Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Aging (Albany NY) ; 16(2): 1145-1160, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38284902

ABSTRACT

Lumbar disc degeneration (LDD) is a prevalent clinical spinal disease characterized by the calcification and degeneration of the cartilage endplate (CEP), which significantly reduces nutrient supply to the intervertebral disc. Traditional Chinese medicine offers a conservative and effective approach for treating LDD. We aimed to investigate the molecular mechanisms underlying the therapeutic effects of Sesamin in LDD treatment. Transcriptome sequencing was used to analyze the effect of Sesamin on LPS-induced ATDC5. We explored the role of BECN2, a target gene of Sesamin, in attenuating LPS-induced degeneration of ATDC5 cells. Our results revealed the identification of 117 differentially expressed genes (DEGs), with 54 up-regulated and 63 down-regulated genes. Notably, Sesamin significantly increased the expression of BECN2 in LPS-induced ATDC5 cell degeneration. Overexpressed BECN2 enhanced cell viability and inhibited cell apoptosis in LPS-induced ATDC5 cells, while BECN2 knockdown reduced cell viability and increased apoptosis. Furthermore, BECN2 played a crucial role in attenuating chondrocyte degeneration by modulating autophagy and inflammation. Specifically, BECN2 suppressed autophagy by reducing the expression of ATG14, VPS34, and GASP1, and alleviated the inflammatory response by decreasing the expression of inflammasome proteins NLRP3, NLRC4, NLRP1, and AIM2. In vivo experiments further supported the beneficial effects of Sesamin in mitigating LDD. This study provides novel insights into the potential molecular mechanism of Sesamin in treating LDD, highlighting its ability to mediate autophagy and inflammation inhibition via targeting the BECN2. This study provides a new therapeutic strategy for the treatment of LDD, as well as a potential molecular target for LDD.


Subject(s)
Dioxoles , Intervertebral Disc Degeneration , Intracellular Signaling Peptides and Proteins , Lignans , Autophagy , Cartilage/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Intervertebral Disc Degeneration/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides/pharmacology , Animals , Mice
2.
J Orthop Surg Res ; 18(1): 552, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37525208

ABSTRACT

CONTEXT: Naru 3 pill is a traditional Mongolian medicine for the treatment of intervertebral disc degeneration (IDD), but the mechanism is not yet clear. OBJECTIVE: This study investigated the mechanism of Naru 3 pill in the treatment of IDD. MATERIALS AND METHODS: Active ingredients and related targets of Naru 3 pill, as well as IDD-related genes, were collected from public databases. The analysis was performed by protein‒protein interaction network analysis, gene ontology and Kyoto Gene and Genome Encyclopedia (KEGG) functional enrichment analysis, molecular docking and molecular dynamics simulations. Finally, the network pharmacology results were validated by in vitro experiments. RESULTS: Network analysis showed that sesamin, piperine and ellagic acid were potential key components and CASP3, BAX and BCL2 were key targets. KEGG analysis indicated the apoptotic pathway as a potential pathway. Molecular docking showed that sesamin interacted better with the targets than the other components. The results of molecular dynamics simulations indicated that the three systems BAX-sesamin, BCL2-sesamin and CASP3-sesamin were stable and reasonable during the simulation. In vitro experiments showed that sesamin had the least effect on cell growth and the most pronounced proliferation-promoting effect, and so sesamin was considered the key component. The experiments confirmed that sesamin had antiapoptotic effects and reversed the expression of CASP3, BAX and BCL2 in degeneration models, which was consistent with the network pharmacology results. Furthermore, sesamin alleviated extracellular matrix (ECM) degeneration and promoted cell proliferation in the IDD model. CONCLUSION: The present study suggested that Naru 3 pill might exert its therapeutic and antiapoptotic effects on IDD by delaying ECM degradation and promoting cell proliferation, which provides a new strategy for the treatment of IDD.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Humans , Caspase 3 , Intervertebral Disc Degeneration/drug therapy , Molecular Docking Simulation , Network Pharmacology , bcl-2-Associated X Protein , Cartilage
3.
Eur Respir Rev ; 31(164)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35705209

ABSTRACT

COPD is predicted to become the third leading cause of morbidity and mortality worldwide by 2030. Cigarette smoking (active or passive) is one of its chief causes, with about 20% of cigarette smokers developing COPD from cigarette smoke (CS)-induced irreversible damage and sustained inflammation of the airway epithelium. Inflammasome activation leads to the cleavage of pro-interleukin (IL)-1ß and pro-IL-18, along with the release of pro-inflammatory cytokines via gasdermin D N-terminal fragment membrane pores, which further triggers acute phase pro-inflammatory responses and concurrent pyroptosis. There is currently intense interest in the role of nucleotide-binding oligomerisation domain-like receptor family, pyrin domain containing protein-3 inflammasomes in chronic inflammatory lung diseases such as COPD and their potential for therapeutic targeting. Phytochemicals including polyphenols and flavonoids have phyto-medicinal benefits in CS-COPD. Here, we review published articles from the last decade regarding the known associations between inflammasome-mediated responses and ameliorations in pre-clinical manifestations of CS-COPD via polyphenol and flavonoid treatment, with a focus on the underlying mechanistic insights. This article will potentially assist the development of drugs for the prevention and therapy of COPD, particularly in cigarette smokers.


Subject(s)
Cigarette Smoking , Pulmonary Disease, Chronic Obstructive , Cigarette Smoking/adverse effects , Flavonoids/therapeutic use , Humans , Inflammasomes , Inflammation , Polyphenols , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/etiology
4.
Anal Biochem ; 642: 114480, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34813769

ABSTRACT

Shen Gui capsule (SGC) has been demonstrated to have a significant treatment effect for coronary heart disease (CHD). Nevertheless, the holistic therapeutic mechanism of SGC in vivo remain poorly interpreted. We aimed to systematically explore the preventive effect and mechanism of SGC on CHD rats using plasma metabolomics strategy. Rat CHD model was established by left anterior descending coronary artery ligation (LAD). Echocardiography, histological analyses of the myocardium and biochemical assays on serum were used to confirm the successful establishment of the CHD model and therapeutic effects of SGC. Then, UHPLC-MS/MS-based plasma metabolomics was combined with multivariate data analysis to screen potential pharmaco biomarkers associated with SGC treatment in the LAD-induced rat CHD model. After SGC treatment, 12 abnormal metabolites considered as potiential pharmaco biomarkers recovered to near normal levels. These biomarkers were involved in several metabolic pathways, including fat and protein metabolism, phenylalanine metabolism, neuroactive ligand-receptor interaction, androgen receptor signaling pathway, and estrone metabolism.These results suggested that SGC achieves therapeutic action on CHD via regulating various aspects of the body such as energy metabolism, neurological disturbances and inflammation, and thus plays a significant role in the treatment of CHD and its complications. The study is useful to systematically understand and analyze the mechanism of SGC's "multipie pathways, multiple levels, multiple targets" prevention and treatment of CHD.


Subject(s)
Coronary Disease/drug therapy , Disease Models, Animal , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/therapeutic use , Metabolomics , Animals , Capsules , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Medicine, Chinese Traditional , Multivariate Analysis , Rats , Tandem Mass Spectrometry
5.
J Med Chem ; 63(22): 13825-13850, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33186040

ABSTRACT

A series of novel linear aliphatic amine-linked triaryl derivatives as inhibitors of PD-1/PD-L1 were designed, synthesized, and evaluated in vitro and in vivo. In this chemical series, compound 58 showed the most potent inhibitory activity and binding affinity with hPD-L1, with an IC50 value of 12 nM and a KD value of 16.2 pM, showing a binding potency approximately 2000-fold that of hPD-1. Compound 58 could bind with hPD-L1 on the cellular surface and competitively block the interaction of hPD-1 with hPD-L1. In a T cell function assay, 58 restored the T cell function, leading to increased IFN-γ secretion. Moreover, in a humanized mouse model, compound 58 significantly inhibited tumor growth without obvious toxicity and showed moderate PK properties after intravenous injection. These results indicated that 58 is a promising lead for further development of small-molecule PD-1/PD-L1 inhibitors for cancer therapy.


Subject(s)
Antineoplastic Agents/chemical synthesis , B7-H1 Antigen/antagonists & inhibitors , Drug Design , Fatty Acids/chemical synthesis , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , B7-H1 Antigen/chemistry , B7-H1 Antigen/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Fatty Acids/metabolism , Fatty Acids/pharmacology , Female , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Programmed Cell Death 1 Receptor/chemistry , Programmed Cell Death 1 Receptor/metabolism , RAW 264.7 Cells , Rats, Sprague-Dawley , Treatment Outcome , Xenograft Model Antitumor Assays/methods
6.
Plant Physiol Biochem ; 132: 18-32, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30172190

ABSTRACT

This study used cytology, cytochemistry, and non-targeted metabolomics to investigate the distribution characteristic of polysaccharides, lipids, and all the metabolites present during five wheat (Triticum aestivum L.) anther developmental stages to provide insights into wheat anther development. Anthers were collected from the tetrad through trinucleate stages, and 1.5% (w/v) acetocarmine and 4',6-diamidino-2-phenylindole staining were used to confirm the developmental stage and visualize the nuclei, respectively. Polysaccharides and lipids were detected by staining with periodic acid-Schiff and Sudan Black B, respectively. The integrated optical density of the tapetum and microspores were calculated using IPP6.0 software. Furthermore, the metabolites were identified by gas chromatograph system coupled with a Pegasus HT time-of-flight mass spectrometer (GC-TOF-MS). The results indicated that the interior and exterior surface cells of anthers are orderly. Pollen was rich in numerous nutrient substances (e.g., lipids, insoluble carbohydrates, and others), and formed a normal sperm cell that contained three nuclei, i.e., one vegetative nuclei and two reproductive nuclei in the mature pollen. Semi-thin sectioning indicated that the tapetum cells degraded progressively from the tetrad to late uninucleate stage and disappeared from the bi-to trinucleate stages. Moreover, nutrient substances (lipids and insoluble carbohydrates) accumulated, were synthesized in the pollen, and gradually increased from the tetrad to trinucleate stages. Finally, the metabolomics results identified that 146 metabolites were present throughout the wheat anther developmental stages. Principal component analysis, hierarchical cluster analysis, and metabolite-metabolite correlation revealed distinct dynamic changes in metabolites. The metabolism of organic acids, amino acids, sugars, fatty acids, amines, polyols, and nucleotides were interrelated and involved in the tricarboxylic acid (TCA) cycle and glycolysis. Furthermore, their interactions were revealed using an integrated metabolic map, which indicated that the TCA cycle and glycolysis were very active during anther development to provide the required energy for anther and pollen development. Our study provides valuable insights into the mechanisms of substance metabolism in wheat anthers and can be used for possible application by metabolic engineers for the improvement of cell characteristics or creating new compounds and molecular breeders in improving pollen fertility or creating the ideal male sterile line, to improve wheat yield per unit area to address global food security.


Subject(s)
Metabolome , Pollen/growth & development , Pollen/metabolism , Triticum/metabolism , Triticum/physiology , Cluster Analysis , Karyotype , Lipids/analysis , Metabolic Networks and Pathways , Metabolomics , Pollen/cytology , Pollen/ultrastructure , Polysaccharides/analysis , Principal Component Analysis , Triticum/cytology , Triticum/ultrastructure
7.
J Exp Bot ; 66(20): 6191-203, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26136264

ABSTRACT

Plant male sterility has often been associated with mitochondrial dysfunction; however, the mechanism in wheat (Triticum aestivum L.) has not been elucidated. This study set out to probe the mechanism of physiological male sterility (PHYMS) induced by the chemical hybridizing agent (CHA)-SQ-1, and cytoplasmic male sterility (CMS) of wheat at the proteomic level. A total of 71 differentially expressed mitochondrial proteins were found to be involved in pollen abortion and further identified by MALDI-TOF/TOF MS (matrix-assisted laser desorption/ionization-time of fight/time of flight mass spectrometry). These proteins were implicated in different cellular responses and metabolic processes, with obvious functional tendencies toward the tricarboxylic acid cycle, the mitochondrial electron transport chain, protein synthesis and degradation, oxidation stress, the cell division cycle, and epigenetics. Interactions between identified proteins were demonstrated by bioinformatics analysis, enabling a more complete insight into biological pathways involved in anther abortion and pollen defects. Accordingly, a mitochondria-mediated male sterility protein network in wheat is proposed; this network was further confirmed by physiological data, RT-PCR (real-time PCR), and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling) assay. The results provide intriguing insights into the metabolic pathway of anther abortion induced by CHA-SQ-1 and also give useful clues to identify the crucial proteins of PHYMS and CMS in wheat.


Subject(s)
Gene Expression Regulation, Plant , Mitochondrial Proteins/genetics , Plant Infertility , Plant Proteins/genetics , Proteomics/methods , Triticum/physiology , Electrophoresis, Gel, Two-Dimensional , Mitochondrial Proteins/metabolism , Plant Proteins/metabolism , Pollen/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Triticum/genetics
8.
PLoS One ; 10(3): e0119557, 2015.
Article in English | MEDLINE | ID: mdl-25803723

ABSTRACT

Chemical hybridization agent (CHA)-induced male sterility is an important tool in crop heterosis. To demonstrate that CHA-SQ-1-induced male sterility is associated with abnormal tapetal and microspore development, the cytology of CHA-SQ-1-treated plant anthers at various developmental stages was studied by light microscopy, scanning and transmission electron microscopy, in situ terminal deoxynucleotidyl transferasemediated dUTP nick end-labelling (TUNEL) assay and DAPI staining. The results indicated that the SQ-1-treated plants underwent premature tapetal programmed cell death (PCD), which was initiated at the early-uninucleate stage of microspore development and continued until the tapetal cells were completely degraded; the process of microspore development was then blocked. Microspores with low-viability (fluorescein diacetate staining) were aborted. The study suggests that premature tapetal PCD is the main cause of pollen abortion. Furthermore, it determines the starting period and a key factor in CHA-SQ-1-induced male sterility at the cell level, and provides cytological evidence to further study the mechanism between PCD and male sterility.


Subject(s)
Flowers/cytology , Plant Infertility/drug effects , Pollen/drug effects , Pyridazines/pharmacology , Triticum/drug effects , Triticum/genetics , Apoptosis/drug effects , Flowers/drug effects , Gametogenesis, Plant/drug effects , Gametogenesis, Plant/genetics , Hybrid Vigor , In Situ Nick-End Labeling , Microscopy , Pollen/cytology , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL