Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 245: 118880, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32916424

ABSTRACT

Aluminum ions are very toxic to human health, especially in relation to neurodegenerative diseases. However, conventional methods of detecting such toxic ions suffer from the use of poisonous chemical probes and complex processes. Herein, we report an eco-friendly and enhanced colorimetric method of aluminum ion detection using green-synthesized gold nanoparticles (AuNPs) from apple (Malus domestica) extract. The apple extract-based AuNPs (AX-AuNPs) contain abundant pectin different from citrate-based AuNPs. The pectin-rich AX-AuNPs improved the sensitivity of the colorimetric detection of aluminum ions. The detection limit was about 20 µM both in artificial and drinking water-based real samples. Interestingly, it is turned out that the AX-AuNPs were aggregated naturally after the chemical assay because of solution getting decayed. For the environmental perspective, it was great that the lump of AX-AuNP aggregates could easily be removed from the solutions before solution discard. Overall, our results indicate that AX-AuNPs offer a high-selectivity, enhanced colorimetric detection of aluminum ions in a short time (less than 1 min), based on an eco-friend synthesis and disposal manner of AuNPs.


Subject(s)
Malus , Metal Nanoparticles , Aluminum , Colorimetry , Gold , Humans , Ions , Limit of Detection , Pectins
2.
Metabolism ; 102: 154000, 2020 01.
Article in English | MEDLINE | ID: mdl-31678070

ABSTRACT

OBJECTIVE: Supplementation with serine attenuates alcoholic fatty liver by regulating homocysteine metabolism and lipogenesis. However, little is known about serine metabolism in fatty liver disease (FLD). We aimed to investigate the changes in serine biosynthetic pathways in humans and animal models of fatty liver and their contribution to the development of FLD. METHODS: High-fat diet (HFD)-induced steatosis and methionine-choline-deficient diet-induced steatohepatitis animal models were employed. Human serum samples were obtained from patients with FLD whose proton density fat fraction was estimated by magnetic resonance imaging. 3-Phosphoglycerate dehydrogenase (Phgdh)-knockout mouse embryonic fibroblasts (MEF) and transgenic mice overexpressing Phgdh (Tg-phgdh) were used to evaluate the role of serine metabolism in the development of FLD. RESULTS: Expression of Phgdh was markedly reduced in the animal models. There were significant negative correlations of the serum serine with the liver fat fraction, serum alanine transaminase, and triglyceride levels among patients with FLD. Increased lipid accumulation and reduced NAD+ and SIRT1 activity were observed in Phgdh-knockout MEF and primary hepatocytes incubated with free fatty acids; these effects were reversed by overexpression of Phgdh. Tg-Phgdh mice showed significantly reduced hepatic triglyceride accumulation compared with wild-type littermates fed a HFD, which was accompanied by increased SIRT1 activity and reduced expression of lipogenic genes and proteins. CONCLUSIONS: Human and experimental data suggest that reduced Phgdh expression and serine levels are closely associated with the development of FLD.


Subject(s)
Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Liver/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Serine/metabolism , Animals , Cells, Cultured , Cohort Studies , Diet, High-Fat , Down-Regulation , Embryo, Mammalian , Female , Gene Expression Regulation, Enzymologic , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Humans , Lipid Metabolism/genetics , Lipogenesis/genetics , Liver/chemistry , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/pathology , Serine/analysis
3.
Planta Med ; 85(9-10): 719-728, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31137047

ABSTRACT

Abnormal lipid metabolism, such as increased fatty acid uptake and esterification, is associated with nonalcoholic fatty liver disease (NAFLD). The aqueous extract of the aerial part of Angelica tenuissima Nakai (ATX) inhibited high-fat diet-induced hepatic steatosis in mice as well as oleic acid-induced neutral lipid accumulation in HepG2 cells. ATX decreased the mRNA and protein levels of CD36 and diglyceride acyltransferase 2 (DGAT2), the maturation of sterol regulatory element-binding proteins (SREBP), and the expression of the lipogenic target genes fasn and scd1. The ATX components, Z-ligustilide and n-butylidenephthalide, inhibited the expression of FATP5 and DGAT2 and thus oleic acid-induced lipid accumulation in HepG2 cells. These results suggest that ATX and its active components Z-ligustilide and n-butylidenephthalide inhibit fatty acid uptake and esterification in mice and have potential as therapeutics for NAFLD.


Subject(s)
4-Butyrolactone/analogs & derivatives , Angelica/chemistry , Lipid Metabolism/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Phthalic Anhydrides/pharmacology , 4-Butyrolactone/isolation & purification , 4-Butyrolactone/pharmacology , Animals , Diet, High-Fat/adverse effects , Drug Evaluation, Preclinical/methods , Gene Expression Regulation/drug effects , Hep G2 Cells , Humans , Lipogenesis/drug effects , Male , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Oleic Acid/pharmacology , Phthalic Anhydrides/isolation & purification , Plant Components, Aerial/chemistry , Plant Extracts/analysis , Plant Extracts/chemistry , Plant Extracts/pharmacology , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
4.
Cell Biol Toxicol ; 35(5): 457-470, 2019 10.
Article in English | MEDLINE | ID: mdl-30721374

ABSTRACT

Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, and the function is linked to cellular metabolism including mitochondrial biogenesis. Hepatic L-serine concentration is decreased significantly in fatty liver disease. We reported that the supplementation of the amino acid ameliorated the alcoholic fatty liver by enhancing L-serine-dependent homocysteine metabolism. In this study, we hypothesized that the metabolic production of NAD+ from L-serine and thus activation of SIRT1 contribute to the action of L-serine. To this end, we evaluated the effects of L-serine on SIRT1 activity and mitochondria biogenesis in C2C12 myotubes. L-Serine increased intracellular NAD+ content and led to the activation of SIRT1 as determined by p53 luciferase assay and western blot analysis of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) acetylation. L-Serine treatment increased the expression of the genes associated with mitochondrial biogenesis and enhanced mitochondrial mass and function. In addition, L-serine reversed cellular insulin resistance determined by insulin-induced phosphorylation of Akt and GLUT4 expression and membrane translocation. L-Serine-induced mitochondrial gene expression, fatty acid oxidation, and insulin sensitization were mediated by enhanced SIRT1 activity, which was verified by selective SIRT1 inhibitor (Ex-527) and siRNA directed to SIRT1. L-Serine effect on cellular NAD+ level is dependent on the L-serine metabolism to pyruvate that is subsequently converted to lactate by lactate dehydrogenase. In summary, these data suggest that L-serine increases cellular NAD+ level and thus SIRT1 activity in C2C12 myotubes.


Subject(s)
Fatty Acids/metabolism , Insulin Resistance/physiology , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Serine/pharmacology , Sirtuin 1/metabolism , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , AMP-Activated Protein Kinases/metabolism , Acetyl-CoA C-Acyltransferase/metabolism , Acetylation , Animals , Carbon-Carbon Double Bond Isomerases/metabolism , Cell Line , Enoyl-CoA Hydratase/metabolism , Hep G2 Cells , Humans , Insulin/pharmacology , Lipid Metabolism , Mice , Mitochondria/metabolism , Muscle Fibers, Skeletal/cytology , Muscle, Skeletal/metabolism , Oxidation-Reduction , Phosphorylation , Racemases and Epimerases/metabolism , Signal Transduction/drug effects , Trans-Activators/metabolism , Transcription Factors/metabolism
5.
Cell Biol Int ; 42(4): 393-402, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28833755

ABSTRACT

Tacrolimus is an immunosuppressive drug that inhibits the release of inflammatory cytokines involved in rheumatoid arthritis development by blocking T cell activation. "Endoplasmic reticulum stress," an imbalance between protein folding load and capacity leading to the accumulation of unfolded proteins in the endoplasmic reticulum lumen, has been implicated in rheumatoid arthritis and other inflammatory and metabolic diseases. We aimed to investigate the effect of tacrolimus on endoplasmic reticulum stress-mediated osteoclastogenesis and inflammation and elucidate the underlying mechanisms. In vitro studies were performed using mouse bone marrow cells that were cultured with or without interleukin-1ß, thapsigargin, or tacrolimus to induce osteoclast differentiation. A mouse model of arthritis was established by immunizing mice with bovine type II collagen. Tacrolimus was orally administered to mice from day 20 to 45 following the initial immunization, and histopathological changes and expression of specific biomarkers of endoplasmic reticulum stress-mediated inflammatory signaling pathways were examined. In vitro, tacrolimus inhibited receptor activator of nuclear factor-κB ligand-mediated osteoclast formation augmented by interleukin-1ß, thapsigargin, or both. Furthermore, tacrolimus inhibited glucose-regulated protein (GRP78), protein kinase R-like endoplasmic reticulum kinase, inositol-requiring enzyme 1 (IRE 1), and activating transcription factor 6 (ATF6) augmented by interleukin-1ß, thapsigargin, or both. Tacrolimus significantly ameliorated osteolysis and endoplasmic reticulum stress intensity in mice. Simultaneously, it reduced inflammatory cell infiltration, osteoclastogenesis, and inflammatory responses by inhibiting GRP78, IRE 1, and ATF6. These findings suggest that tacrolimus exhibits an anti-inflammation effect in rheumatoid arthritis and might inhibit joint damage progression by inhibiting endoplasmic reticulum stress.


Subject(s)
Arthritis/metabolism , Osteogenesis/drug effects , Tacrolimus/pharmacology , Animals , Arthritis/chemically induced , Arthritis/physiopathology , Arthritis, Experimental , Collagen , Disease Models, Animal , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Inflammation/drug therapy , Interleukin-1beta/pharmacology , Male , Mice , Mice, Inbred DBA , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteogenesis/physiology , Signal Transduction/drug effects , Tacrolimus/metabolism , Thapsigargin/pharmacology
6.
Biol Res ; 47: 41, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25299270

ABSTRACT

BACKGROUND: The root of Angelica sinensis (AS), also known as "Dang-gui," was a popular herbal medicine widely used in the treatment of gynecological diseases in China, Korea, and Japan for a long time. This study aimed to determine the effects of ethyl acetate fraction from Angelica sinensis (EAAS) on the interleukin-1ß (IL-1ß)-induced proliferation of rheumatoid arthritis synovial fibroblasts (RASFs), and production of matrix metalloproteinases (MMPs), cyclooxygenase (COX) 2, and prostaglandin E2 (PGE2), involved in articular bone and cartilage destruction, by RASFs. RESULTS: RASF proliferation was evaluated with cholecystokinin octapeptide (CCK-8) reagent in the presence of IL-1ß with/without EAAS. Expression of MMPs, tissue inhibitor of metalloproteinases-1 (TIMP-1), COXs, PGE2, and intracellular mitogen-activated protein kinase (MAPK) signaling molecules, including p-ERK, p-p38, p-JNK, and NF-κB, were examined using immunoblotting or semi-quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. EAAS inhibited IL-1ß-induced RASF proliferation; MMP-1, MMP-3, and COX-2 mRNA and protein expressions; and PGE2 production. EAAS also inhibits the phosphorylation of ERK-1/2, p38, and JNK, and activation of NF-κB by IL-1ß. CONCLUSION: EAAS might be a new therapeutic modality for rheumatoid arthritis management.


Subject(s)
Angelica sinensis/chemistry , Arthritis, Rheumatoid/metabolism , Bursa, Synovial/cytology , Cell Proliferation/drug effects , Fibroblasts/drug effects , Inflammation Mediators/metabolism , Acetates , Arthritis, Rheumatoid/pathology , Cyclooxygenase 2/drug effects , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Enzyme-Linked Immunosorbent Assay , Fibroblasts/cytology , Fibroblasts/metabolism , Flow Cytometry , Herbal Medicine , Humans , Immunoblotting , Interleukin-1beta/pharmacology , Knee Joint/cytology , Matrix Metalloproteinases/drug effects , Matrix Metalloproteinases/metabolism , NF-kappa B/drug effects , Plant Extracts/pharmacology , Plant Roots/chemistry , Primary Cell Culture , Real-Time Polymerase Chain Reaction , Recombinant Proteins/pharmacology
7.
Biol. Res ; 47: 1-8, 2014. graf
Article in English | LILACS | ID: biblio-950737

ABSTRACT

BACKGROUND: The root of Angelica sinensis (AS), also known as "Dang-gui," was a popular herbal medicine widely used in the treatment of gynecological diseases in China, Korea, and Japan for a long time. This study aimed to determine the effects of ethyl acetate fraction from Angelica sinensis (EAAS) on the interleukin-1ß (IL-1ß)-induced proliferation of rheumatoid arthritis synovial fibroblasts (RASFs), and production of matrix metalloproteinases (MMPs), cyclooxygenase (COX) 2, and prostaglandin E2 (PGE2), involved in articular bone and cartilage destruction, by RASFs. RESULTS: RASF proliferation was evaluated with cholecystokinin octapeptide (CCK-8) reagent in the presence of IL-1ß with/without EAAS. Expression of MMPs, tissue inhibitor of metalloproteinases-1 (TIMP-1), COXs, PGE2, and intracellular mitogen-activated protein kinase (MAPK) signaling molecules, including p-ERK, p-p38, p-JNK, and NF-κB, were examined using immunoblotting or semi-quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. EAAS inhibited IL-1ß-induced RASF proliferation; MMP-1, MMP-3, and COX-2 mRNA and protein expressions; and PGE2 production. EAAS also inhibits the phosphorylation of ERK-1/2, p38, and JNK, and activation of NF-κB by IL-1ß. CONCLUSION: EAAS might be a new therapeutic modality for rheumatoid arthritis management.


Subject(s)
Humans , Arthritis, Rheumatoid/metabolism , Bursa, Synovial/cytology , Inflammation Mediators/metabolism , Angelica sinensis/chemistry , Cell Proliferation/drug effects , Fibroblasts/drug effects , Arthritis, Rheumatoid/pathology , Recombinant Proteins/pharmacology , Enzyme-Linked Immunosorbent Assay , Plant Extracts/pharmacology , Dinoprostone/metabolism , Immunoblotting , NF-kappa B/drug effects , Plant Roots/chemistry , Matrix Metalloproteinases/drug effects , Matrix Metalloproteinases/metabolism , Herbal Medicine , Cyclooxygenase 2/drug effects , Cyclooxygenase 2/metabolism , Interleukin-1beta/pharmacology , Primary Cell Culture , Real-Time Polymerase Chain Reaction , Fibroblasts/cytology , Fibroblasts/metabolism , Flow Cytometry , Knee Joint/cytology , Acetates
8.
J Biotechnol ; 121(2): 124-33, 2006 Jan 24.
Article in English | MEDLINE | ID: mdl-16174540

ABSTRACT

The B subunit of Escherichia coli heat-labile toxin (LTB) is a potent mucosal immunogen and immunoadjuvant for co-administered antigens. In order to produce large scale of LTB for the development of edible vaccine, we used transgenic somatic embryos of Siberian ginseng, which is known as medicinal plant. When transgenic somatic embryos were cultured in 130L air-lift type bioreactor, they were developed to mature somatic embryos through somatic embryogenesis and contained approximately 0.36% LTB of the total soluble protein. Enzyme-linked immunosorbent assay indicated that the somatic embryo-synthesized LTB protein bound specifically to GM1-ganglioside, suggesting the LTB subunits formed active pentamers. Therefore, the use of the bioreactor system for expression of LTB proteins in somatic embryos allows for continuous mass production in a short-term period.


Subject(s)
Adjuvants, Immunologic/biosynthesis , Bacterial Toxins/biosynthesis , Bacterial Vaccines/biosynthesis , Eleutherococcus/embryology , Enterotoxins/biosynthesis , Escherichia coli Proteins/biosynthesis , Escherichia coli/genetics , Recombinant Proteins/biosynthesis , Adjuvants, Immunologic/genetics , Bacterial Toxins/genetics , Bacterial Toxins/immunology , Bacterial Vaccines/genetics , Bacterial Vaccines/immunology , Eleutherococcus/genetics , Eleutherococcus/immunology , Enterotoxins/genetics , Enterotoxins/immunology , Escherichia coli/immunology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/immunology , Humans , Immunity, Mucosal/immunology , Plants, Genetically Modified/embryology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL