Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Ethnopharmacol ; 323: 117690, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38195019

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Shuangshen Ningxin Formula (SSNX) is a traditional Chinese medicine formula used to treat myocardial ischemia-reperfusion injury (MIRI). A randomized controlled trial previously showed that SSNX reduced cardiovascular events, and experiments have also verified that SSNX attenuated ischemia-reperfusion (I/R) injury. However, the mechanism of SSNX in the treatment of microvascular I/R injury is still unclear. AIM OF THE STUDY: To determine whether SSNX protects the microvasculature by regulating I/R induction in rats and whether this effect depends on the regulation of NR4A1/Mff/Drp1 pathway. METHODS: The anterior descending coronary artery was ligated to establish a rat MIRI model with 45 min of ischemia and 24 h of reperfusion. The rats were subjected to a 7-day pretreatment with SSNX and nicorandil, after which their cardiac function and microvascular functional morphology were evaluated through diverse methods, including hematoxylin and eosin (HE) staining, wheat germ agglutinin (WGA) staining, and transmission electron microscopy. Cell apoptosis was assessed using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Additionally, serum levels of ET-1 and eNOS were determined through an enzyme-linked immunosorbent assay (ELISA). The expression levels of NR4A1, Mff, and proteins related to mitochondrial fission were examined by Western blot (WB). Cardiac microcirculation endothelial cells (CMECs) were cultured and the oxygen-glucose deprivation/reoxygenation (OGD/R) model was duplicated. Following treatment with SSNX and DIM-C-pPhOH, an NR4A1 inhibitor, cell viability was assessed. Fluorescence was used to evaluate mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (MPTP) opening. Moreover, vascular endothelial function was evaluated through transendothelial electrical resistance (TEER), Transwell assays and tube formation assays. RESULTS: The results showed that SSNX reduced the infarction area and no-flow area, improved cardiac function, mitigated pathological alterations, increased endothelial nitric oxide synthase expression, protected endothelial function, and attenuated microvascular damage after I/R injury. I/R triggered mitochondrial fission and apoptotic signaling in CMECs, while SSNX restored mitochondrial fission to normal levels and inhibited mitochondrial apoptosis. A study using CMECs revealed that SSNX protected endothelial function after OGD/R, attenuating the increase in NR4A1/Mff/Drp1 protein and inactivating VDAC1, HK2, cytochrome c (cyt-c) and caspase-9. Research also shows that SSNX can affect CMEC cell migration and angiogenesis, reduce mitochondrial membrane potential damage, and inhibit membrane opening. Moreover, DIM-C-pPhOH, an NR4A1 inhibitor, partially imitated the effect of SSNX. CONCLUSION: SSNX has a protective effect on the cardiac microvasculature by inhibiting the NR4A1/Mff/Drp1 pathway both in vivo and in vitro.


Subject(s)
Drugs, Chinese Herbal , Indoles , Myocardial Reperfusion Injury , Phenols , Reperfusion Injury , Rats , Animals , Endothelial Cells , Mitochondria/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Apoptosis , Reperfusion Injury/metabolism
2.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4156-4163, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802784

ABSTRACT

This study explored the effects of Buyang Huanwu Decoction(BYHWD) on platelet activation and differential gene expression after acute myocardial infarction(AMI). SD rats were randomly divided into a sham-operated group, a model group, a positive drug(aspirin) group, and a BYHWD group. Pre-treatment was conducted for 14 days with a daily oral dose of 1.6 g·kg~(-1) BYHWD and 0.1 g·kg~(-1) aspirin. The AMI model was established using the high ligation of the left anterior descending coronary artery method. The detection indicators included myocardial infarct size, heart function, myocardial tissue pathology, peripheral blood flow perfusion, platelet aggregation rate, platelet membrane glycoprotein CD62p expression, platelet transcriptomics, and differential gene expression. The results showed that compared with the sham-operated group, the model group showed reduced ejection fraction and cardiac output, decreased peripheral blood flow, and increased platelet aggregation rate and CD62p expression, and activated platelets. At the same time, TXB_2 content increased and 6-keto-PGF1α content decreased in serum. Compared with the model group, BYHWD increased ejection fraction and cardiac output, improved blood circulation in the foot and tail regions and cardiomyocytes arrangement, reduced myocardial infarct size and inflammatory infiltration, down-regulated platelet aggregation rate and CD62p expression, reduced serum TXB_2 content, and increased 6-keto-PGF1α content. Platelet transcriptome sequencing results revealed that BYHWD regulated mTOR-autophagy pathway-related genes in platelets. The differential gene expression levels were detected using real-time quantitative PCR. BYHWD up-regulated mTOR, down-regulated autophagy-related FUNDC1 and PINK genes, and up-regulated p62 gene expression. The results demonstrated that BYHWD could regulate platelet activation, improve blood circulation, and protect ischemic myocardium in AMI rats, and its mechanism is related to the regulation of the mTOR-autophagy pathway in platelets.


Subject(s)
Drugs, Chinese Herbal , Myocardial Infarction , Rats , Animals , Rats, Sprague-Dawley , Drugs, Chinese Herbal/therapeutic use , Myocardial Infarction/drug therapy , Myocardial Infarction/genetics , Myocardium/metabolism , Aspirin/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins
3.
Chin Med ; 18(1): 120, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37730607

ABSTRACT

BACKGROUND: Myocardial ischemia/reperfusion injury (MI/RI) is involved in a variety of pathological states for which there is no effective treatment exists. Shuangshen Ningxin (SSNX) capsule which is developed by Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine has been demonstrated to alleviate MI/RI, but its mechanism remains to be further elucidated. METHODS: The MI/RI miniature pigs model was constructed to assess the pharmacodynamics of SSNX by blocking the proximal blood flow of the left anterior descending branch of the cardiac coronary artery through an interventional balloon. The principal chemical compounds and potential targets of SSNX were screened by HPLC-MS and SwissTargetPrediction. The targets of MI/RI were identified based on Online Mendelian Inheritance in Man (OMIM) and GeneCards. Cytoscape 3.9.0 was applied to construct a protein-protein interaction (PPI) network, and Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using metascape. To further validate the mechanism of SSNX, Molecular docking, Transmission electron microscopy, and Western blot analysis were used to test the effectiveness of targets in related pathways. RESULTS: Our results indicated that SSNX significantly improved cardiac function, attenuated myocardial I/R injury. Through network analysis, a total of 15 active components and 201 targets were obtained from SSNX, 75 of which are potential targets for the treatment of MI/RI. KEGG and MCODE analysis showed that SSNX is involved in the mitophagy signaling pathway, and ginsenoside Rg1, ginsenoside Rb1 and ginsenoside Rb2 are key components associated with the mitophagy. Further experimental results proved that SSNX protected mitochondrial structure and function, and significantly reduced the expression of mitophagy-related proteins PTEN-induced putative kinase 1 (PINK1), Parkin, FUN14 domain containing 1 (FUNDC1) and Bcl-2/E1B-19 kDa interacting protein 3 (BNIP3) in MI/RI miniature pigs. CONCLUSION: In our study, the integration of network pharmacology and experiments in vivo demonstrated that SSNX interfered with MI/RI by inhibiting mitophagy.

4.
Zhongguo Zhong Yao Za Zhi ; 47(5): 1327-1335, 2022 Mar.
Article in Chinese | MEDLINE | ID: mdl-35343161

ABSTRACT

Protective effect of Qilong Capsules(QL) on the myocardial fibrosis and blood circulation of rats with coronary heart disease of Qi deficiency and blood stasis type was investigated. Sleep deprivation and coronary artery ligation were used to construct a disease-symptom combination model, and 60 SD rats were divided into sham operation(sham) group, syndrome(S) group, disease and syndrome(M) group and QL group randomly. The treatment group received administration of QL 0.4 g·kg~(-1)·d~(-1). Other groups were given the same amount of normal saline. The disease indexes of each group [left ventricular end diastolic diameter(LVESD), left ventricular end systolic diameter(LVEDD), left ventricular ejection fraction(LVEF), left ventricular axis shortening rate(LVFS), myocardial histopathology, platelet morphology, peripheral blood flow] and syndrome indexes(tongue color, pulse, grip power) were detected. In sham group, cardiomyocytes and myocardial fibers were arranged neatly and densely with clear structures. The tongues' color in sham were light red, and the pulse shape were regular. RGB is a parameter reflected the brightness of the image of the tongue. In the S group, the amplitude and frequency of the animal's pulse increased accompanied by decreasing R,G,B, however, the decreased R,G,B was accompanied by reduced pulse amplitude in M group. And in M group, we observed fuzzy cell morphology, hypertrophied myocytes, disordered arrangement of cardiomyocytes and myocardial fibers, reduced peripheral blood flow and increased collagen volume fraction(CVF). Increased LVESD and LVEDD, and decreased LVEF and LVFS represented cardiac function in S group was significantly lower than that in sham. In QL group, the tongue's color was red and the pulse was smooth. The myocardial fibers of the QL group were arranged neatly and secreted less collagen. It improved the blood circulation in the sole and tail, and reversed the increasing of LVEDD, LVESD and the decreasing of LVEF and LVFS of M group. Platelets in M and S group showed high reactivity, and QL could decrease aggregation risk. In conclusion, Qilong Capsules has an obvious myocardial protective effect on ischemic cardiomyopathy, which may inhibit the degree of myocardial fibrosis and reduce platelet reactivity.


Subject(s)
Cardiomyopathies , Qi , Animals , Capsules , Cardiomyopathies/drug therapy , Fibrosis , Myocytes, Cardiac , Rats , Rats, Sprague-Dawley , Stroke Volume , Ventricular Function, Left
5.
Zhongguo Zhong Yao Za Zhi ; 45(9): 2082-2090, 2020 May.
Article in Chinese | MEDLINE | ID: mdl-32495557

ABSTRACT

As the final destination of various cardiovascular abnormalities, heart failure is one of the diseases with the highest morbidity and mortality in the world. Due to its complicated pathogenesis, people urgently need to find new targets and effective treatment. Imbalance in myocardial energy metabolism, an important molecular biological basis for heart failure, affects the contractile and diastolic functions of the heart. As the main source of energy synthesis in cardiomyocytes and an important participant in various signaling pathways, mitochondria plays an indispensable role in the process of cell survival and death and has been considered as a critical target for the treatment of heart failure. Traditional Chinese medicine has a great effect on the treatment of heart failure through multi-components, multi-targets, and multi-channels. In recent years, more and more researches regard mitochondria as the target of traditional Chinese medicine in the treatment of heart failure, and have achieved significant results in improving mitochondrial function, increasing energy metabolism and energy supplement for cardiomyocytes, and resisting against oxidative stress. In this article, researches on the regulation of mitochondria in the treatment of heart failure by traditional Chinese medicine are reviewed from four aspects: mitochondrial biogenesis; mitochondrial electron transport chain and reactive oxygen species(ROS) production; metabolic substrates and metabolic enzymes; and calcium ion transport in the mitochondria. It provides a basis for further research and clinical application in the future.


Subject(s)
Heart Failure , Medicine, Chinese Traditional , Humans , Mitochondria , Oxidative Stress , Reactive Oxygen Species
6.
BMC Complement Altern Med ; 19(1): 357, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31822281

ABSTRACT

BACKGROUND: Shenxian-Shengmai (SXSM) Oral Liquid is a CFDA-approved patent Chinese Herbal medicine, which has been clinically used for the treatment of bradycardia. However, its active components and action mechanism remain to be established. The present study aimed to evaluate the efficacy of SXSM on bradycardia and to identify the possible active components and their pharmacological targets for this action. METHODS: A literature-based meta-analysis was performed to evaluate the clinical efficacy of SXSM on bradycardia, which was confirmed by a rat ex vivo cardiac model. Network pharmacology analysis was then conducted to reveal the potential targets of SXSM active components and their anti-arrhythmia mechanisms. Finally, the identified drug-target interaction was confirmed by immunofluorescence assay in cardiomyocyte. RESULTS: Meta-analysis of the available clinical study data shows that Shenxian-Shengmai Oral Liquid has a favorable effect for bradycardia. In an ex vivo bradycardia model of rat heart, SXSM restored heart rate by affecting Heart rate variability (HRV) which is associated with autonomic nervous system activity. A drug-target-pathway network analysis connecting SXSM components with arrhythmia suggested that a prominent anti-arrhythmia mechanisms of SXSM was via ß1-adrenergic signaling pathway, which was subsequently validated by immunofluorescence assay showing that SXSM indeed increased the expression of ADRB1 in cultured cardiomyocytes. CONCLUSION: By combining approaches of clinical evidence mining, experimental model confirmation, network pharmacology analyses and molecular mechanistic validation, we show that SXSM is an effective treatment for bradycardia and it involves multiple component interacting via multiple pathways, among which is the critical ß1-adrenergic receptor upregulation. Our integrative approach could be applied to other multi-component traditional Chinese medicine investigation where ample clinical data are accumulated but advanced mechanistic studies are lacking.


Subject(s)
Bradycardia/metabolism , Drugs, Chinese Herbal/pharmacology , Receptors, Adrenergic, beta-1/metabolism , Up-Regulation/drug effects , Animals , Cell Line , Electrocardiography , Heart/drug effects , Male , Myocytes, Cardiac/drug effects , Rats , Rats, Sprague-Dawley
7.
Zhongguo Zhong Yao Za Zhi ; 44(1): 193-198, 2019 Jan.
Article in Chinese | MEDLINE | ID: mdl-30868832

ABSTRACT

To explore the regularity of traditional Chinese medicine(TCM) prescriptions for cardio-cerebrovascular diseases,the core drug groups with common therapeutic effects on cerebrovascular diseases represented by stroke and cardiovascular diseases represented by coronary artery disease were extracted,and their consistency and difference in the treatment of different diseases were analyzed.A total of 388 Chinese patent medicines were collected for the treatment of cerebrovascular diseases,cardiovascular diseases and cardio-cerebrovascular diseases.The dominant and recessive patterns of Chinese patent medicines in clinical use were found by "frequency analysis","compatibility analysis" and "network analysis" respectively.According to the findings of the three parts,Salviae Miltiorrhizae Radix et Rhizoma,Chuanxiong Rhizoma,Carthami Flos and Astragali Radix have a high frequency of use in the treatment of brain disease,heart disease and both,with frequent combined medication.Data mining confirmed the core drug combinations for the treatment of cerebral and cardiac vascular diseases,so as to reveal the similarities and differences in the drug use of Chinese medicine for these diseases,and provide a basis for the rational use of traditional Chinese medicine in clinical practice.This analysis also defines a new direction for the future development of prescription combinations for different indications of cerebral and cardiac diseases.


Subject(s)
Cardiovascular Diseases/drug therapy , Cerebrovascular Disorders/drug therapy , Drugs, Chinese Herbal/therapeutic use , Data Mining , Humans , Medicine, Chinese Traditional , Prescriptions
SELECTION OF CITATIONS
SEARCH DETAIL