Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Ethnopharmacol ; 328: 118073, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38513780

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal mushrooms belonging to the Lignosus spp., colloquially known as Tiger Milk mushrooms (TMMs), are used as traditional medicine by communities across various regions of China and Southeast Asia to enhance immunity and to treat various diseases. At present, three Lignosus species have been identified in Malaysia: L. rhinocerus, L. tigris, and L. cameronensis. Similarities in their macroscopic morphologies and the nearly indistinguishable appearance of their sclerotia often lead to interchangeability between them. Hence, substantiation of their traditional applications via identification of their individual bioactive properties is imperative in ensuring that they are safe for consumption. L. tigris was first identified in 2013. Thus far, studies on L. tigris cultivar sclerotia (Ligno TG-K) have shown that it possesses significant antioxidant activities and has greater antiproliferative action against selected cancer cells in vitro compared to its sister species, L. rhinocerus TM02®. Our previous genomics study also revealed significant genetic dissimilarities between them. Further omics investigations on Ligno TG-K hold immense potential in facilitating the identification of its bioactive compounds and their associated bioactivities. AIM OF STUDY: The overall aim of this study was to investigate the gene expression profile of Ligno TG-K via de novo RNA-seq and pathway analysis. We also aimed to identify highly expressed genes encoding compounds that contribute to its cytotoxic and antioxidant properties, as well as perform a comparative transcriptomics analysis between Ligno TG-K and its sister species, L. rhinocerus TM02®. MATERIALS AND METHODS: Total RNA from fresh 3-month-old cultivated L. tigris sclerotia (Ligno TG-K) was extracted and analyzed via de novo RNA sequencing. Expressed genes were analyzed using InterPro and NCBI-Nr databases for domain identification and homology search. Functional categorization based on gene functions and pathways was performed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Clusters of Orthologous Genes (COG) databases. Selected genes were subsequently subjected to phylogenetic analysis. RESULTS: Our transcriptomics analysis of Ligno TG-K revealed that 68.06% of its genes are expressed in the sclerotium; 80.38% of these were coding transcripts. Our analysis identified highly expressed transcripts encoding proteins with prospective medicinal properties. These included serine proteases (FPKM = 7356.68), deoxyribonucleases (FPKM = 3777.98), lectins (FPKM = 3690.87), and fungal immunomodulatory proteins (FPKM = 2337.84), all of which have known associations with anticancer activities. Transcripts linked to proteins with antioxidant activities, such as superoxide dismutase (FPKM = 1161.69) and catalase (FPKM = 1905.83), were also highly expressed. Results of our sequence alignments revealed that these genes and their orthologs can be found in other mushrooms. They exhibit significant sequence similarities, suggesting possible parallels in their anticancer and antioxidant bioactivities. CONCLUSION: This study is the first to provide a reference transcriptome profile of genes expressed in the sclerotia of L. tigris. The current study also presents distinct COG profiles of highly expressed genes in Ligno TG-K and L. rhinocerus TM02®, highlighting that any distinctions uncovered may be attributed to their interspecies variations and inherent characteristics that are unique to each species. Our findings suggest that Ligno TG-K contains bioactive compounds with prospective medicinal properties that warrant further investigations. CLASSIFICATION: Systems biology and omics.


Subject(s)
Agaricales , Polyporaceae , Antioxidants/metabolism , Transcriptome , RNA-Seq , Agaricales/genetics , Phylogeny , Prospective Studies , Polyporaceae/genetics
2.
Mycobiology ; 51(1): 1-15, 2023.
Article in English | MEDLINE | ID: mdl-36846625

ABSTRACT

Wound care has become increasingly important over the years. Various synthetic products for wound care treatment have been reported to cause toxic side effects and therefore natural products are in significant demand as they have minimal side effects. The presence of bioactive compounds in medicinal mushrooms contributes to various biological activities which assist in the early inflammatory phase, keratinocyte proliferation, and its migration enhancement which are pertinent to wound rehabilitation. Lignosus rhinocerus (tiger milk mushroom) can reduce the inflammation phase in wound healing by fighting off bacterial infection and modulating pro-inflammatory cytokines expression in the early stage to avoid prolonged inflammation and tissue damage. The antibacterial, immunomodulating, and anti-inflammatory activities exhibited by most macrofungi play a key role in enhancing wound healing. Several antibacterial and antifungal compounds sourced from traditional botanicals/products may prevent further complications and reoccurrence of injury to a wounded site. Scientific studies are actively underway to ascertain the potential use of macrofungi as a wound healing agent.

3.
J Ethnopharmacol ; 304: 115957, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36509254

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Lignosus rhinocerus (Cooke) Ryvarden (also known as Tiger Milk mushroom, TMM), is a basidiomycete belonging to the Polyporaceae family. It has been documented to be used by traditional Chinese physicians and indigenous people in Southeast Asia to treat a variety of illnesses, such as gastritis, arthritis, and respiratory conditions, as well as to restore patients' physical well-being. TMM has also been used in folk medicine to treat cancer. For example, people from the indigenous Kensiu tribe of northeast Kedah (Malaysia) apply shredded TMM sclerotium mixed with water directly onto breast skin to treat breast cancer, while Chinese practitioners from Hong Kong, China prescribe TMM sclerotium as a treatment for liver cancer. L. rhinocerus has previously been demonstrated to possess selective anti-proliferative properties in vitro, however pre-clinical in vivo research has not yet been conducted. AIM OF STUDY: This study aimed to examine the anti-tumor activities of L. rhinocerus TM02®, using two different sample preparations [cold water extract (CWE) and fraction] via various routes of administration (oral and intraperitoneal) on an MCF7-xenograft nude mouse model. This study also investigated the inhibitory effect of TM02® CWE and its fractions against COX-2 in vitro using LPS-induced RAW264.7 macrophages, on the basis of the relationship between COX-2 and metastasis, apoptosis resistance, as well as the proliferation of cancer cells. MATERIALS AND METHODS: The first preparation, L. rhinocerus TM02® sclerotium powder (TSP) was dissolved in cold water to obtain the cold water extract (CWE). It was further fractionated based on its molecular weight to obtain the high (HMW), medium (MMW) and low (LMW) molecular weight fractions. The second preparation, known as the TM02® rhinoprolycan fraction (TRF), was obtained by combining the HMW and MMW fractions. TSP was given orally to mimic the daily consumption of a supplement; TRF was administered intraperitoneally to mimic typical tumorous cancer treatment with a rapid and more thorough absorption through the peritoneal cavity. Another experiment was conducted to examine changes in COX-2 activity in LPS-induced RAW264.7 macrophages after a 1-h pre-treatment with CWE, HMW, and MMW. RESULTS: Our results revealed that intraperitoneal TRF-injection (90 µg/g BW) for 20 days reduced initial tumor volume by ∼64.3% (n = 5). The percentage of apoptotic cells was marginally higher in TRF-treated mice vs. control, suggesting that induction of apoptosis as one of the factors that led to tumor shrinkage. TSP (500 µg/g BW) oral treatment (n = 5) for 63 days (inclusive of pre-treatment prior to tumor inoculation) effectively inhibited tumor growth. Four of the five tumors totally regressed, demonstrating the effectiveness of TSP ingestion in suppressing tumor growth. Although no significant changes were found in mouse serum cytokines (TNF-α, IL-5, IL-6 and CCL2), some increasing and decreasing trends were observed. This may suggest the immunomodulatory potential of these treatments that can directly or indirectly affect tumor growth. Pre-treatment with CWE, HMW and MMW significantly reduced COX-2 activity in RAW264.7 macrophages upon 24 h LPS-stimulation, suggesting the potential of L. rhinocerus TM02® extract and fractions in regulating M1/M2 polarization. CONCLUSION: Based on the findings of our investigation, both the rhinoprolycan fraction and crude sclerotial powder from L. rhinocerus TM02® demonstrated tumor suppressive effects, indicating that they contain substances with strong anticancer potential. The antitumor effects of L. rhinocerus TM02® in our study highlights the potential for further explorations into its mechanism of action and future development as a prophylactic or adjunct therapeutic against tumorous cancer.


Subject(s)
Lipopolysaccharides , Polyporaceae , Humans , Mice , Animals , Mice, Nude , Powders , Cyclooxygenase 2 , Heterografts
4.
Int J Med Mushrooms ; 24(10): 1-14, 2022.
Article in English | MEDLINE | ID: mdl-36374826

ABSTRACT

COVID-19 infection has been a key threat to the public health system globally, with an estimated 248 million cases worldwide. COVID-19 patients are subject to a higher risk of developing chronic respiratory disorders that are closely associated with long-term disability, multi-morbidity, and premature mortality. Although there have been recent advancements in respiratory treatment regimens, there has also been increased interest in the use of medicinal mushrooms in bridging the unaddressed pathways of action within the treatment algorithms. In this review, we provide a collection of medicinal mushrooms that are beneficial in promoting respiratory health and potentially reducing COVID-19 symptoms in patients who are newly diagnosed and those who have recovered. While reviewing the use of immunomodulatory pathways, which have shown promising results in tackling side effects and post-COVID syndromes, we also provide insights into how the antioxidant elements present in medicinal mushrooms help to achieve the same results, especially in the prophylactic and therapeutic management of COVID-19 infection. To date, medicinal mushrooms are regarded as a functional food, which, however, need further quality, safety, and efficacy assessments. These requirements are also highlighted in the present review to promote the future development and application of medicinal mushrooms for better respiratory health.


Subject(s)
Agaricales , COVID-19 Drug Treatment , COVID-19 , Phytotherapy , Humans , COVID-19/epidemiology , Pandemics
5.
Int J Med Mushrooms ; 24(5): 19-32, 2022.
Article in English | MEDLINE | ID: mdl-35695586

ABSTRACT

Lignosus rhinocerus has bioactive properties, such as anti-inflammatory, antioxidant, antiglycation, and immunomodulatory effects, that are beneficial to the skin. Gas chromatography-mass spectrometry analysis revealed the presence of cosmeceutical compounds, including linoleates, ascorbic acid dipalmitate, and all-trans-squalene, in the mushroom sclerotium. We further investigated the depigmentation and antiaging activities of L. rhinocerus cultivar TM02 sclerotia cold water extract (TM-CWE). TM-CWE at 10% (v/v) inhibited melanin production at the intra- and extracellular levels of B16-F1 melanoma cells (50.6-53.3%) and downregulated microphthalmia-associated transcription factor, the key protein for melanogenic enzyme expression, at the intracellular level (44.5 ± 2.6%). The extract also promoted human procollagen type 1 production in HaCat cells by 51.30 ± 2.87% at 12.5% (v/v). Irritation tests using three-dimensional eye and skin models further indicated that TM-CWE is a nonirritant with > 75% viability. Therefore, L. rhinocerus TM02 demonstrated the capacity to be a beneficial ingredient for skin care application.


Subject(s)
Agaricales , Ascomycota , Collagen , Humans , Melanins , Polyporaceae , Water
6.
Int J Med Mushrooms ; 24(3): 1-14, 2022.
Article in English | MEDLINE | ID: mdl-35467802

ABSTRACT

Ophiocordyceps sinensis is a popular medicinal mushroom used for various health conditions, including alleviation of frequent urination, which is a major symptom of overactive bladder (OAB) syndrome. This study aimed to investigate the effect of O. sinensis (OCS02 cultivar) cold-water extract (CWE) against bladder contractility using the organ bath technique. The bladder was removed from male Sprague-Dawley rats and cut into longitudinal strips of 2 mm × 8 mm. In some experiments, the urothelium was removed to study its role in CWE-induced responses. CWE elicited a biphasic response consisting of an immediate, transient contraction that was followed by a sustained relaxation in bladder strips precontracted with carbachol, a muscarinic agonist. Removal of urothelium did not alter the magnitude of the contractile response but significantly attenuated the relaxation response. In the presence of L-NAME (nitric oxide synthase inhibitor) and sodium nitroprusside (nitric oxide donor), CWE-induced transient contraction was enhanced, whereas the relaxation response was significantly reduced. Following preincubation with CWE, the amplitude and the frequency of the spontaneous myogenic contractions induced by carbachol, as well as the contractile response toward calcium, were significantly suppressed. Findings from this study show that the urothelium plays a role in the relaxant effect of CWE. Its mechanisms of action include the regulation of nitric oxide and inhibition of calcium influx.


Subject(s)
Cordyceps , Urinary Bladder , Animals , Calcium/pharmacology , Carbachol/pharmacology , China , Male , Muscle, Smooth/physiology , Rats , Rats, Sprague-Dawley , Urinary Bladder/physiology , Water
7.
Int J Med Mushrooms ; 23(10): 61-68, 2021.
Article in English | MEDLINE | ID: mdl-34595892

ABSTRACT

Traditional use of the tiger milk medicinal mushroom, Lignosus rhinocerus, to treat various illnesses has been recorded for > 4 centuries. Successful cultivation of L. rhinocerus using proprietary solid-state fermentation (SSF) technology by LiGNO Biotech has enabled large-scale production of L. rhinocerus sclerotia (termed L. rhinocerus TM02) and further investigations into its medicinal properties. Pharmacological activities of L. rhinocerus TM02, including its antioxidant, anti-inflammatory, anticancer, and immunomodulatory effects and the bioactive components responsible, have been validated by various scientific studies. In this study, we assessed the consistency of the bioactive components in 11 batches of L. rhinocerus TM02 produced over a 9-year period. The different batches of L. rhinocerus TM02 consisted of stable protein, polysaccharide, and glycoprotein contents, and all tested samples were comparable to the wild type. L. rhinocerus TM02 had greater protein, carbohydrate, and glycoprotein contents, which were mostly bioactive compared to another cultivar from a different cultivation technology (TM-UN). Together with previous scientific validations, L. rhinocerus TM02 produced using SSF cultivation is of optimal quality with high consistent bioactive contents, which can be an appropriate indicator for quality validation of the much sought-after medicinal mushroom, L. rhinocerus.


Subject(s)
Agaricales , Polyporaceae , Anti-Inflammatory Agents , Antioxidants
8.
Int J Med Mushrooms ; 22(10): 967-977, 2020.
Article in English | MEDLINE | ID: mdl-33426826

ABSTRACT

Ophiocordyceps sinensis (=Cordyceps sinensis) has been known for its various medicinal properties, in particular immunomodulatory activities associated with its polysaccharides. In this study, the fruiting body of O. sinensis cultivar OCS02® was investigated for its chemical composition and monosaccharide profile. Cold water extract (CWE) obtained from this fruiting body was fractionated by molecular weight (MW) into high (HMW), medium (MMW), and low (LMW) fractions. Polysaccharides in the extract and fractions were identified as heteroglycans containing mostly glucose and mannose with small amounts of galactose, fucose, arabinose, and xylose. The immunomodulatory potential of these heteroglycans was evaluated by induction of cytokine/chemokine secretion using murine macrophage RAW 264.7. All treatments showed significant modulation of IL-6, IL-9, MIP-2, and TIMP-1, especially for CWE, HMW, and MMW, which might be due to their high ratios of glucose and the presence of protein. Further investigation on the structure-function relationship of these fruiting body polysaccharide fractions is needed to delineate the underlying mechanism of their immunomodulatory effect both in vitro and in vivo.


Subject(s)
Agaricales/chemistry , Fruiting Bodies, Fungal/chemistry , Hypocreales/chemistry , Immunologic Factors/pharmacology , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Animals , China , Cytokines/immunology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Macrophages/drug effects , Macrophages/immunology , Mice , Molecular Weight , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Polysaccharides/chemistry , Polysaccharides/isolation & purification , RAW 264.7 Cells
9.
Int J Med Mushrooms ; 22(8): 803-814, 2020.
Article in English | MEDLINE | ID: mdl-33389874

ABSTRACT

Natural compounds found in Lignosus rhinocerus like polysaccharides and polysaccharide-protein complexes have the capabilities to modulate the immune system. It possesses antitumor and anti-inflammatory properties and is commonly used in Southeast Asia and Southern China to alleviate illness. To investigate its immunomodulating properties, composition of polysaccharides and the expression of cytokines/chemokines from L. rhinocerus (TM02®) cultivar treated RAW 264.7 were explored. It was revealed, CWE contains linear polysaccharides with 1,4-linkages and rhinoprolycan fraction (HMW & MMW) possesses 1,4-Glcp and 1,6-Glcp backbone and branched chain (1,3,6-Glcp, 1,4,6-Glcp, 1,3,6-Glcp, 1,2,4,6-Glcp). Cytokines profile showed upregulation from CWE (IL-5: 12.078 ± 1.225), HMW (IL-6: 7.297 ± 0.338; TIMP-1: 3.358 ± 0.200), MMW (IL-5: 15.412 ± 5.823; TIMP-1: 1.747 ± 0.053), and LMW (MIP-2: 3.495 ± 0.416; TIMP-1: 7.573 ± 0.088) and possible involvement of NF-κB and MAPK signaling pathway. Further in vivo studies are needed to fully understand the immunomodulatory effects of TM02®.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Polyporaceae/chemistry , Polysaccharides/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , China , Cytokines/genetics , Cytokines/immunology , Macrophages/drug effects , Macrophages/immunology , Mice , Polysaccharides/chemistry , RAW 264.7 Cells
10.
IUBMB Life ; 71(7): 821-826, 2019 07.
Article in English | MEDLINE | ID: mdl-30629799

ABSTRACT

Sclerotial powder of a cultivated species of the Tiger Milk Mushroom, Lignosus cameronensis was analysed for its nutritional components and compared against species of the same genus, Lignosus rhinocerus and Lignosus tigris. All three species have been used by indigenous tribes in Peninsular Malaysia as medicinal mushrooms. Content of carbohydrate, fibre, mineral, amino acid, palatable index, fat, ash and moisture were determined. L. cameronensis sclerotial material consists of carbohydrate (79.7%), protein (12.4%) and dietary fibre (5.4%) with low fat (1.7%) and no free sugar. It has the highest content of total carbohydrate (791 g kg-1 ), energy value (3,700 kcal kg-1 ) and calcium (0.85 g kg-1 ). The crude protein content (123 g kg-1 ) is comparable to that of L. rhinocerus with its main amino acids consisting of glutamic acid, aspartic acid and leucine. The umami index is determined to be 0.27. The total essential amino acid (45 g kg-1 ) is comparable to that of L. tigris. The main mineral is potassium (1.51 g kg-1 ) and the Na/K ratio was <0.6. Heavy metals such as mercury, cadmium, lead and arsenic were absent. L. cameronensis has the highest amount of food energy, total carbohydrate and calcium compared to those of both L. rhinocerus and L. tigris. The essential amino acids comprised almost 40% of the total amino acid content, slightly more than that reported from sclerotial powder of the L. tigris. © 2019 IUBMB Life, 9999(9999):1-6, 2019.


Subject(s)
Amino Acids/analysis , Carbohydrates/analysis , Metals, Heavy/analysis , Minerals/analysis , Nutrients/analysis , Plants, Medicinal/metabolism , Polyporaceae/metabolism , Humans , Nutritive Value , Plants, Medicinal/growth & development , Polyporaceae/growth & development
11.
Int J Med Mushrooms ; 20(5): 459-469, 2018.
Article in English | MEDLINE | ID: mdl-29953361

ABSTRACT

A cultivar of fruiting bodies of Ophiocordyceps sinensis (FBOS; OCS02) was analyzed for nutrients, bioactive compounds, and heavy metal content to showcase its potential as a competitive, sustainable, and safe alternative to wild types and other cultivars. A previous 28-day subacute toxicity study showed that doses up to 1 g · kg-1 did not cause any adverse effects in Sprague-Dawley rats. The OCS02 cultivar contained large amounts of cordycepin, polysaccharides, and essential and semi-essential amino acids (0.66, 482.80, 99.02, and 101.04 g · kg-1, respectively) compared with levels reported in wild types and in cultivated mycelia. ß-1,3/1,6-glucan content was considerably high at 342.50 g · kg-1. The potassium level (5.14 g kg-1) tied in well with the low sodium content (0.121 g · kg-1)-6 times lower than amounts in wild types. We found no detectable levels of heavy metals such as lead, arsenic, cadmium, and mercury. The major amino acids found in FBOS (0CS02 cultivar) were arginine, lysine, serine, and threonine at 45.20, 20.30, 18.60, and 18.20 g · kg-1, respectively. The cultivated FBOS (OCS02 cultivar) is a comparable alternative to wild-type and other cultivated strains of O. sinensis. It has potential as a nutraceutical to meet market demand.


Subject(s)
Ascomycota/chemistry , Food , Fruiting Bodies, Fungal/chemistry , Amino Acids/analysis , Chromatography, Gas , Deoxyadenosines/analysis , Metals, Heavy/analysis , Mycelium/chemistry , Mycelium/growth & development , Polysaccharides/analysis
12.
J Ethnopharmacol ; 206: 236-244, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28587826

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ophiocordyceps sinensis (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora is one of the most renowned traditional Chinese medicine used as tonic, renal, respiratory and reproductive health, promote longevity and overall improvement in quality of life. Natural production of O. sinensis is limited due to its extreme specificity in host range and confined geographic distribution. Therefore, cultivation of the fungus was developed to meet high demand for commercialization as nutraceutical. O. sinensis fruiting body has recently been successfully cultivated in large scale using rice based solid medium, providing wider source options for consumers and scientific researchers. AIMS OF THE STUDY: The present study aims to establish safety profile for the consumption of cultivated fruiting body of O. sinensis (FBOS) by 28-days sub-acute toxicity study in Sprague Dawley rats. MATERIALS AND METHODS: Rats were orally administered with cultivated FBOS at three graded doses (250, 500 and 1000mg/kg), once daily for 28 consecutive days. Control group received distilled water. General observations (gross behavioral changes and toxic symptoms) and body weight of each animal were monitored daily. Haematological, serum biochemical and histopathological analysis were carried out at the end of the experiment (Day 29). RESULTS: No behavioral changes, toxic symptoms or death was observed in rats throughout the dosing period. Cultivated FBOS treatment up to 1000mg/kg did not cause any adverse effect on the growth of the animals. Results from haematology and serum biochemistry revealed no toxic effect following cultivated FBOS treatment at three graded doses for 28 days. In addition, no treatment related histopathological changes were noted in heart, spleen, kidney, lung and liver of the animals. CONCLUSION: The present study revealed that oral administration of cultivated FBOS for 28 days, at dosage up to 1000mg/kg did not pose toxicological concern in rats. Therefore, the no-observed-adverse-effect level (NOAEL) dose of cultivated FBOS in 28-days subacute toxicity study is higher than 1000mg/kg.


Subject(s)
Ascomycota , Fruiting Bodies, Fungal , Toxicity Tests, Subacute , Administration, Oral , Animals , Female , Male , Rats , Rats, Sprague-Dawley
13.
Int J Med Mushrooms ; 19(12): 1093-1099, 2017.
Article in English | MEDLINE | ID: mdl-29431070

ABSTRACT

Amauroderma rugosum is a wild medicinal mushroom also known as budak cendawan sawan. Members of the indigenous Malaysian Temuan community wear the fresh stipes as a necklace to prevent epileptic seizure and unremitting crying by babies. In our previous studies, A. rugosum exhibited significant antioxidant and anti-inflammatory activities. The aim of this study was to determine the toxicity (in the event that a stipe is accidentally bitten) and cytotoxicity of this mushroom on Sprague-Dawley rats and selected cell lines. A. rugosum was orally administered to test chemicals according to Organisation for Economic and Co-operation and Development guidelines (TG 425, adopted October 3, 2008). Blood samples were hematologically and biochemically analyzed and multiple tissue sections from each organ were examined using light microscopy. Cytotoxicity of various A. rugosum extracts was also determined against MCF-7 and A-549 cell lines. Our results showed that oral administration of a single dose of mycelial powder (2000 mg/kg) had no adverse effect on the growth rate or hematological and clinical biochemical parameters. Histological studies showed that the treatments did not induce any pathological changes in the organs of the tested animals. All the treated rats survived beyond the 14-day observation period. Methanol and cold and hot water extracts of the freeze-dried mycelial culture of A. rugosum exhibited no or little cytotoxic effect against the MCF-7 and A-549 cell lines.


Subject(s)
Agaricales/chemistry , Mushroom Poisoning , Mycelium/chemistry , A549 Cells , Administration, Oral , Animals , Carbohydrates/analysis , Cell Line, Tumor , Female , Fungal Proteins/analysis , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Malaysia , Mushroom Poisoning/blood , Mushroom Poisoning/pathology , Rats , Rats, Sprague-Dawley
14.
Nutr Res ; 36(2): 174-83, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26598045

ABSTRACT

The Tiger Milk Mushroom (Lignosus spp.) is an important medicinal mushroom in Southeast Asia and has been consumed frequently by the natives as a cure for a variety of illnesses. In this study, we hypothesized that Lignosus tigris (cultivar E) sclerotium may contain high nutritional value and antioxidant properties, is nontoxic and a potential candidate as a dietary supplement. The chemical and amino acid compositions of the sclerotium were evaluated and antioxidant activities of the sclerotial extracts were assessed using ferric reducing antioxidant power; 1,1-diphenyl-2-picrylhydrazyl; and superoxide anion radical scavenging assays. Acute toxicity of the L. tigris E sclerotium was assessed using a rat model study. The sclerotium was found to be rich in carbohydrate, protein, and dietary fibers with small amounts of fat, calories, and sugar. The amino acid composition of the protein contains all essential amino acids, with a protein score of 47. The sclerotial extracts contain phenolics, terpenoids, and glucan. The ferric reducing antioxidant power values of the various sclerotial extracts (hot water, cold water, and methanol) ranged from 0.008 to 0.015 mmol min(-1) g(-1) extract, while the 1,1-diphenyl-2-picrylhydrazyl and superoxide anion radical scavenging activities ranged from 0.11 to 0.13, and -2.81 to 9.613 mmol Trolox equivalents g(-1) extract, respectively. Acute toxicity assessment indicated that L. tigris E sclerotial powder was not toxic at the dose of 2000 mg kg(-1). In conclusion, L. tigris E sclerotium has the potential to be developed into a functional food and nutraceutical.


Subject(s)
Antioxidants/chemistry , Complex Mixtures/chemistry , Dietary Supplements/analysis , Mycelium/chemistry , Polyporaceae/chemistry , Amino Acids/analysis , Animals , Antioxidants/administration & dosage , Antioxidants/adverse effects , Antioxidants/analysis , Complex Mixtures/administration & dosage , Complex Mixtures/adverse effects , Dietary Supplements/adverse effects , Ethnopharmacology , Female , Glucans/analysis , Humans , Malaysia , Nutritive Value , Phenols/analysis , Rats, Sprague-Dawley , Terpenes/analysis , Toxicity Tests, Acute
15.
J Ethnopharmacol ; 174: 437-51, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26320692

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has been traditionally used as a complementary and alternative medicine for cancer treatment by the local communities of Southeast Asia. Despite the continuous research interest in its antiproliferative activity, the identity of the bioactive compound(s) responsible has yet to be determined. This study aims to bridge the gap in existing research literature by using proteomics approach for investigation of the nature of the anticancer substance of L. rhinocerotis. AIM OF THE STUDY: To elucidate the proteome of L. rhinocerotis TM02 sclerotium by protein mass spectrometry and to further isolate and identify the cytotoxic component(s) bearing anticancer potential. MATERIALS AND METHODS: The proteome of L. rhinocerotis sclerotium was analyzed by label-free quantitative shotgun proteomics, using 1D-SDS-PAGE coupled with nano-ESI-LC-MS/MS based on the availability of its genome-sequence database. The cytotoxicity of L. rhinocerotis sclerotial extracts against human breast adenocarcinoma cells (MCF7) were assessed by MTT cytotoxicity assay prior to successive purification steps by a combination of gel filtration chromatography, ammonium sulfate precipitation, and anion exchange chromatography. Bioactive compound(s) in the extracts was identified by shotgun proteomics and N-terminal protein sequencing. RESULTS: Several proteins with interesting biological activities including lectins, fungal immunomodulatory proteins, and several antioxidant proteins were identified from the proteome of L. rhinocerotis. A cytotoxic protein fraction (termed F5) which was partially purified from its sclerotial cold water extract F5 shows two distinct bands of 31 and 36 kDa in reducing SDS-PAGE and exhibited potent selective cytotoxicity against MCF7 cells with IC50 value of 3.00 ± 1.01 µg/ml. Both bands were identified to be serine protease by LC-MS/MS analysis. Phenylmethylsulfonyl fluoride, a specific serine protease inhibitor, inhibited both the proteolytic activity and cytotoxicity of F5, suggesting that the cytotoxicity of F5 is related to its protease activity. CONCLUSIONS: This study provides the first comprehensive and semi-quantitative profiling of the proteome of L. rhinocerotis sclerotium. Further investigation into its selective cytotoxicity shows that a serine protease-like protein, termed F5, may be targeted for new anticancer agent development.


Subject(s)
Agaricales/genetics , Antineoplastic Agents/pharmacology , Proteomics/methods , Serine Proteases/genetics , Agaricales/enzymology , Antineoplastic Agents/isolation & purification , Antioxidants/isolation & purification , Antioxidants/pharmacology , Cell Line, Tumor , Databases, Genetic , Drug Screening Assays, Antitumor , Humans , Immunologic Factors/isolation & purification , Immunologic Factors/pharmacology , Lectins/isolation & purification , Lectins/pharmacology , Medicine, East Asian Traditional , Serine Proteases/isolation & purification , Serine Proteases/pharmacology , Tetrazolium Salts , Thiazoles
16.
Int J Med Sci ; 12(1): 23-31, 2015.
Article in English | MEDLINE | ID: mdl-25552915

ABSTRACT

Lignosus rhinocerotis (Cooke) Ryvarden (Polyporales, Basidiomycota), also known as the tiger milk mushroom, has received much interest in recent years owing to its wide-range ethnobotanical uses and the recent success in its domestication. The sclerotium is the part with medicinal value. Using two-dimensional gel electrophoresis coupled with mass spectrometry analysis, a total of 16 non-redundant, major proteins were identified with high confidence level in L. rhinocerotis sclerotium based on its genome as custom mapping database. Some of these proteins, such as the putative lectins, immunomodulatory proteins, superoxide dismutase, and aegerolysin may have pharmaceutical potential; while others are involved in nutrient mobilization and the protective antioxidant mechanism in the sclerotium. The findings from this study provide a molecular basis for future research on potential pharmacologically active proteins of L. rhinocerotis.


Subject(s)
Fungal Proteins/isolation & purification , Fungal Proteins/pharmacology , Polyporaceae/chemistry , Proteomics/methods , Antioxidants/isolation & purification , Antioxidants/pharmacology , Electrophoresis, Gel, Two-Dimensional , Hemolysin Proteins/pharmacology , Mass Spectrometry/methods , Open Reading Frames , Plants, Medicinal/chemistry , Polyporaceae/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
17.
Indian J Exp Biol ; 52(9): 849-59, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25241584

ABSTRACT

Mucuna pruriens is widely used in traditional medicine for treatments of various diseases. In certain region of Nigeria, the seed is used as oral prophylactics for snakebite. Rats pretreated with the aqueous extract from M. pruriens seed (MPE) were protected against the lethal effects of Naja sputatrix (Javan spitting cobra) venom [Tan et al., J Ethnopharmacol, 123 (2009) 356]. The pretreatment also protected against venom-induced histopathological changes in rat heart. To contribute to the understanding of the mechanism of cardio-protective action, the present study examined the effects of MPE-pretreatment on gene expression profile of rat heart as well as effect of MPE-pretreatment on N. sputatrix venom-induced gene expression alterations in rat heart. The gene expression profiles were examined by microarray analysis and verified by real time PCR. The results showed that pretreatment with MPE caused 50 genes in the rat heart substantially up-regulated of which 19 were related to immune responses, 7 were related to energy production and metabolism. The up-regulation of genes related to energy metabolism probably plays a role in maintaining the viability of the heart. Four other genes that were up-regulated (alpha synuclein, natriuretic peptide precursor, calsequestrin and triadin) were involved in the maintenance of homeostasis of the heart or maintaining its viability, thereby contributing to the direct protective action. The results demonstrated that protective effect of MPE pretreatment against snake venom poisoning may involve a direct action on the heart.


Subject(s)
Elapid Venoms/toxicity , Gene Expression Regulation/drug effects , Heart/drug effects , Heart/physiology , Mucuna/chemistry , Plant Extracts/pharmacology , Protective Agents/pharmacology , Animals , Gene Expression Profiling , Male , Myocardium/chemistry , Myocardium/metabolism , Plant Extracts/chemistry , Protective Agents/chemistry , Rats , Rats, Sprague-Dawley , Seeds/chemistry
18.
BMC Complement Altern Med ; 14: 359, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25256382

ABSTRACT

BACKGROUND: The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden (Tiger Milk mushroom) is used as a traditional medicine to relieve cough, asthma and chronic hepatitis. The traditional uses of the sclerotium are presumably related to its anti-inflammatory effect. The present study was carried out to evaluate the anti-inflammatory activity of the sclerotial powder of L. rhinocerotis (Cooke) Ryvarden (Tiger Milk mushroom) cultivar TM02. METHODS: The anti-acute inflammatory activity of the sclerotial powder of L. rhinocerotis cultivar TM02 was investigated using carrageenan-induced paw edema test while the inhibition of transudative and proliferative phases of chronic inflammation were studied by cotton pellet induced granuloma model. Sprague Dawley rats were used in both studies. The anti-inflammatory activity was also measured by inhibition of lipopolysaccharide induced TNF-alpha production in RAW 264.7 macrophage cells. RESULTS: Cold water extract (CWE), hot water extract (HWE) and methanol extract (ME) of the sclerotial powder of L. rhinocerotis cultivar TM02 possessed anti-acute inflammatory activity as was measured by carrageenan-induced paw edema test, with CWE being the most potent. The acute anti-inflammatory activity of the cold water extract (CWE) was mainly contributed by its high molecular weight (HMW) fraction isolated by Sephadex G50 gel filtration chromatography. Its protein component was very potent in the inhibition of TNF-alpha production with an IC50 of 0.76 µg/ml. CWE at 200 mg/kg did not inhibit transudative and proliferative phase of chronic inflammation as shown by using the cotton pellet induced granuloma model. CONCLUSIONS: Our results suggested that most of the bioactive substance(s) contributed to the acute-inflammatory activity of the sclerotial powder of L. rhinocerotis cultivar TM02 appear to be in the CWE, particularly its HMW fraction. The anti-inflammatory activity of CWE was mainly contributed by the protein component of the high molecular weight (HMW) fraction and it exhibited strong inhibitory effect on TNF-alpha production but the possibility of synergistic effect between HMW, MMW and LMW fractions cannot be excluded. Future studies will provide new insights into the anti-inflammatory activity of the sclerotial powder.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mycelium/chemistry , Polyporaceae/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Carrageenan/toxicity , Cell Line , Edema/chemically induced , Edema/drug therapy , Granuloma , Male , Mice , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/analysis , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism
19.
BMC Genomics ; 15: 635, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-25073817

ABSTRACT

BACKGROUND: The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden or Tiger milk mushroom (Polyporales, Basidiomycota) is a valuable folk medicine for indigenous peoples in Southeast Asia. Despite the increasing interest in this ethnobotanical mushroom, very little is known about the molecular and genetic basis of its medicinal and nutraceutical properties. RESULTS: The de novo assembled 34.3 Mb L. rhinocerotis genome encodes 10,742 putative genes with 84.30% of them having detectable sequence similarities to others available in public databases. Phylogenetic analysis revealed a close evolutionary relationship of L. rhinocerotis to Ganoderma lucidum, Dichomitus squalens, and Trametes versicolor in the core polyporoid clade. The L. rhinocerotis genome encodes a repertoire of enzymes engaged in carbohydrate and glycoconjugate metabolism, along with cytochrome P450s, putative bioactive proteins (lectins and fungal immunomodulatory proteins) and laccases. Other genes annotated include those encoding key enzymes for secondary metabolite biosynthesis, including those from polyketide, nonribosomal peptide, and triterpenoid pathways. Among them, the L. rhinocerotis genome is particularly enriched with sesquiterpenoid biosynthesis genes. CONCLUSIONS: The genome content of L. rhinocerotis provides insights into the genetic basis of its reported medicinal properties as well as serving as a platform to further characterize putative bioactive proteins and secondary metabolite pathway enzymes and as a reference for comparative genomics of polyporoid fungi.


Subject(s)
Genomics , Medicine, East Asian Traditional , Polyporales/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genes, Fungal/genetics , Phylogeny , Polyporales/metabolism , Polysaccharides/genetics , Polysaccharides/metabolism
20.
J Ethnopharmacol ; 147(1): 157-63, 2013 May 02.
Article in English | MEDLINE | ID: mdl-23458920

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Lignosus rhinocerus (Tiger Milk mushroom) is distributed in South China, Thailand, Malaysia, Indonesia, Philippines and Papua New Guinea. In Malaysia, it is the most popular medicinal mushroom used by the indigenous communities to relieve fever, cough, asthma, cancer, food poisoning and as a general tonic. In China, this mushroom is an expensive traditional medicine used to treat liver cancer, chronic hepatitis and gastric ulcers. The sclerotium of the mushroom is the part with medicinal value. This rare mushroom has recently been successfully cultivated making it possible to be fully exploited for its medicinal and functional benefits. The present study was carried out to evaluate the chronic toxicity of the sclerotial powder of Lignosus rhinocerus cultivar (termed TM02), its anti-fertility and teratogenic effects as well as genotoxicity. MATERIALS AND METHODS: Sprague Dawley rats (10 rats/group/sex) were fed orally with 250, 500 and 1000 mg/kg of sclerotial powder of TM02. The sclerotial powder was orally administered once daily and consecutively for 180 days. At the completion of the oral feeding period, analysis of hematological and clinical biochemical parameters, urine profiles, organ weight as well as histopathological analysis were carried out. The effect of the sclerotial powder on fertility and its possible teratogenicity were examined by feeding rats orally with 100 mg/kg sclerotial powder consecutively for 7-8 weeks. Genotoxicity was evaluated by Ames test using Salmonella typhimurium strains TA 98, TA 100, TA 1535, TA 1537 and Escherichia coli WP2 uvrA. RESULTS: The results showed that oral administration of the sclerotial powder of the Lignosus rhinocerus cultivar at daily dose of up to 1000 mg/kg for 180 days had no adverse effect on the general clinical observations, body weight, hematology, clinical biochemistry, urinalysis, absolute organ weight as well as relative organ weight, nor induced histological changes in the organs. Oral administration of 100 mg/kg sclerotial powder of the Lignosus rhinocerus for 7-8 weeks did not affect the fertility of the rats nor induce teratogenic effect on their offspring. Lignosus rhinocerus sclerotial powder up to 5000 µg/plate in the presence and absence of metabolic activation did not cause gene mutations by base pair changes or frameshifts in the genome of the tester strains used. CONCLUSION: Our results showed that the no-observed-adverse-effect level (NOAEL) dose of the sclerotial powder of Lignosus rhinocerus in 180-day chronic toxicity study is more than 1000 mg/kg. Oral feeding of the sclerotial powder at 100mg/kg did not induce adverse effect on rats' fertility nor causing teratogenic effect on their offspring. In the reverse mutation Ames test, the sclerotial powder at all tested concentration did not show any genotoxicity.


Subject(s)
Abnormalities, Drug-Induced/etiology , DNA Damage , DNA, Bacterial/drug effects , Fertility/drug effects , Materia Medica/toxicity , Polyporaceae , Administration, Oral , Animals , Biomarkers/blood , Biomarkers/urine , Body Weight/drug effects , Escherichia coli/genetics , Female , Fungal Structures , Male , Materia Medica/administration & dosage , Materia Medica/isolation & purification , Mutagenicity Tests , No-Observed-Adverse-Effect Level , Organ Size/drug effects , Polyporaceae/chemistry , Powders , Pregnancy , Rats , Rats, Sprague-Dawley , Risk Assessment , Salmonella typhimurium/genetics , Time Factors , Toxicity Tests, Chronic
SELECTION OF CITATIONS
SEARCH DETAIL