Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Neoplasma ; 70(4): 545-554, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37789780

ABSTRACT

The purpose of this study was to assess the potential effects of Rhus coriaria L. (sumac) and of Cinnamomum zeylanicum L. bark on the selected serum cytokines as possible serum tumor markers - interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) in the rat model of mammary carcinogenesis. R. coriaria and C. zeylanicum bark were used as the chemopreventive-therapeutic agents taken by rats in the powder form in the diet at two different concentrations during the entire period of two experiments carried out separately: lower concentration 1 g/kg - 0.1% and higher concentration 10 g/kg - 1%. The serum levels of cytokines of IL-6, IL-10, and TNF-α were determined using an enzyme-linked immunosorbent assay. In the first experiment treated with R. coriaria, a significant decrease in serum levels of IL-6 and TNF-α was present at higher concentrations compared to the chemoprevention-free control group. R. coriaria at lower concentrations non-significantly reduced the serum levels of IL-6 and TNF-α when compared to controls. A significant decrease in serum levels of TNF-α was present at higher concentrations compared to lower concentrations. The significant effect of R. coriaria on the serum levels of IL-10 was not observed. In the second experiment treated with C. zeylanicum bark, a significant decrease in serum levels of IL-6 was observed in lower and higher concentrations compared to the chemoprevention-free control group. C. zeylanicum bark non-significantly reduced the serum levels of TNF-α and had no effect on the serum levels of IL-10. In conclusion, R. coriaria and C. zeylanicum bark demonstrated significant anti-inflammatory effects by analyzing the selected serum cytokine levels in the rat breast carcinoma model. Observed anti-inflammatory effects of both plant-natural substances were associated with their anticancer activities in rats.


Subject(s)
Cytokines , Rhus , Rats , Animals , Interleukin-10 , Cinnamomum zeylanicum , Interleukin-6 , Tumor Necrosis Factor-alpha , Plant Bark , Plant Extracts/pharmacology , Anti-Inflammatory Agents/pharmacology , Carcinogenesis
2.
EPMA J ; 13(3): 407-431, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35990779

ABSTRACT

Thromboembolism is the third leading vascular disease, with a high annual incidence of 1 to 2 cases per 1000 individuals within the general population. The broader term venous thromboembolism generally refers to deep vein thrombosis, pulmonary embolism, and/or a combination of both. Therefore, thromboembolism can affect both - the central and peripheral veins. Arterial thromboembolism causes systemic ischemia by disturbing blood flow and oxygen supply to organs, tissues, and cells causing, therefore, apoptosis and/or necrosis in the affected tissues. Currently applied antithrombotic drugs used, e.g. to protect affected individuals against ischemic stroke, demonstrate significant limitations. For example, platelet inhibitors possess only moderate efficacy. On the other hand, thrombolytics and anticoagulants significantly increase hemorrhage. Contextually, new approaches are extensively under consideration to develop next-generation antithrombotics with improved efficacy and more personalized and targeted application. To this end, phytochemicals show potent antithrombotic efficacy demonstrated in numerous in vitro, ex vivo, and in vivo models as well as in clinical evaluations conducted on healthy individuals and persons at high risk of thrombotic events, such as pregnant women (primary care), cancer, and COVID-19-affected patients (secondary and tertiary care). Here, we hypothesized that specific antithrombotic and antiplatelet effects of plant-derived compounds might be of great clinical utility in primary, secondary, and tertiary care. To increase the efficacy, precise patient stratification based on predictive diagnostics is essential for targeted protection and treatments tailored to the person in the framework of 3P medicine. Contextually, this paper aims at critical review toward the involvement of specific classes of phytochemicals in antiplatelet and anticoagulation adapted to clinical needs. The paper exemplifies selected plant-derived drugs, plant extracts, and whole plant foods/herbs demonstrating their specific antithrombotic, antiplatelet, and fibrinolytic activities relevant for primary, secondary, and tertiary care. One of the examples considered is antithrombotic and antiplatelet protection specifically relevant for COVID-19-affected patient groups.

3.
Pregnancy Hypertens ; 29: 72-85, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35803199

ABSTRACT

Hypertensive disorders in pregnancy represent severe complications of pregnancy, which, if not treated, can result in serious health consequences for the mother and the child. Flavonoids are bioactive secondary metabolites commonly found in fruits, vegetables, green tea, whole grains, and medicinal plants. Flavonoids exert potent protective efficacy in experimental models of hypertensive disorders in pregnancy, especially preeclampsia, demonstrated through their capacity to modulate inflammatory responses, oxidative stress, and vascular dysfunction. In addition to their potential as therapeutics, flavonoids or flavonoid-rich food could be helpful to decrease the risk of hypertensive disorders in pregnancy when included in the diet pattern before and during pregnancy. However, the clinical evaluation of the potential capacity of flavonoids in hypertensive disorders in pregnancy is insufficient. Due to promising results from experimental studies, we highlight the need for the evaluation of flavonoids also in an appropriate clinical setting, which can be, together with proper preventive strategies, helpful in the overall management of hypertensive disorders in pregnancy.


Subject(s)
Hypertension, Pregnancy-Induced , Pre-Eclampsia , Child , Female , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Hypertension, Pregnancy-Induced/drug therapy , Pre-Eclampsia/drug therapy , Pre-Eclampsia/prevention & control , Pregnancy , Tea , Vegetables
4.
Biomolecules ; 11(12)2021 12 07.
Article in English | MEDLINE | ID: mdl-34944485

ABSTRACT

Flavonoids are polyphenolic plant secondary metabolites with pleiotropic biological properties, including anti-cancer activities. These natural compounds have potential utility in glioblastoma (GBM), a malignant central nervous system tumor derived from astrocytes. Conventional GBM treatment modalities such as chemotherapy, radiation therapy, and surgical tumor resection are beneficial but limited by extensive tumor invasion and drug/radiation resistance. Therefore, dietary flavonoids-with demonstrated anti-GBM properties in preclinical research-are potential alternative therapies. This review explores the synergistic enhancement of the anti-GBM effects of conventional chemotherapeutic drugs by flavonoids. Primary studies published between 2011 and 2021 on flavonoid-chemotherapeutic synergy in GBM were obtained from PubMed. These studies demonstrate that flavonoids such as chrysin, epigallocatechin-3-gallate (EGCG), formononetin, hispidulin, icariin, quercetin, rutin, and silibinin synergistically enhance the effects of canonical chemotherapeutics. These beneficial effects are mediated by the modulation of intracellular signaling mechanisms related to apoptosis, proliferation, autophagy, motility, and chemoresistance. In this light, flavonoids hold promise in improving current therapeutic strategies and ultimately overcoming GBM drug resistance. However, despite positive preclinical results, further investigations are necessary before the commencement of clinical trials. Key considerations include the bioavailability, blood-brain barrier (BBB) permeability, and safety of flavonoids; optimal dosages of flavonoids and chemotherapeutics; drug delivery platforms; and the potential for adverse interactions.


Subject(s)
Brain Neoplasms/drug therapy , Drug Therapy/methods , Flavonoids/therapeutic use , Glioblastoma/drug therapy , Brain Neoplasms/metabolism , Clinical Trials as Topic , Drug Resistance, Neoplasm , Drug Synergism , Flavonoids/pharmacology , Glioblastoma/metabolism , Humans , Radiation Tolerance , Signal Transduction/drug effects
5.
EPMA J ; 12(1): 27-40, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33686350

ABSTRACT

Mitochondrial injury plays a key role in the aetiopathology of multifactorial diseases exhibiting a "vicious circle" characteristic for pathomechanisms of the mitochondrial and multi-organ damage frequently developed in a reciprocal manner. Although the origin of the damage is common (uncontrolled ROS release, diminished energy production and extensive oxidative stress to life-important biomolecules such as mtDNA and chrDNA), individual outcomes differ significantly representing a spectrum of associated pathologies including but not restricted to neurodegeneration, cardiovascular diseases and cancers. Contextually, the role of predictive, preventive and personalised (PPPM/3P) medicine is to introduce predictive analytical approaches which allow for distinguishing between individual outcomes under circumstance of mitochondrial impairments followed by cost-effective targeted prevention and personalisation of medical services. Current article considers innovative concepts and analytical instruments to advance management of mitochondriopathies and associated pathologies.

6.
Biomolecules ; 10(12)2020 12 10.
Article in English | MEDLINE | ID: mdl-33321708

ABSTRACT

Metastasis represents a major obstacle in cancer treatment and the leading cause of cancer-related deaths. Therefore, the identification of compounds targeting the multi-step and complex process of metastasis could improve outcomes in the management of cancer patients. Carotenoids are naturally occurring pigments with a plethora of biological activities. Carotenoids exert a potent anti-cancer capacity in various cancer models in vitro and in vivo, mediated by the modulation of signaling pathways involved in the migration and invasion of cancer cells and metastatic progression, including key regulators of the epithelial-mesenchymal transition and regulatory molecules, such as matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), urokinase plasminogen activator (uPA) and its receptor (uPAR), hypoxia-inducible factor-1α (HIF-1α), and others. Moreover, carotenoids modulate the expression of genes associated with cancer progression and inflammatory processes as key mediators of the complex process involved in metastasis. Nevertheless, due to the predominantly preclinical nature of the known anti-tumor effects of carotenoids, and unclear results from certain carotenoids in specific cancer types and/or specific parts of the population, a precise analysis of the anti-cancer effects of carotenoids is essential. The identification of carotenoids as effective compounds targeting the complex process of cancer progression could improve the outcomes of advanced cancer patients.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Carotenoids/therapeutic use , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Neoplasm Metastasis/drug therapy , Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/classification , Carotenoids/chemistry , Carotenoids/classification , Chemotherapy, Adjuvant , Epithelial-Mesenchymal Transition/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Machine Learning , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Neoplasm Invasiveness , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Precision Medicine , Receptors, Urokinase Plasminogen Activator/genetics , Receptors, Urokinase Plasminogen Activator/metabolism , Signal Transduction , Tissue Inhibitor of Metalloproteinases/genetics , Tissue Inhibitor of Metalloproteinases/metabolism , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism
7.
Int J Mol Sci ; 22(1)2020 Dec 26.
Article in English | MEDLINE | ID: mdl-33375383

ABSTRACT

Comprehensive scientific data provide evidence that isolated phytochemicals or whole plant foods may beneficially modify carcinogenesis. The aim of this study was to evaluate the oncostatic activities of Rhus coriaria L. (sumac) using animal models (rat and mouse), and cell lines of breast carcinoma. R. coriaria (as a powder) was administered through the diet at two concentrations (low dose: 0.1% (w/w) and high dose: 1 % (w/w)) for the duration of the experiment in a syngeneic 4T1 mouse and chemically-induced rat mammary carcinoma models. After autopsy, histopathological and molecular analyses of tumor samples in rodents were performed. Moreover, in vitro analyses using MCF-7 and MDA-MB-231 cells were conducted. The dominant metabolites present in tested R. coriaria methanolic extract were glycosides of gallic acid (possible gallotannins). In the mouse model, R. coriaria at a higher dose (1%) significantly decreased tumor volume by 27% when compared to controls. In addition, treated tumors showed significant dose-dependent decrease in mitotic activity index by 36.5% and 51% in comparison with the control group. In the chemoprevention study using rats, R. coriaria at a higher dose significantly reduced the tumor incidence by 20% and in lower dose non-significantly reduced tumor frequency by 29% when compared to controls. Evaluations of the mechanism of oncostatic action using valid clinical markers demonstrated several positive alterations in rat tumor cells after the treatment with R. coriaria. In this regard, histopathological analysis of treated tumor specimens showed robust dose-dependent decrease in the ratio of high-/low-grade carcinomas by 66% and 73% compared to controls. In treated rat carcinomas, we found significant caspase-3, Bax, and Bax/Bcl-2 expression increases; on the other side, a significant down-regulation of Bcl-2, Ki67, CD24, ALDH1, and EpCam expressions and MDA levels. When compared to control specimens, evaluation of epigenetic alterations in rat tumor cells in vivo showed significant dose-dependent decrease in lysine methylation status of H3K4m3 and H3K9m3 and dose-dependent increase in lysine acetylation in H4K16ac levels (H4K20m3 was not changed) in treated groups. However, only in lower dose of sumac were significant decreases in the expression of oncogenic miR210 and increase of tumor-suppressive miR145 (miR21, miR22, and miR155 were not changed) observed. Finally, only in lower sumac dose, significant decreases in methylation status of three out of five gene promoters-ATM, PTEN, and TIMP3 (PITX2 and RASSF1 promoters were not changed). In vitro evaluations using methanolic extract of R. coriaria showed significant anticancer efficacy in MCF-7 and MDA-MB-231 cells (using Resazurin, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential analyses). In conclusion, sumac demonstrated significant oncostatic activities in rodent models of breast carcinoma that were validated by mechanistic studies in vivo and in vitro.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Biomarkers, Tumor/metabolism , Breast Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Plant Extracts/pharmacology , Rhus/chemistry , Animals , Apoptosis , Biomarkers, Tumor/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle , Cell Proliferation , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Rats, Sprague-Dawley , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
Cancers (Basel) ; 12(9)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32859058

ABSTRACT

An incidence and mortality of cancer are rapidly growing worldwide, especially due to heterogeneous character of the disease that is associated with irreversible impairment of cellular homeostasis and function. Targeting apoptosis, one of cancer hallmarks, represents a potent cancer treatment strategy. Carotenoids are phytochemicals represented by carotenes, xanthophylls, and derived compounds such as apocarotenoids that demonstrate a broad spectrum of anti-cancer effects involving pro-apoptotic signaling through extrinsic and intrinsic pathways. As demonstrated in preclinical oncology research, the apoptotic modulation is performed at post-genomic levels. Further, carotenoids demonstrate additive/synergistic action in combination with conventional oncostatic agents. In addition, a sensitization of tumor cells to anti-cancer conventional treatment can be achieved by carotenoids. The disadvantage of anti-cancer application of carotenoids is associated with their low solubility and, therefore, poor bioavailability. However, this deficiency can be improved by using nanotechnological approaches, solid dispersions, microemulsions or biofortification that significantly increase the anti-cancer and pro-apoptotic efficacy of carotenoids. Only limited number of studies dealing with apoptotic potential of carotenoids has been published in clinical sphere. Pro-apoptotic effects of carotenoids should be beneficial for individuals at high risk of cancer development. The article considers the utility of carotenoids in the framework of 3P medicine.

9.
EPMA J ; 11(2): 261-287, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32547652

ABSTRACT

Severe durable changes may occur to the DNA structure caused by exogenous and endogenous risk factors initiating the process of carcinogenesis. By evidence, a large portion of malignancies have been demonstrated as being preventable. Moreover, the targeted prevention of cancer onset is possible, due to unique properties of plant bioactive compounds. Although genoprotective effects of phytochemicals have been well documented, there is an evident lack of articles which would systematically present the spectrum of anticancer effects by phytochemicals, plant extracts, and plant-derived diet applicable to stratified patient groups at the level of targeted primary (cancer development) and secondary (cancer progression and metastatic disease) prevention. Consequently, clinical implementation of knowledge accumulated in the area is still highly restricted. To stimulate coherent co-development of the dedicated plant bioactive compound investigation on one hand and comprehensive cancer preventive strategies on the other hand, the current paper highlights and deeply analyses relevant evidence available in the area. Key molecular mechanisms are presented to detail genoprotective and anticancer activities of plants and phytochemicals. Clinical implementation is discussed. Based on the presented evidence, advanced chemopreventive strategies in the context of 3P medicine are considered.

10.
Molecules ; 25(6)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32204409

ABSTRACT

Comprehensive oncology research suggests an important role of phytochemicals or whole plant foods in the modulation of signaling pathways associated with anticancer action. The goal of this study is to assess the anticancer activities of Cinnamomum zeylanicum L. using rat, mouse, and cell line breast carcinoma models. C. zeylanicum (as bark powder) was administered in the diet at two concentrations of 0.1% (w/w) and 1% (w/w) during the whole experiment in chemically induced rat mammary carcinomas and a syngeneic 4T1 mouse model. After autopsy, histopathological and molecular evaluations of mammary gland tumors in rodents were carried out. Moreover, in vitro analyses using MCF-7 and MDA-MB-231 cells were performed. The dominant metabolites present in the tested C. zeylanicum essential oil (with relative content over 1%) were cinnamaldehyde, cinnamaldehyde dimethyl acetal, cinnamyl acetate, eugenol, linalool, eucalyptol, limonene, o-cymol, and α-terpineol. The natural mixture of mentioned molecules demonstrated significant anticancer effects in our study. In the mouse model, C. zeylanicum at a higher dose (1%) significantly decreased tumor volume by 44% when compared to controls. In addition, treated tumors showed a significant dose-dependent decrease in mitotic activity index by 29% (0.1%) and 45.5% (1%) in comparison with the control group. In rats, C. zeylanicum in both doses significantly reduced the tumor incidence by 15.5% and non-significantly suppressed tumor frequency by more than 30% when compared to controls. An evaluation of the mechanism of anticancer action using valid oncological markers showed several positive changes after treatment with C. zeylanicum. Histopathological analysis of treated rat tumor specimens showed a significant decrease in the ratio of high-/low-grade carcinomas compared to controls. In treated rat carcinomas, we found caspase-3 and Bax expression increase. On the other hand, we observed a decrease in Bcl-2, Ki67, VEGF, and CD24 expressions and MDA levels. Assessment of epigenetic changes in rat tumor cells in vivo showed a significant decrease in lysine methylation status of H3K4m3 and H3K9m3 in the high-dose treated group, a dose-dependent increase in H4K16ac levels (H4K20m3 was not changed), down-regulations of miR21 and miR155 in low-dose cinnamon groups (miR22 and miR34a were not modulated), and significant reduction of the methylation status of two out of five gene promoters-ATM and TIMP3 (PITX2, RASSF1, PTEN promoters were not changed). In vitro study confirmed results of animal studies, in that the essential oil of C. zeylanicum displayed significant anticancer efficacy in MCF-7 and MDA-MB-231 cells (using MTS, BrdU, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential analyses). As a conclusion, C. zeylanicum L. showed chemopreventive and therapeutic activities in animal breast carcinoma models that were also significantly confirmed by mechanistic evaluations in vitro and in vivo.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Breast Neoplasms/drug therapy , Cinnamomum zeylanicum/chemistry , Oils, Volatile/administration & dosage , Plant Bark/chemistry , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Female , Histones/metabolism , Humans , MCF-7 Cells , Mice , MicroRNAs/genetics , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/administration & dosage , Plant Oils/chemistry , Plant Oils/pharmacology , Rats , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL