Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
EBioMedicine ; 43: 370-379, 2019 May.
Article in English | MEDLINE | ID: mdl-31027918

ABSTRACT

BACKGROUND: Treatment and control of schistosomiasis, one of the most insidious and serious parasitic diseases, depend almost entirely on a single drug, praziquantel. Since the funding for drug development for poverty-associated diseases is very limited, drug repurposing is a promising strategy. In this study, 73 nonsteroidal anti-inflammatory drugs (NSAIDs) commonly used in medical and veterinary fields were evaluated for their anti-schistosomal properties. METHODS: The efficacy of NSAIDs was first tested against adult Schistosoma mansoni ex vivo using phenotypic screening strategy, effective drugs were further tested in a murine model of schistosomiasis. The disease parameters measured were worm and egg burden, hepato- and splenomegaly. FINDINGS: From 73 NSAIDs, five (mefenamic acid, tolfenamic acid, meclofenamic acid, celecoxib, and diclofenac) were identified to effectively kill schistosomes. These results were further supported by scanning electron microscopy analysis. In addition, the octanol-water partition coefficient, both for neutral and ionized species, revealed to be a critical property for the ex vivo activity profile. Compounds were then tested in vivo using both patent and a prepatent S. mansoni infection in a mouse model. The most effective NSAID was mefenamic acid, which highly reduced worm burden, egg production, and hepato- and splenomegaly. INTERPRETATION: The treatment regimen used in this study is within the range for which mefenamic acid has been used in clinical practice, thus, it is demonstrated the capacity of mefenamic acid to act as a potent anti-schistosomal agent suitable for clinical repurposing in the treatment of schistosomiasis.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Mefenamic Acid/pharmacology , Parasitic Sensitivity Tests , Schistosoma/drug effects , Schistosomicides/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Repositioning , Female , Humans , Mefenamic Acid/administration & dosage , Mice , Parasitic Sensitivity Tests/methods , Schistosoma mansoni/drug effects , Schistosomiasis/drug therapy , Schistosomiasis/parasitology , Schistosomicides/administration & dosage
2.
Curr Top Med Chem ; 18(5): 397-405, 2018.
Article in English | MEDLINE | ID: mdl-29701141

ABSTRACT

INTRODUCTION: The glycolytic enzyme fructose-1,6-bisphosphate aldolase is a validated molecular target in human African trypanosomiasis (HAT) drug discovery, a neglected tropical disease (NTD) caused by the protozoan Trypanosoma brucei. Herein, a structure-based virtual screening (SBVS) approach to the identification of novel T. brucei aldolase inhibitors is described. Distinct molecular docking algorithms were used to screen more than 500,000 compounds against the X-ray structure of the enzyme. This SBVS strategy led to the selection of a series of molecules which were evaluated for their activity on recombinant T. brucei aldolase. The effort led to the discovery of structurally new ligands able to inhibit the catalytic activity of the enzyme. RESULTS: The predicted binding conformations were additionally investigated in molecular dynamics simulations, which provided useful insights into the enzyme-inhibitor intermolecular interactions. CONCLUSION: The molecular modeling results along with the enzyme inhibition data generated practical knowledge to be explored in further structure-based drug design efforts in HAT drug discovery.


Subject(s)
Aldehyde-Lyases/antagonists & inhibitors , Benzofurans/pharmacology , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacology , Naphthols/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/enzymology , Aldehyde-Lyases/metabolism , Benzofurans/chemical synthesis , Benzofurans/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Kinetics , Models, Molecular , Molecular Structure , Naphthols/chemical synthesis , Naphthols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL