Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 9(1): 13587, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31537874

ABSTRACT

Antimicrobial resistance is a global public threat and raises the need for development of new antibiotics with a novel mode of action. The dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) belongs to a new class of serine peptidases, family S46. Because S46 peptidases are not found in mammals, these enzymes are attractive targets for novel antibiotics. However, potent and selective inhibitors of these peptidases have not been developed to date. In this study, a high-resolution crystal structure analysis of PgDPP11 using a space-grown crystal enabled us to identify the binding of citrate ion, which could be regarded as a lead fragment mimicking the binding of a substrate peptide with acidic amino acids, in the S1 subsite. The citrate-based pharmacophore was utilized for in silico inhibitor screening. The screening resulted in an active compound SH-5, the first nonpeptidyl inhibitor of S46 peptidases. SH-5 and a lipophilic analog of SH-5 showed a dose-dependent inhibitory effect against the growth of P. gingivalis. The binding mode of SH-5 was confirmed by crystal structure analysis. Thus, these compounds could be lead structures for the development of selective inhibitors of PgDPP11.


Subject(s)
Benzoates/pharmacology , Citric Acid/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/chemistry , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Porphyromonas gingivalis/enzymology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Benzoates/chemistry , Binding Sites , Catalytic Domain , Computer Simulation , Crystallography, X-Ray , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/antagonists & inhibitors , Drug Evaluation, Preclinical , Inositol Phosphates , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL