Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Commun ; 13(1): 7791, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36543778

ABSTRACT

The complexity of affected brain regions and cell types is a challenge for Huntington's disease (HD) treatment. Here we use single nucleus RNA sequencing to investigate molecular pathology in the cortex and striatum from R6/2 mice and human HD post-mortem tissue. We identify cell type-specific and -agnostic signatures suggesting oligodendrocytes (OLs) and oligodendrocyte precursors (OPCs) are arrested in intermediate maturation states. OL-lineage regulators OLIG1 and OLIG2 are negatively correlated with CAG length in human OPCs, and ATACseq analysis of HD mouse NeuN-negative cells shows decreased accessibility regulated by OL maturation genes. The data implicates glucose and lipid metabolism in abnormal cell maturation and identify PRKCE and Thiamine Pyrophosphokinase 1 (TPK1) as central genes. Thiamine/biotin treatment of R6/1 HD mice to compensate for TPK1 dysregulation restores OL maturation and rescues neuronal pathology. Our insights into HD OL pathology spans multiple brain regions and link OL maturation deficits to abnormal thiamine metabolism.


Subject(s)
Biotin , Huntington Disease , Oligodendroglia , Thiamine , Animals , Humans , Mice , Biotin/metabolism , Biotin/pharmacology , Dietary Supplements , Disease Models, Animal , Huntington Disease/metabolism , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Oligodendroglia/metabolism , Solitary Nucleus/metabolism , Thiamine/metabolism , Thiamine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL