Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Nutrients ; 14(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35010991

ABSTRACT

BACKGROUND: The hypothalamus is an important brain region for the regulation of energy balance. Roux-en-Y gastric bypass (RYGB) surgery and gut hormone-based treatments are known to reduce body weight, but their effects on hypothalamic gene expression and signaling pathways are poorly studied. METHODS: Diet-induced obese male Wistar rats were randomized into the following groups: RYGB, sham operation, sham + body weight-matched (BWM) to the RYGB group, osmotic minipump delivering PYY3-36 (0.1 mg/kg/day), liraglutide s.c. (0.4 mg/kg/day), PYY3-36 + liraglutide, and saline. All groups (except BWM) were kept on a free choice of high- and low-fat diets. Four weeks after interventions, hypothalami were collected for RNA sequencing. RESULTS: While rats in the RYGB, BWM, and PYY3-36 + liraglutide groups had comparable reductions in body weight, only RYGB and BWM treatment had a major impact on hypothalamic gene expression. In these groups, hypothalamic leptin receptor expression as well as the JAK-STAT, PI3K-Akt, and AMPK signaling pathways were upregulated. No significant changes could be detected in PYY3-36 + liraglutide-, liraglutide-, and PYY-treated groups. CONCLUSIONS: Despite causing similar body weight changes compared to RYGB and BWM, PYY3-36 + liraglutide treatment does not impact hypothalamic gene expression. Whether this striking difference is favorable or unfavorable to metabolic health in the long term requires further investigation.


Subject(s)
Gastrointestinal Hormones/pharmacology , Hypothalamus/metabolism , Liraglutide/pharmacology , Peptide Fragments/pharmacology , Peptide YY/pharmacology , Transcriptome/drug effects , Animals , Body Weight , Caloric Restriction , Disease Models, Animal , Energy Metabolism , Gastric Bypass , Gene Expression/drug effects , Male , Obesity , Rats , Rats, Wistar , Signal Transduction/drug effects
2.
Sci Rep ; 9(1): 5013, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30899034

ABSTRACT

Identification of novel antibiotics remains a major challenge for drug discovery. The present study explores use of phenotypic readouts beyond classical antibacterial growth inhibition adopting a combined multiparametric high content screening and genomic approach. Deployment of the semi-automated bacterial phenotypic fingerprint (BPF) profiling platform in conjunction with a machine learning-powered dataset analysis, effectively allowed us to narrow down, compare and predict compound mode of action (MoA). The method identifies weak antibacterial hits allowing full exploitation of low potency hits frequently discovered by routine antibacterial screening. We demonstrate that BPF classification tool can be successfully used to guide chemical structure activity relationship optimization, enabling antibiotic development and that this approach can be fruitfully applied across species. The BPF classification tool could be potentially applied in primary screening, effectively enabling identification of novel antibacterial compound hits and differentiating their MoA, hence widening the known antibacterial chemical space of existing pharmaceutical compound libraries. More generally, beyond the specific objective of the present work, the proposed approach could be profitably applied to a broader range of diseases amenable to phenotypic drug discovery.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacteria/drug effects , Drug Discovery , High-Throughput Screening Assays , Anti-Bacterial Agents/chemistry , Bacteria/pathogenicity , Drug Evaluation, Preclinical/methods , Humans , Machine Learning
3.
J Immunother ; 39(7): 279-89, 2016 09.
Article in English | MEDLINE | ID: mdl-27404941

ABSTRACT

CEA TCB is a novel T-cell-bispecific (TCB) antibody targeting the carcinoembryonic antigen (CEA) expressed on tumor cells and the CD3 epsilon chain (CD3e) present on T cells, which is currently in Phase 1 clinical trials (NCT02324257) for the treatment of CEA-positive solid tumors. Because the human CEA (hCEA) binder of CEA TCB does not cross-react with cynomolgus monkey and CEA is absent in rodents, alternative nonclinical safety evaluation approaches were considered. These included the development of a cynomolgus monkey cross-reactive homologous (surrogate) antibody (cyCEA TCB) for its evaluation in cynomolgus monkey and the development of double-transgenic mice, expressing hCEA and human CD3e (hCEA/hCD3e Tg), as a potential alternative species for nonclinical safety studies. However, a battery of nonclinical in vitro/ex vivo experiments demonstrated that neither of the previous approaches provided a suitable and pharmacologically relevant model to assess the safety of CEA TCB. Therefore, an alternative approach, a minimum anticipated biological effect level (MABEL), based on an in vitro tumor lysis assay was used to determine the starting dose for the first-in-human study. Using the most conservative approach to the MABEL assessment, a dose of 52 µg was selected as a safe starting dose for clinical study.


Subject(s)
Antibodies, Bispecific/metabolism , CD3 Complex/immunology , Carcinoembryonic Antigen/immunology , Immunotherapy/methods , Neoplasms/therapy , Animals , Apoptosis , Cells, Cultured , Clinical Trials, Phase I as Topic , Cross Reactions , Drug Dosage Calculations , Drug Evaluation, Preclinical , Humans , Macaca fascicularis , Mice , Mice, Transgenic , Neoplasms/immunology , Rats , Structural Homology, Protein
4.
Genome Res ; 21(10): 1746-56, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21862625

ABSTRACT

The long-tailed macaque, also referred to as cynomolgus monkey (Macaca fascicularis), is one of the most important nonhuman primate animal models in basic and applied biomedical research. To improve the predictive power of primate experiments for humans, we determined the genome sequence of a Macaca fascicularis female of Mauritian origin using a whole-genome shotgun sequencing approach. We applied a template switch strategy that uses either the rhesus or the human genome to assemble sequence reads. The sixfold sequence coverage of the draft genome sequence enabled discovery of about 2.1 million potential single-nucleotide polymorphisms based on occurrence of a dimorphic nucleotide at a given position in the genome sequence. Homology-based annotation allowed us to identify 17,387 orthologs of human protein-coding genes in the M. fascicularis draft genome, and the predicted transcripts enabled the design of a M. fascicularis-specific gene expression microarray. Using liver samples from 36 individuals of different geographic origin we identified 718 genes with highly variable expression in liver, whereas the majority of the transcriptome shows relatively stable and comparable expression. Knowledge of the M. fascicularis draft genome is an important contribution to both the use of this animal in disease models and the safety assessment of drugs and their metabolites. In particular, this information allows high-resolution genotyping and microarray-based gene-expression profiling for animal stratification, thereby allowing the use of well-characterized animals for safety testing. Finally, the genome sequence presented here is a significant contribution to the global "3R" animal welfare initiative, which has the goal to reduce, refine, and replace animal experiments.


Subject(s)
Drug Evaluation, Preclinical , Macaca fascicularis/genetics , Models, Animal , Animals , Cytochrome P-450 Enzyme System/genetics , Cytokines/genetics , DNA/genetics , DNA/isolation & purification , Female , Gene Expression Profiling/methods , Genome , High-Throughput Nucleotide Sequencing , Humans , Liver/metabolism , Oligonucleotide Array Sequence Analysis/methods , Organic Anion Transporters/genetics , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL