Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Food Res Int ; 182: 114099, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519169

ABSTRACT

This study describes the bioaccessibility in terms of total phenolic content (TPC) and antioxidant capacity before and after in vitro digestion from blackcurrant press cake extracts (BPC) and the bioactivity in cell culture, human erythrocytes as well as the in silico analysis. Chemical analysis of BPC presented an increase in TPC (270%) and anthocyanins (136%) after in vitro digestion, resulting in an improvement of antioxidant activity (DPPH 112%; FRAP: 153%). This behavior may be related to the highest activity of cyanidin-3-rutinoside, as confirmed by in silico analysis. The digested BPC did not exert cytotoxicity in cells and showed less antioxidant activity against the oxidative damage induced in endothelial cells and human erythrocytes compared to the non-digested extract. The results raise a question about the reliability we should place on results obtained only from crude samples, especially those that will be used to produce foods or nutraceuticals.


Subject(s)
Anthocyanins , Antioxidants , Humans , Antioxidants/analysis , Anthocyanins/analysis , Endothelial Cells , Reproducibility of Results , Plant Extracts/chemistry , Digestion , Phenols/analysis
2.
Food Funct ; 15(7): 3274-3299, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38482946

ABSTRACT

Cardiovascular diseases (CVDs) are a group of chronic health disorders prevalent worldwide that claim millions of lives yearly. Inflammation and oxidative stress are intricately associated with myocardial tissue damage, endothelial dysfunction, and increased odds of heart failure. Thus, dietary strategies aimed at decreasing the odds of CVDs are paramount. In this regard, the consumption of anthocyanins, natural pigments found in edible flowers, fruits, and vegetables, has attracted attention due to their potential to promote cardiovascular health. The main mechanisms of action linked with their protective effects on antioxidant and anti-inflammatory activities, serum lipid profile modulation, and other cardiovascular health parameters are explained and exemplified. However, little is known about the dose-dependency nature of the effects, which anthocyanin has better efficiency, and whether anthocyanin-containing foods display better in vivo efficacy than nutraceuticals (i.e., concentrated extracts containing higher levels of anthocyanins than foods). Thus, this systematic review focused on determining the effects of anthocyanin-containing foods and nutraceuticals on biomarkers associated with CVDs using animal studies and human interventions supported by in vitro mechanistic insights. Overall, the results showed that the regular consumption of anthocyanin-containing foods and nutraceuticals improved vascular function, lipid profile, and antioxidant and anti-inflammatory effects. The daily dosage, the participants' health status, and the duration of the intervention also significantly influenced the results.

3.
Food Chem ; 440: 138281, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38160597

ABSTRACT

Oxidative/nitrosative damage takes part in chronic disease development, which generates an urgent need for intervention and better therapies to manage them. The scientific community has demanded easy-to-run, cheap, and reliable methods for cellular antioxidant activity assays. This work standardised and validated an erythrocyte cellular antioxidant activity and membrane protection/injury (HERYCA-P) protocol to study food-derive extracts. The method measures intracellular reactive oxygen species (ROS) generation, lipoperoxidation, and haemolysis induced by 2,2'-azobis(2-amidinopropane) dihydrochloride. Quercetin decreased ROS generation by 50.4% and haemolysis by 2.2%, while ascorbic acid inhibited lipid peroxidation by 40.1%. Total phenolic contents of teas were correlated with decreased ROS generation (r = -0.924), lipoperoxidation (r = -0.951), and haemolysis (r = -0.869). The erythrocyte ROS generation and lipoperoxidation were also associated with CUPRAC (r = -0.925; r = -0.951) and hydroxyl radical scavenging activity (r = -0.936; r = -0.949). The precision rates of antioxidant standards and tea samples were below 15%. HERYCA-P is feasible as a complementary antioxidant assay for food matrices.


Subject(s)
Antioxidants , Hemolysis , Humans , Antioxidants/pharmacology , Reactive Oxygen Species , Erythrocytes , Oxidative Stress , Lipid Peroxidation , Phenols/pharmacology , Plant Extracts/pharmacology
4.
Compr Rev Food Sci Food Saf ; 22(6): 4890-4924, 2023 11.
Article in English | MEDLINE | ID: mdl-37786329

ABSTRACT

With the development of metabolomics analytical techniques, relevant studies have increased in recent decades. The procedures of metabolomics analysis mainly include sample preparation, data acquisition and pre-processing, multivariate statistical analysis, as well as maker compounds' identification. In the present review, we summarized the published articles of tea metabolomics regarding different analytical tools, such as mass spectrometry, nuclear magnetic resonance, ultraviolet-visible spectrometry, and Fourier transform infrared spectrometry. The metabolite variation of fresh tea leaves with different treatments, such as biotic/abiotic stress, horticultural measures, and nutritional supplies was reviewed. Furthermore, the changes of chemical composition of processed tea samples under different processing technologies were also profiled. Since the identification of critical or marker metabolites is a complicated task, we also discussed the procedure of metabolite identification to clarify the importance of omics data analysis. The present review provides a workflow diagram for tea metabolomics research and also the perspectives of related studies in the future.


Subject(s)
Metabolomics , Plant Leaves , Metabolomics/methods , Mass Spectrometry , Magnetic Resonance Spectroscopy/methods , Plant Leaves/chemistry , Tea/chemistry
5.
Food Chem ; 428: 136764, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37463557

ABSTRACT

Designing functional foods as delivery systemsmay become a tailored strategy to decrease the risk of noncommunicable diseases. Therefore, this work aims to optimise a combination of t-resveratrol (RES), chlorogenic acid (CHA), and quercetin (QUE) based on antioxidant assays and develop a functional tea formulation enriched with the optimal polyphenol combination (OPM). Experimental results showed that the antioxidant capacity of these compounds is assay- and compound-dependent. A mixture containing 73% RES and 27% QUE maximised the hydroxyl radical scavenging activity and FRAP. OPM upregulated the gene expressions of heme oxygenase-1, superoxide dismutase, and catalase and decreased the reactive oxygen species generation in L929 fibroblasts. Adding OPM (100 mg/L)to a chamomile tea increased FRAP:39%, DPPH:59%; total phenolic content: 57%, iron reducing capacity: 41%, human plasma protection against oxidation: 67%. However, pasteurisation (63 °C/30 min) decreased onlythe DPPH. Combining technology, engineering, and cell biology was effective for functional tea design.


Subject(s)
Antioxidants , Quercetin , Humans , Antioxidants/analysis , Resveratrol , Chlorogenic Acid , Polyphenols/pharmacology , Polyphenols/analysis , Tea
6.
Molecules ; 28(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37175313

ABSTRACT

Increasing evidence shows that selenium and polyphenols are two types of the most reported compounds in tumor chemoprevention due to their remarkable antitumor activity and high safety profile. The cross-talk between polyphenols and selenium is a hot research topic, and the combination of polyphenols and selenium is a valuable strategy for fighting cancer. The current work investigated the combination anti-peritoneal carcinomatosis (PC) effect of selenium nanoparticles (SeNPs) and green tea (Camellia sinensis) polyphenol (-)-epigallocatechin-3-gallate (EGCG) in mice bearing murine hepatocarcinoma 22 (H22) cells. Results showed that SeNPs alone significantly inhibited cancer cell proliferation and extended the survival time of mice bearing H22 cells. Still, the potential therapeutic efficacy is accompanied by an approximately eighty percent diarrhea rate. When EGCG was combined with SeNPs, EGCG did not affect the tumor proliferation inhibition effect but eliminated diarrhea triggered by SeNPs. In addition, both the intracellular selectively accumulated EGCG without killing effect on cancer cells and the enhanced antioxidant enzyme levels in ascites after EGCG was delivered alone by intraperitoneal injection indicated that H22 cells were insensitive to EGCG. Moreover, EGCG could prevent SeNP-caused systemic oxidative damage by enhancing serum superoxide dismutase, glutathione, and glutathione peroxidase levels in healthy mice. Overall, we found that H22 cells are insensitive to EGCG, but combining EGCG with SeNPs could protect against SeNP-triggered diarrhea without compromising the suppressing efficacy of SeNPs on PC in mice bearing H22 cells and attenuate SeNP-caused systemic toxicity in healthy mice. These results suggest that EGCG could be employed as a promising candidate for preventing the adverse reactions of chemotherapy including chemotherapy-induced diarrhea and systemic toxicity in cancer individuals.


Subject(s)
Catechin , Nanoparticles , Neoplasms , Selenium , Animals , Mice , Selenium/pharmacology , Catechin/pharmacology , Polyphenols/pharmacology , Tea , Diarrhea
7.
Food Sci Nutr ; 11(4): 2012-2026, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37051358

ABSTRACT

Accumulated evidence shows that melatonin possesses the potential to improve lipid metabolism by modifying gut microbiota and glucose metabolism via regulating the melatonin receptor signaling pathway. However, the contribution of melatonin consumption on glucose homeostasis by affecting gut microbiota has not been investigated in diabetes. In the current work, we investigated the effect of melatonin administration on gut microbiota and glucose homeostasis in db/db mice, a type 2 diabetes model with leptin receptor deficiency. Administration of melatonin through drinking water (at 0.25% and 0.50%) for 12 weeks decreased diabetic polydipsia and polyuria, increased insulin sensitivity and impeded glycemia. The accumulated fecal levels of total short-chain fatty acids (SCFAs) and acetic acid are positively correlated with diabetes-related parameters-homeostasis model assessment of insulin resistance (HOMA-IR) index and fasting blood glucose (FBG) level. The reprogramming of gut microbiota structure and abundance and the reduction of fecal levels of SCFAs, including acetic acid, butyric acid, isovaleric acid, caproic acid, and isobutyric acid, by melatonin may be beneficial for enhancing insulin sensitivity and lowering FBG, which were verified by the results of correlation analysis between acetic acid or total SCFAs and HOMA-IR and FBG. In addition, the melatonin downregulated hepatic genes, including fructose-1,6-bisphosphatase 1, forkhead box O1 alpha, thioredoxin-interacting protein, phosphoenolpyruvate carboxy-kinase (PEPCK), PEPCK1 and a glucose-6-phosphatase catalytic subunit, that responsible for gluconeogenesis support the result that melatonin improved glucose metabolism. Overall, results showed that the melatonin supplementation reduced fecal SCFAs level via reprogramming of gut microbiota, and the reduction of fecal SCFAs level is associated with improved glucose homeostasis in db/db mice.

8.
Food Chem ; 419: 136079, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37037130

ABSTRACT

The sensory quality of tea is influenced by water quality, with natural spring water (NSW) gaining much attention for its natural and healthy qualities. The effects of NSW on the sensory attributes, physicochemical composition, and antioxidant capacity of Chinese tea were investigated. Tea brewed with pure water was the most resistant to oxidation and darkening. NSW with low total dissolved solids (TDS) was most suitable for brewing unfermented or mildly fermented teas, improving their sensory quality. The simulated green tea infusion system was used to investigate further the dramatic darkening of tea infusions in NSW. Exposure of infusions to air promoted the degradation, epimerization, and oxidative polymerization of catechins, and further formed theabrownins which darkened the tea infusions. These findings enabled tea consumers to choose the most suitable NSW for brewing Chinese teas and illustrated the darkening mechanism of tea infusion in high pH/TDS water.


Subject(s)
Camellia sinensis , Catechin , Antioxidants/chemistry , Camellia sinensis/chemistry , Catechin/chemistry , Oxidation-Reduction , Tea/chemistry , Natural Springs/chemistry
9.
Food Res Int ; 164: 112402, 2023 02.
Article in English | MEDLINE | ID: mdl-36737984

ABSTRACT

Camellia sinensis var. assamica cv. Zijuan (purple tea) is known for its content of anthocyanins, flavan-3-ols, and bioactivities. This study aimed to verify the influence of solvent polarity, in a solid-liquid extraction, on the content of phenolic compounds and chlorophylls, instrumental color, and antioxidant activity. Different proportions of water and ethanol (0:100, 25:75, 50:50, 75:25, and 100:0 v/v) were used for extraction. The results showed that the hydroalcoholic extract (75 % ethanol + 25 % water) had the highest contents of total flavonoids, total anthocyanins, chlorophyll A, and total carotenoids, as well as presenting the highest color intensity, proportion of yellow pigments, and antioxidant activity (total reducing capacity and scavenging of the DPPH free radical). Twenty-two compounds were identified, with chlorogenic acid, hesperidin, (-)-epicatechin, (-)-epigallocatechin gallate, and isoquercitrin being the main phenolics. This phenolic-rich extract inhibited lipoperoxidation induced in egg yolk homogenate (IC50 = 455 mg/L), showed no hemolytic behavior when human erythrocytes were subjected to osmotic stress, and exerted in vitro cytotoxic effects against cancer and hybrid cells. The extract obtained with the mixture of non-toxic solvents presented critical bioactivities, as well as a comprehensive identification of phenolic compounds in the cultivar, and has potential to be used in technological applications.


Subject(s)
Camellia sinensis , Humans , Camellia sinensis/chemistry , Antioxidants/pharmacology , Anthocyanins/pharmacology , Chlorophyll A , Phenols/analysis , Tea/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
10.
Food Chem ; 402: 134201, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36122474

ABSTRACT

The effects of ß-glucosidase on the volatile profiles and aroma stability of black tea juice were evaluated using gas-chromatography-mass spectrometry coupled with sensory analysis. During liquid fermentation of tea leaves, the addition of ß-glucosidase increased the concentration of aldehydes, strengthening the undesirable "green grassy" odour. However, the "green grassy" odour was counteracted by adding green tea extract during fermentation. At the same time, "flowery" flavour notes were enhanced, improving the overall aroma quality and strengthening the characteristic "sweet" aroma of black tea. Increased addition of ß-glucosidase released more free aroma alcohols from their glucosides. Two "fruity" and "floral" aroma components, benzyl alcohol and phenylethyl alcohol, were not significantly affected by heat treatment (95 °C water bath) and the overall aroma stability was not significantly affected by ß-glucosidase treatment. ß-Glucosidase treatment improved the aroma, colour and overall suitability of fermented black tea juice as an ingredient for tea-based beverages.


Subject(s)
Camellia sinensis , Phenylethyl Alcohol , Volatile Organic Compounds , Odorants/analysis , Tea/chemistry , beta-Glucosidase , Phenylethyl Alcohol/analysis , Volatile Organic Compounds/analysis , Camellia sinensis/chemistry , Beverages/analysis , Aldehydes/analysis , Plant Extracts , Glucosides , Benzyl Alcohols , Water
11.
Molecules ; 27(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36014295

ABSTRACT

This work evaluated the phytochemical composition of olive seed extracts from different cultivars ('Cobrançosa', 'Galega', and 'Picual') and their antioxidant capacity. In addition, it also appraised their potential antineurodegenerative properties on the basis of their ability to inhibit enzymes associated with neurodegenerative diseases: acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase (TYR). To achieve this goal, the phenolic composition of the extracts was determined through high-performance liquid chromatography coupled with photodiode-array detection and electrospray ionization/ion trap mass spectrometry (HPLC-DAD-ESI/MSn). The antioxidant capacity was assessed by two different methods (ABTS•+ and DPPH•), and the antineurodegenerative potential by the capacity of these extracts to inhibit the aforementioned related enzymes. The results showed that seed extracts presented a high content of phenolic compounds and a remarkable ability to scavenge ABTS•+ and DPPH•. Tyrosol, rutin, luteolin-7-glucoside, nüzhenide, oleuropein, and ligstroside were the main phenolic compounds identified in the extracts. 'Galega' was the most promising cultivar due to its high concentration of phenolic compounds, high antioxidant capacity, and remarkable inhibition of AChE, BChE, and TYR. It can be concluded that olive seed extracts may provide a sustainable source of bioactive compounds for medical and industrial applications.


Subject(s)
Neuroblastoma , Olea , Acetylcholinesterase , Antioxidants/chemistry , Butyrylcholinesterase , Chromatography, High Pressure Liquid , Flavonoids/chemistry , Humans , Monophenol Monooxygenase , Olea/chemistry , Phenols/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Seeds/chemistry
12.
Food Res Int ; 158: 111512, 2022 08.
Article in English | MEDLINE | ID: mdl-35840220

ABSTRACT

Geographic-label is a remarkable feature for Chinese tea products. In this study, the UHPLC-Q/TOF-MS-based metabolomics approach coupled with chemometrics was used to determine the five narrow-geographic origins of Keemun black tea. Thirty-nine differentiated compounds (VIP > 1) were identified, of which eight were quantified. Chemometric analysis revealed that the linear discriminant analysis (LDA) classification accuracy model is 91.7%, with 84.7% cross-validation accuracy. Three machine learning algorithms, namely feedforward neural network (FNN), random forest (RF) and support vector machine (SVM), were introduced to improve the recognition of narrow-geographic origins, the performances of the model were evaluated by confusion matrix, receiver operating characteristic curve (ROC) and area under the curve (AUC). The recognition of RF, SVM and FNN for Keemun black tea from five narrow-geographic origins were 87.5%, 94.44%, and 100%, respectively. Importantly, FNN exhibited an excellent classification effect with 100% accuracy. The results indicate that metabolomics fingerprints coupled with chemometrics can be used to authenticate the narrow-geographic origins of Keemun black teas.


Subject(s)
Camellia sinensis , Tea , Algorithms , Chromatography, High Pressure Liquid , Machine Learning , Metabolomics
13.
Food Chem ; 391: 133240, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35617760

ABSTRACT

The effects of commercial enzymes (pectinases, cellulases, beta-1-3-glucanases, and pectin lyases) on the recovery of anthocyanins and polyphenols from blackcurrant press cake were studied considering two solid:solvent ratios (1:10 and 1:4 w/v). ß-glucanase enabled the recovery of the highest total phenolic content - 1142 mg/100 g, and the extraction of anthocyanins was similar using all enzymes (∼400 mg/100 g). The use of cellulases and pectinases enhanced the extraction of antioxidants (DPPH - 1080 mg/100 g; CUPRAC - 3697 mg/100 g). The freeze-dried extracts presented antioxidant potential (CUPRAC, DPPH), which was associated with their biological effects in different systems: antiviral activity against both non-enveloped viruses (enterovirus coxsackievirus A-9) and enveloped coronaviruses (HCoV-OC43), and cytotoxicity towards cancer cells (A549 and HCT8). No cytotoxic effects on normal human lung fibroblast (IMR90) were observed, and no anti-inflammatory activity was detected in lipopolysaccharides-treated murine immortalised microglial cells.


Subject(s)
Cellulases , Ribes , Animals , Anthocyanins/chemistry , Anthocyanins/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Humans , Mice , Phenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Ribes/chemistry
14.
Food Res Int ; 155: 111041, 2022 05.
Article in English | MEDLINE | ID: mdl-35400430

ABSTRACT

Phenolic acids, including benzoic acid and hydroxycinnamic acid derivatives, are the main compounds of black tea. An efficient and accurate analytical method to quantify ten phenolic acids was established and validated by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-QQQ-MS/MS). The chemical shifts during the processing of Keemun black tea were analyzed and the phenolic acids were quantified. Compared with fresh tea leaves, after processing, the contents of free phenolic acids, including gallic acid, salicylic acid, p-coumaric acid, and ferulic acid, increased markedly. Still, the contents of soluble conjugated phenolic acids, including p-coumaroylquinic acid isomers and chlorogenic acid isomers, decreased. Furthermore, the total contents of lignin, and insoluble bonded phenolic acids decreased. The adduct of (-)-epigallocatechin gallate and 3-caffeoylquinic acid was detected in tea samples, and its content increased highly after fermentation. The developed and validated analytical method can be used to monitor the manufacturing process of black tea.


Subject(s)
Camellia sinensis , Tea , Camellia sinensis/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Tea/chemistry
15.
Food Chem ; 381: 132284, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35121317

ABSTRACT

This study aimed to characterise pressurised hot water (PHW) extracts from nonconventional sources of functional carbohydrates and phenolic compounds in terms of antioxidant capacity, antiviral activity, toxicity, and human erythrocytes' protection antidiabetic potential. PHW extracts of Norway spruce bark (E1 + E2) and Birch sawdust (E3 + E4) contained mostly galactoglucomannan and glucuronoxylan. In contrast, samples E5 to E9 PHW extracted from Norway spruce, and Scots pine bark are rich sources of phenolic compounds. Overall, phenolic-rich extracts presented the highest inhibition of α-amylase and α-glucosidase and protection against stable non-enveloped enteroviruses. Additionally, all extracts protected human erythrocytes from hemolysis. Cell-based experiments using human cell lines (IMR90 and A549) showed extracts' non-toxicin vitroprofile. Considering the relative toxicological safety of extracts from these unconventional sources, functional carbohydrates and polyphenol-rich extracts can be obtained and further used in food models.


Subject(s)
Food Ingredients , Antioxidants/metabolism , Antioxidants/pharmacology , Forests , Humans , Mannans , Plant Extracts/pharmacology , Polysaccharides , Xylans
16.
Food Chem ; 366: 130571, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34284185

ABSTRACT

Plant cell cultures from cloudberry (CL), lingonberry (LI), stone berry (ST), arctic bramble (AB), and strawberry (SB) were studied in terms of their polyphenol and carotenoid composition, antioxidant activity, antihemolytic activity and cytotoxicity effects on cancerous cells. High-resolution mass spectrometry data showed that LI, presented the highest antioxidant activity, contained the highest contents of flavones, phenolic acids, lignans, and total carotenoids, while CL, ST and SB presented the opposite behavior. AB and SB presented the lowest FRAP and CUPRAC values, while AB and CL presented the lowest reducing power. SB presented the lowest antioxidant activity measured by single electron transfer assays and the lowest content of lignans, phenolic acids, and flavones. CL and LI decreased the viability of in vitro mammary gland adenocarcinoma while only LI decreased the viability of in vitro lung carcinoma and showed protective effects of human erythrocytes against mechanical hemolysis.


Subject(s)
Fruit , Phenols , Antioxidants , Carotenoids , Cell Culture Techniques , Fruit/chemistry , Humans , Phenols/analysis , Plant Extracts
17.
Food Chem Toxicol ; 159: 112668, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34774677

ABSTRACT

A statistical optimization study was used to maximize the extraction of bioactive compounds and antioxidant activity from green tea derived from purple leaves of Camellia sinensis var. assamica. Simultaneous optimization was applied, and a combination of 60 °C, 15 min, and a mass-solvent ratio of 1 g of dehydrated purple leaves to 62.3 mL of an ethanol/citric acid solution, were determined as the ideal extraction conditions. The optimized extract of purple tea leaves (OEPL) contained showed stability in relation to variations in pH, and lyophilized OEPL exerted cytotoxic and antiproliferative effects against cancerous cells (A549 and HCT8), demonstrated antimicrobial activity towards Listeria monocytogenes (ATCC 7644), Staphylococcus aureus (ATCC 13565) and Staphylococcus epidermidis (ATCC 12288), inhibition of α-amylase and α-glycosidase enzymes and reduced the release of pro-inflammatory cytokines (TNF-α, CXCL2/MIP-2, and IL-6) in lipopolysaccharides-stimulated RAW 264.7 macrophages. Thus, our results provide a broad assessment of the bioactivity of "green" extracts obtained by a simple and low-cost process using non-toxic solvents, and they have the potential to be used for technological applications.


Subject(s)
Antioxidants , Camellia sinensis/chemistry , Plant Extracts , A549 Cells , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Bacteria/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cytokines/metabolism , Humans , Phenols/chemistry , Phenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Reactive Oxygen Species/metabolism
18.
Molecules ; 26(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34771107

ABSTRACT

The Brazilian berry scientifically known as jabuticaba is a fruit covered by a dark purple peel that is still rich in bioactives, especially polyphenols. Considering that, this work was aimed at obtaining an extract from the peel of jabuticaba fruits, identifying its main components, loading it in phospholipid vesicles specifically tailored for skin delivery and evaluating their biological efficacy. The extract was obtained by pressurized hot water extraction (PHWE), which is considered an easy and low dissipative method, and it was rich in polyphenolic compounds, especially flavonoids (ortho-diphenols and condensed tannins), anthocyanins (cyanidin 3-O-glucoside and delphinidin 3-O-glucoside) and gallic acid, which were responsible for the high antioxidant activity detected using different colorimetric methods (DPPH, FRAP, CUPRAC and metal chelation). To improve the stability and extract effectiveness, it was incorporated into ultradeformable phospholipid vesicles (transfersomes) that were modified by adding two different polymers (hydroxyethyl cellulose and sodium hyaluronate), thus obtaining HEcellulose-transfersomes and hyaluronan-transfersomes. Transfersomes without polymers were the smallest, as the addition of the polymer led to the formation of larger vesicles that were more stable in storage. The incorporation of the extract in the vesicles promoted their beneficial activities as they were capable, to a greater extent than the solution used as reference, of counteracting the toxic effect of hydrogen peroxide and even of speeding up the healing of a wound performed in a cell monolayer, especially when vesicles were enriched with polymers. Given that, polymer enriched vesicles may represent a good strategy to produce cosmetical and cosmeceutical products with beneficial properties for skin.


Subject(s)
Anthocyanins/pharmacology , Antioxidants/pharmacology , Hydrolyzable Tannins/pharmacology , Keratinocytes/drug effects , Keratinocytes/metabolism , Oxidative Stress/drug effects , Phospholipids , Plant Extracts/pharmacology , Anthocyanins/administration & dosage , Anthocyanins/chemistry , Antioxidants/administration & dosage , Antioxidants/chemistry , Biocompatible Materials/chemistry , Fruit/chemistry , Humans , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Hydrolyzable Tannins/administration & dosage , Hydrolyzable Tannins/chemistry , Liposomes , Phospholipids/chemistry , Plant Extracts/administration & dosage , Plant Extracts/chemistry
19.
Adv Food Nutr Res ; 98: 1-33, 2021.
Article in English | MEDLINE | ID: mdl-34507639

ABSTRACT

Polyphenols widely exists in various foods, including main crops, fruits, beverages and some wines. Famous representatives of polyphenols, such as resveratrol in red wine, (-)-epigallocatechin gallate in green tea, chlorogenic acid in coffee, anthocyanins in colored fruits, procyanidins in grape seed have become hot research topics in food science and nutrition. There have been thousands of papers on the biochemistry, chemistry, nutritional values and population-based investigations of dietary polyphenols. In this chapter, we reviewed the published articles and database of dietary polyphenols to draw a profile for the classification, structural identification, and biological activities mainly based on enzymes, cell bioassay and animal models, as well as the population-based investigation results. The typical compound and its health benefits for each category of polyphenols was also introduced. The identification of dietary polyphenols could be solved by combined spectroscopy methods, of which the liquid chromatography tandem mass spectrometry is highlighted to greatly increase the efficiency on structural identification. Although the population-based investigation showed some controversial results for health benefits, the multi-functions of dietary polyphenols on preventing metabolic syndromes, various cancers and neurodegenerative disease have attracted much attention.


Subject(s)
Neurodegenerative Diseases , Wine , Animals , Anthocyanins/analysis , Humans , Polyphenols/analysis , Polyphenols/pharmacology , Tea , Wine/analysis
20.
Adv Food Nutr Res ; 98: 101-123, 2021.
Article in English | MEDLINE | ID: mdl-34507640

ABSTRACT

Fruits and other vegetables are sources of bioactive compounds, especially carotenoids, terpenoids, and phenolic compounds. With the focus on sustainability, these compounds' recovery has become a research trend in the last 20 years. However, the correct use of solvents and the steps required to assess the extracts' suitability to be added in food models have been poorly described. Thus, in this review, we attempt to show the pathways and provide guidance on the tailored-made use of solvents for recovering bioactive polyphenolic compounds from food matrices. Special attention is given to the toxicological safety of polyphenol-rich extracts and also their impacts on bioactivity and sensory acceptance of foods and beverages. Practical examples are described and commented on the applications of polyphenol-rich extracts in non-dairy foods and beverages. In summary, the alliance among food science, food technologies, biochemistry, and pharmacology are required to make the development of non-dairy polyphenol-rich foods feasible.


Subject(s)
Beverages , Phenols , Fruit , Plant Extracts , Polyphenols
SELECTION OF CITATIONS
SEARCH DETAIL