mart. using HPLC-MS/MS, five of which were also individually isolated and identified. The extract displayed a substantial in vitro antioxidant potential and was capable of decreasing ROS production and hsp-16.2 expression under oxidative stress conditions in vivo in the Caenorhabditis elegans model. Also, the extract showed higher inhibitory selectivity towards COX-2 than COX-1 in vitro with higher selectivity towards COX-2 than that of diclofenac. The extract also exhibited anti-inflammatory properties: It attenuated the edema thickness in a dose dependent fashion in carrageenan-induced hind-paw odema in rats. In addition, the extract reduced the carrageenan-induced leukocyte migration into the peritoneal cavity at the highest dose. Furthermore, the extract showed antipyretic and analgesic activities in a mouse model. Eugenia supra-axillaris appears to be a promising candidate in treating inflammation, pain and related oxidative stress diseases.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/physiology , Antipyretics/pharmacology , Eugenia/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Animals , Chromatography, High Pressure Liquid/methods , Edema/drug therapy , Edema/metabolism , Inflammation/drug therapy , Male , Mice , Oxidative Stress/drug effects , Pain/drug therapy , Pain/metabolism , Phenols/chemistry , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Tandem Mass Spectrometry/methods
19.
Molecules ; 24(9)2019 May 13.
Article in English | MEDLINE | ID: mdl-31086086

ABSTRACT

The wax apple (Syzygium samarangense) is traditionally employed as an antibacterial and immunostimulant drug in traditional medicine. This plant is rich in different flavonoids and tannins. In this study, we isolated two compounds from S. samarangense leaves: myricitrin and 3,5-di-O-methyl gossypetin. Then, we investigated the mechanisms of action of the two compounds against oxidative stress (induced by sodium arsenite) and inflammation (induced by UV light) on human keratinocytes. We could clearly demonstrate that the pre-treatment of cells with both compounds was able to mitigate the negative effects induced by oxidative stress, as no alteration in reactive oxygen species (ROS) production, glutathione (GSH) level, or protein oxidation was observed. Additionally, both compounds were able to modulate mitogen-activated protein kinase (MAPK) signaling pathways to counteract oxidative stress activation. Finally, we showed that 3,5-di-O-methyl gossypetin exerted its antioxidant activity through the nuclear transcription factor-2 (Nrf-2) pathway, stimulating the expression of antioxidant proteins, such as HO-1 and Mn-SOD-3.


Subject(s)
Flavonoids/chemistry , Flavonoids/pharmacology , Keratinocytes/drug effects , Keratinocytes/metabolism , Syzygium/chemistry , Antioxidants/metabolism , Cell Line , Flavonoids/metabolism , Humans , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
20.
Int J Biol Macromol ; 135: 407-421, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31129214

ABSTRACT

Punica granatum peel (PGP) is widely used in traditional medicinal purposes for chronic wounds owing to containing natural phenolics active components. In current study, active wound dressing hydrogel for chronic wound healing was prepared based on P. granatum peel crude extract (PGPC), ethyl acetate fraction (PGPEA) and their silver nanoforms (Ag-NPs). Methacrylated chitosan was synthesized as precursor to hydrogel and crosslinked by divinyl sulfone (DVS) in mild condition. Hydrogel was fully characterized by spectral morphological, mechanical and physical analyses. The integration of PGPEA silver nanoforms was formed with particle size of 15-56 nm to show minimum inhibitory concentration (MIC) equal 63 for Staphylococcus aureus and 125 for Pseudomonas aeruginosa. The hydrogel-based wound dressing with/without the active ingredients showed acceptable cytotoxicity against fibroblast human cells for PGPC and PGPEA fraction over the silver nanoforms. Rat as animal model was considered to show the impact of the active wound dressing on diabetic wounds which was proved by histopathological examination. In addition, the significant intensity of immunopositivity signals of the transforming growth factor beta (TGF-ß1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the epidermal cells have revealed the efficiency of Ag NPs-PGPEA-chitosan hydrogel for chronic wound curing.


Subject(s)
Chitosan/chemistry , Chitosan/pharmacology , Hydrogels/chemistry , Plant Extracts/chemistry , Pomegranate/chemistry , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bandages/microbiology , Cell Line , Elastic Modulus , Humans , Microbial Sensitivity Tests , Rats
SELECTION OF CITATIONS
SEARCH DETAIL