Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Med Food ; 26(4): 224-231, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36862521

ABSTRACT

Helicobacter pylori modulates the host inflammatory response, resulting in chronic gastritis, which contributes to gastric cancer pathogenesis. We verified the effect of Cudrania tricuspidata on H. pylori infection by inhibiting H. pylori-induced inflammatory activity. Five-week-old C57BL/6 mice (n = 8) were administered C. tricuspidata leaf extract (10 or 20 mg/kg per day) for 6 weeks. An invasive test (campylobacter-like organism [CLO]) and noninvasive tests (stool antigen test [SAT] and H. pylori antibody enzyme-linked immunosorbent assay) were performed to confirm the eradication of H. pylori. To evaluate the anti-inflammatory effect of C. tricuspidata, pro-inflammatory cytokines levels and inflammation scores were measured in mouse gastric tissue. C. tricuspidata significantly decreased the CLO score and H. pylori immunoglobulin G antibody optical density levels at both 10 and 20 mg/kg per day doses (P < .05). C. tricuspidata decreased the H. pylori antibody levels in a concentration-dependent manner, increased negative responses to SAT by up to 37.5%, and inhibited the pro-inflammatory cytokines interleukin (IL; IL-1ß, IL-6, 1L-8, and tumor necrosis factor alpha). C. tricuspidata also relieved gastric erosions and ulcers and significantly reduced the inflammation score (P < .05). We measured rutin in C. tricuspidata extract as a standard for high-performance liquid chromatography. C. tricuspidata leaf extract showed anti-H. pylori activity through the inhibition of inflammation. Our findings suggest that C. tricuspidata leaf extract is potentially an effective functional food material against H. pylori.


Subject(s)
Gastritis , Helicobacter Infections , Helicobacter pylori , Moraceae , Animals , Mice , Gastritis/drug therapy , Mice, Inbred C57BL , Inflammation , Cytokines , Plant Extracts/pharmacology , Helicobacter Infections/complications , Helicobacter Infections/drug therapy , Gastric Mucosa
2.
Nutrients ; 14(24)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36558538

ABSTRACT

Salvia plebeia R. Br. (SP), grown from autumn to spring, is used as a medicinal herb from roots to leaves. This herb exhibits antioxidant activities and various physiological effect, including anti-asthma, immune-promoting, anti-obesity, and anti-cholesterol effects. However, the effectiveness of SP against non-alcoholic fatty liver disease (NAFLD) and the associated mechanism have not been elucidated. In this study, alleviation of NAFLD by SP was confirmed in a mouse model of hepatic steatosis induced by a high-fat diet and in HepG2 cells administered free fatty acids (FFA). In the experimental model, intrahepatic lipid accumulation was investigated using the AdipoRedTM assay, Oil Red O staining, biomarker analysis, and hematoxylin and eosin staining. Furthermore, glucose tolerance was examined based on the fasting glucose levels and oral glucose tolerance. The molecular mechanisms related to hepatic steatosis were determined based on marker mRNA levels. Blood FFAs were found to flow into the liver via the action of fatty acid translocase, cluster of differentiation 36, and fatty acid transporter proteins 2 and 5. Salvia plebeia R. Br. water extract (SPW) suppressed the FFAs inflow by regulating the expression of the above-mentioned proteins. Notably, modulating the expression of AMP-activated protein kinase (AMPK) and liver X receptor, which are involved in the regulation of lipid metabolism, stimulated peroxisome proliferator activated receptor α in the nucleus to induce the expression genes involved in ß-oxidation and increase ß-oxidation in the mitochondria. AMPK modulation also increased the expression of sterol regulatory element binding protein-1c, which activated lipid synthesis enzymes. As a consequence of these events, triglyceride synthesis was reduced and lipid accumulation in hepatocytes was alleviated. Overall, our findings suggested that SPW could ameliorate NAFLD by inhibiting hepatic steatosis through AMPK modulation.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , AMP-Activated Protein Kinases/metabolism , Liver/metabolism , Lipid Metabolism , Hep G2 Cells , Fatty Acids/metabolism , Fatty Acids, Nonesterified/metabolism , Diet, High-Fat/adverse effects , Glucose/metabolism
3.
J Med Food ; 25(7): 732-740, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35723631

ABSTRACT

Obesity is one of the most common diseases caused by an imbalance in the intake and expenditure of energy, and it is associated with various metabolic complications. This study aimed at investigating the anti-obesity effects and mechanisms of porcine collagen peptide (PCP) using 3T3-L1 preadipocytes and high-fat diet (HFD)-fed mice. The PCP treatment significantly inhibited the adipocyte differentiation and attenuated the mRNA expression of transcription factors (CCAAT/enhancer-binding protein alpha [C/EBPα] and peroxisome proliferator-activated receptor gamma [PPARγ]) and the lipogenic gene (fatty acid synthase [FAS]) expression in 3T3-L1 preadipocytes. In the in vivo study, HFD-fed mice were fed low- (1.5 g/kg body weight/day) and high- (4.5 g/kg body weight/day) PCP for 12 weeks and compared with the normal diet-fed group and HFD-fed control group. The PCP-fed groups showed significantly lower body weight gain, white fat weight gain, serum triglycerides, and adipocyte size compared with the HFD-fed group. The changes in body fat were associated with the upregulation of adiponectin and the downregulation of leptin, C/EBPα, PPARγ, and FAS. These results suggest that PCP has the potential to reduce obesity by suppressing adipogenesis and could be applied as a functional food material.


Subject(s)
Adipogenesis , Anti-Obesity Agents , 3T3-L1 Cells , Adipocytes , Animals , Anti-Obesity Agents/metabolism , Anti-Obesity Agents/pharmacology , Body Weight , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Collagen/metabolism , Diet, High-Fat/adverse effects , Fatty Acid Synthases/metabolism , Mice , Mice, Inbred C57BL , Obesity/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Peptides/pharmacology , Swine , Weight Gain
4.
J Med Food ; 25(4): 456-463, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35438556

ABSTRACT

We examined the efficacy of fermented Curcuma longa L. (FT) on the development of alcoholic fatty liver in mice and investigated the underlying mechanism. The protective potential of FT against ethanol-induced fatty liver was determined using C57BL/6 male mice allocated into four groups (8 mice/group). Control groups received either distilled water or 5 g/kg body weight (b.w.) per day ethanol for 8 days. Treatment groups were administered either 300 mg/kg b.w. per day of milk thistle or FT before receiving ethanol. FT contained a higher amount of caffeic acid and tetrahydrocurcumin than C. longa. FT pretreatment significantly suppressed the elevated hepatic lipid droplets associated with ethanol ingestion. In comparison with ethanol-treated control, FT pretreated mice showed inhibited cytochrome P4502E1 (CYP2E1), sterol regulatory element-binding protein-1 (SREBP-1c), and acetyl-CoA carboxylase production but elevated AMP-activated protein kinase, peroxisome proliferator-activated receptor-alpha (PPAR-α), and carnitine palmitoyltransferase 1 (CPT-1) levels. Taken together, FT is a promising hepatoprotectant for preventing of alcoholic fatty liver through modulating fatty acid synthesis and oxidation.


Subject(s)
Fatty Liver, Alcoholic , Non-alcoholic Fatty Liver Disease , Animals , Curcuma , Cytochrome P-450 CYP2E1/genetics , Cytochrome P-450 CYP2E1/metabolism , Ethanol/metabolism , Fatty Liver, Alcoholic/drug therapy , Fatty Liver, Alcoholic/metabolism , Fatty Liver, Alcoholic/prevention & control , Female , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
5.
J Med Food ; 23(12): 1296-1302, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33136465

ABSTRACT

Cranberry powder (CR) is reported to be effective against lower urinary tract symptoms (LUTS) and recurrent urinary tract infections. Benign prostatic hyperplasia (BPH) in men older than 50 years is a common cause of LUTS. Here, we attempted to evaluate if CR is also effective for treating BPH using a BPH-induced rat model, which was orally administered CR. Male Sprague-Dawley rats weighing 200-250 g were randomly divided into the following six groups (n = 9): noncastration group; castration group; BPH group; BPH and cranberry for 8-week (CR8W) group; BPH and cranberry for 4-week (CR4W) group; and BPH and saw palmetto group (saw palmetto). Compared with the BPH group, the CR8W group showed a significant decrease in prostate weight (by 33%), dihydrotestosterone (DHT) levels (by 18% in serum and 28% in prostate), 5-alpha reductase levels (18% reduction of type 1 and 35% of type 2), and histological changes. These results indicate that CR could attenuate BPH by inhibiting 5-alpha reductase and by reducing other biomarkers such as prostate weight and DHT levels. Thus, CR may be an effective candidate for the development of a functional food for BPH treatment. IACUC (USW-IACUC-R-2015-004).


Subject(s)
Fruit/chemistry , Plant Preparations/therapeutic use , Prostatic Hyperplasia , Vaccinium macrocarpon/chemistry , Animals , Biomarkers , Dihydrotestosterone/analysis , Dihydrotestosterone/blood , Male , Powders , Prostatic Hyperplasia/drug therapy , Random Allocation , Rats , Rats, Sprague-Dawley
6.
J Med Food ; 22(12): 1262-1270, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31834842

ABSTRACT

The aim of this study was to investigate the potential protective effects of the hot water extract of Eriobotrya japonica (EJW) on EtOH- or free fatty acid (FFA)-induced fatty liver injury in vitro. HepG2/2E1 cells were exposed to EtOH and HepG2 cells were exposed to a mixture of FFAs (oleic acid:palmitic acid, 2:1) to stimulate oxidative stress and to induce lipid accumulation, respectively. Antioxidant activity was significantly increased and lipid accumulation was inhibited in cells pretreated with EJW compared to those in cells exposed to EtOH or FFA only. Also, 5'adenosine monophosphate (AMP)-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC) phosphorylations were considerably increased, indicating activation of AMPK. Furthermore, EJW reduced the messenger RNA (mRNA) expression of lipogenesis-associated factors such as ACC, sterol regulatory element binding protein-1c (SREBP-1c), and fatty acid synthase (FAS), and increased mRNA expression related to components of the fatty acid ß-oxidation pathway, such as AMPK, carnitine palmitoyltransferase 1 (CPT-1), and peroxisome proliferator-activated receptor alpha (PPARα). These results suggest that EJW possessed potential preventive effects against both EtOH- and FFA-induced fatty liver disease by alleviation of oxidative stress and lipid accumulation in hepatocytes.


Subject(s)
Eriobotrya/chemistry , Fatty Liver, Alcoholic/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Plant Extracts/pharmacology , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases/metabolism , Acetyl-CoA Carboxylase/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Ethanol/adverse effects , Fatty Acid Synthases/metabolism , Fatty Acids, Nonesterified/adverse effects , Hep G2 Cells/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Lipid Accumulation Product , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Liver/drug effects , Liver/metabolism , Non-alcoholic Fatty Liver Disease/chemically induced , Oleic Acid/adverse effects , Oxidative Stress , PPAR alpha/genetics , Palmitic Acid/adverse effects , Phosphorylation/drug effects , Protein Kinases/metabolism , RNA, Messenger/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Water
7.
Nutrients ; 11(10)2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31640183

ABSTRACT

Our aim was to investigate whether hot water extract (CLW) of Curcuma longa L. could prevent non-alcoholic fatty liver disease (NAFLD). HepG2 cells were treated with free fatty acid (FFA) mixture (oleic acid: palmitic acid, 2:1) for 24 h to stimulate in vitro fatty liver. In addition, C57BL/6 mice were fed 60 kcal% high-fat (HF) diet for eight weeks to induce fatty liver in vivo. Intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) productions were increased by FFA and HF-diet, but supplementation with CLW significantly decreased these levels. CLW treatment ameliorated antioxidant activities that were suppressed by exposure to the FFA and HF-diet. Cluster of differentiation 36 (CD36) and fatty acid transport proteins (FATP2 and FATP5) were increased in HF-diet groups, while CLW suppressed their expression levels. Moreover, sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-coenzyme A carboxylase (ACC), and fatty acid synthase (FAS) expression levels were down-regulated in the CLW groups compared to HF-diet groups. On the other hand, 5' adenosine monophosphate-activated protein kinase (AMPK), Peroxisome proliferator-activated receptor alpha (PPAR-α), and carnitine palmitoyltransferase 1 (CPT-1) expressions were up-regulated in the CLW groups. HF-diet fed mice showed high hepatic triglycerides (TG) content compared to the normal diet mice. However, the administration of CLW restored the hepatic TG level, indicating an inhibitory effect against lipid accumulation by CLW. These results suggest that CLW could be a potentially useful agent for the prevention of NAFLD through modulating fatty acid uptake.


Subject(s)
Curcuma/chemistry , Non-alcoholic Fatty Liver Disease/prevention & control , Plant Extracts/administration & dosage , Animals , Antioxidants/analysis , Biomarkers/blood , Diet, High-Fat , Fatty Acids/metabolism , Fatty Acids, Nonesterified/pharmacology , Hep G2 Cells , Humans , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Liver/drug effects , Liver/enzymology , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Oxidative Stress , RNA, Messenger/analysis , Reactive Oxygen Species/metabolism
8.
J Med Food ; 21(2): 203-206, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29356593

ABSTRACT

The protective activity of a mixture of aqueous and ethanolic extracts from Houttuynia cordata Thunb, Nelumbo nucifera G. leaves, and Camellia sinensis seed (HNC) was evaluated in C57BL/6 mice. Pretreatment with HNC prevented the elevation of serum aspartate aminotransferase and alanine aminotransferase caused by ethanol-induced hepatic damage. The HNC-treated mice showed significantly lower triglyceride levels, reduced CYP2E1 activity, and increased antioxidant enzyme activities and lipogenic mRNA levels. These results suggest that HNC might be a candidate agent for liver protection against ethanol-induced oxidative damage, through enhancement of antioxidant and antilipogenic activity.


Subject(s)
Camellia sinensis/chemistry , Ethanol/toxicity , Houttuynia/chemistry , Liver Diseases/prevention & control , Nelumbo/chemistry , Plant Extracts/administration & dosage , Protective Agents/administration & dosage , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Humans , Liver/drug effects , Liver/metabolism , Liver Diseases/blood , Liver Diseases/etiology , Male , Mice , Mice, Inbred C57BL , Plant Extracts/isolation & purification , Protective Agents/isolation & purification , Triglycerides/metabolism
9.
J Med Food ; 20(12): 1152-1159, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29243967

ABSTRACT

Porphyra tenera, also known as nori, is a red algal species of seaweed. It is cultivated in Asia for culinary purposes. We report that P. tenera extract (PTE) enhances the immune response in mouse macrophages. We found that P. tenera extract regulates the NF-κB IκB kinase (IKK) signaling pathway, and we assessed the expression and translocation of p65, a subunit of NF-κB, in RAW264.7 mouse macrophage cells after treatment with PTE. We also investigated the effects of 10% ethanol PTE (PTE10) in RAW264.7 cells. The production of IL-10, IL-6, TNF-α, and IFN-γ was induced by PTE treatment of the macrophages, and PTE also enhanced p-IκB and p-AKT. PTE10 showed no cytotoxicity at 10-20 µg/mL in RAW264.7 cells. PTE10, in fact, increased cell viability at 24 h, stimulated macrophage cells, and induced the phosphorylation of Akt. Akt stimulates IKK activity through the phosphorylation of IKKα and enhances immune activity through the activation of NF-κB. In this study, NF-κB activation was induced by increasing p-NF-κB and p-IKK. A subunit of NF-κB, p65, was located in the nucleus and increased the expression of various cytokines. PTE thus enhanced the immune response through IκB-α immunostimulation signaling in RAW264.7 cells. PTE10 has potential therefore for development of future treatments requiring immune system stimulation.


Subject(s)
Macrophages/drug effects , Macrophages/immunology , NF-kappa B/immunology , Plant Extracts/pharmacology , Porphyra/chemistry , Seaweed/chemistry , Animals , I-kappa B Kinase/genetics , I-kappa B Kinase/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Mice , NF-kappa B/genetics , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Signal Transduction/drug effects
10.
Food Chem Toxicol ; 108(Pt A): 298-304, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28797650

ABSTRACT

The hepatoprotective effect of 10% ethanolic extract of Curdrania tricuspidata (CTE) was investigated in HepG2/2E1 cells and C57BL/6 J mice. When compared ethanol-only treated HepG2/2E1 cells, pretreatment of CTE prevented increased intra-cellular reactive oxygen species levels and decreased antioxidant activities by ethanol-induced oxidative stress. In C57BL/6 J mice, CTE at a dose of 250 mg/kg/day was administered for 10 days, with ethanol (5 g/kg/day) administered for the final 3 days. Pretreatment with CTE prevented the elevated activities of serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase caused by ethanol-induced hepatic damage. CTE-treated mice displayed a reduced level of malondialdehyde and increased antioxidant activities of catalase, glutathione S-transferase, glutathione peroxidase, and superoxide dismutase, as well as a reduced level of glutathione as compared with ethanol-only-treated mice. CTE-treated mice exhibited significant inhibition of CYP2E1 activities and expression. These results suggest that CTE could be a useful agent for the prevention of ethanol-induced oxidative damage in the liver, elevating antioxidative potentials and alleviating oxidative stress by suppressing CYP2El.


Subject(s)
Chemical and Drug Induced Liver Injury/prevention & control , Cytochrome P-450 CYP2E1/metabolism , Ethanol/toxicity , Gene Expression Regulation, Enzymologic/drug effects , Maclura/chemistry , Plant Extracts/pharmacology , Animals , Cytochrome P-450 CYP2E1/genetics , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Plant Extracts/chemistry , Plant Leaves/chemistry
11.
Oncotarget ; 7(35): 56767-56780, 2016 Aug 30.
Article in English | MEDLINE | ID: mdl-27462923

ABSTRACT

Delphinidin is a major anthocyanidin compound found in various fruits. It has anti-inflammatory, anti-oxidant, and various other biological activities. In this study, we identified the epigenetic modulators that mediate the apoptotic effect of delphinidin in human prostate cancer cells. We found that treatment of LNCaP cells (a p53 wild-type, human prostate cancer cell line) with delphinidin increased caspase-3, -7, and -8 activity, whereas it decreased histone deacetylase activity. Among class I HDACs, the activity of HDAC3 was specifically inhibited by delphinidin. Moreover, the induction of apoptosis by delphinidin was dependent on caspase-mediated cleavage of HDAC3, which results in the acetylation and stabilization of p53. We also observed that delphinidin potently upregulated pro-apoptotic genes that are positively regulated by p53, and downregulated various anti-apoptotic genes. Taken together, these results show that delphinidin induces p53-mediated apoptosis by suppressing HDAC activity and activating p53 acetylation in human prostate cancer LNCaP cells. Therefore, delphinidin may be useful in the prevention of prostate cancer.


Subject(s)
Anthocyanins/pharmacology , Apoptosis , Histone Deacetylases/metabolism , Prostatic Neoplasms/metabolism , Tumor Suppressor Protein p53/metabolism , Acetylation , Antineoplastic Agents, Phytogenic/pharmacology , Caspase 3/metabolism , Caspase 7/metabolism , Caspase 8/metabolism , Cell Line, Tumor , Cell Survival , Epigenesis, Genetic , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Histone Deacetylases/genetics , Humans , Male , Plant Extracts/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , RNA Interference , Tumor Suppressor Protein p53/genetics
12.
J Med Food ; 19(9): 870-81, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27331439

ABSTRACT

Our previous results suggest that the Rosa rugosa Thunb. (family Rosaceae) alleviates endurance exercise-induced stress by decreasing oxidative stress levels. This study aimed to screen and identify the physiological antistress effects of an extract of R. rugosa (RO) on sleep deprivation-induced anxiety-like behavior and cognitive tests (in vivo) and tested for hippocampal CORT and monoamine levels (ex vivo), corticosterone (CORT)-induced injury, N-methyl-d-aspartate (NMDA) receptor, and serotonin 6 (5-hydroxytryptamine 6, 5-HT6) receptor activities (in vitro) in search of active principles and underlying mechanisms of action. We confirmed the antistress effects of RO in a sleep-deprived stress model in rat and explored the underlying mechanisms of its action. In conclusion, an R. rugosa extract showed efficacy and potential for use as an antistress therapy to treat sleep deprivation through its antagonism of the 5-HT6 receptor and resulting inhibition of cAMP activity.


Subject(s)
Anxiety/metabolism , Cognitive Dysfunction/metabolism , Plant Extracts/pharmacology , Receptors, Serotonin/metabolism , Rosa , Sleep Deprivation/psychology , Stress, Physiological/drug effects , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Anxiety/drug therapy , Behavior, Animal , Brain/drug effects , Brain/metabolism , Cognitive Dysfunction/drug therapy , Corticosterone/metabolism , Cyclic AMP/antagonists & inhibitors , Dopamine/metabolism , Male , Phytotherapy , Plant Extracts/therapeutic use , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , Serotonin/blood , Sleep/physiology , Sleep Deprivation/complications , Sleep Deprivation/metabolism
13.
J Med Food ; 18(6): 711-3, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25674938

ABSTRACT

This study was performed to investigate the effect of water extract from Rosa rugosa (RRW) on endurance exercise-induced stress in mice. The mice were orally administered with distilled water or RRW, respectively. The endurance capacity was evaluated by exhaustive swimming using an adjustable-current water pool. Mice administered RRW swam longer before becoming exhausted. Also, RRW administration resulted in less lipid peroxidation, lower muscular antioxidant enzyme activities, and lower cortisol level. The results suggest that RRW can prevent exercise-induced stress by decreasing oxidative stress levels.


Subject(s)
Lipid Peroxidation/drug effects , Muscles/drug effects , Oxidative Stress/drug effects , Physical Endurance/drug effects , Plant Extracts/pharmacology , Rosa , Swimming/physiology , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Glutathione/metabolism , Hydrocortisone/blood , Male , Mice, Inbred ICR , Muscles/metabolism , Physical Conditioning, Animal , Phytotherapy
14.
J Nutr Sci Vitaminol (Tokyo) ; 61(6): 488-96, 2015.
Article in English | MEDLINE | ID: mdl-26875491

ABSTRACT

This study was conducted to determine the effects of 50% ethanolic extract from Sasa borealis leaves (SBE) on swimming capacity and oxidative metabolism in mice. The mice were divided into 2 groups with similar swimming times and body weights; Ex-Control and Ex-SBE were orally administered with distilled water and 250 mg/kg body weight/d of SBE. Exhaustive swimming times were prolonged by 1.5-fold in the Ex-SBE group compared to the Ex-Control. The Ex-SBE group displayed lower lactate and higher non-esterified fatty acid levels 15 min after swimming and the hepatic and muscle glycogen levels were significantly higher than that in the Ex-Control. SBE potentially enhanced mRNA expression of citrate synthase (CS), carnitine palmitoyltransferase (CPT-1), and ß-hydroxyacyl coenzyme A dehydrogenase (ß-HAD) in skeletal muscle. The activities and mRNA expression of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were elevated in the Ex-SBE compared with the Ex-Control after exhaustive swimming. These results suggest that SBE might be used as an effective agent to enhance swimming capacity by utilization of energy substrates and might ameliorate physical exhaustion by facilitating energy-generating metabolic genes and enhancing endogenous antioxidants.


Subject(s)
Antioxidants/pharmacology , Energy Metabolism/drug effects , Physical Conditioning, Animal , Physical Endurance/drug effects , Plant Extracts/pharmacology , Sasa , Swimming/physiology , Animals , Antioxidants/metabolism , Catalase/metabolism , Fatigue/prevention & control , Fatty Acids/blood , Glutathione Peroxidase/metabolism , Glycogen/metabolism , Lactic Acid/blood , Liver/drug effects , Liver/metabolism , Male , Mice, Inbred ICR , Physical Fitness , RNA, Messenger/metabolism , Superoxide Dismutase/metabolism
15.
Biosci Biotechnol Biochem ; 77(10): 2148-50, 2013.
Article in English | MEDLINE | ID: mdl-24096653

ABSTRACT

The administration of an ethanolic extract (RCE) from Rubus coreanus significantly reduced the body weight and epididymal fat tissue of mice under conditions of a high-fat diet (HFD) and exercise. The mice also displayed enhanced muscular carnitine palmitoyltransferase 1 (CPT1) expression and increased superoxide dismutase and glutathione levels. These results suggest that RCE exerted an anti-obesity effect by up-regulating CPT1 and elevating the level of antioxidants.


Subject(s)
Diet, High-Fat/adverse effects , Ethanol/chemistry , Physical Conditioning, Animal , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Rosaceae/chemistry , Weight Gain/drug effects , Animals , Antioxidants/isolation & purification , Antioxidants/pharmacology , Male , Mice , Mice, Inbred BALB C
16.
Pharm Biol ; 50(7): 900-10, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22468783

ABSTRACT

CONTEXT: Chamaecyparis obtusa Sieb. & Zucc., Endlicher (Cupressaceae) forest bathing or aromatherapy has been shown in various studies to have biological functions such as anticancer, antiallergies, antiinflammatory, and antioxidant activity. However, no reports exist on the pharmacological or biological activities of the essential oil of C. obtusa (EOCO) or its effects on central nervous system. OBJECTIVE: The aggregation and formation of ß-amyloid peptides (Aß) into fibrils are central events in the pathogenesis of Alzheimer's disease (AD), and overproduction and aggregation of Aß into oligomers have been known to trigger neurotoxicity. In this study, we investigated the effects of inhaled EOCO on cognitive function and neuronal apoptosis in rats intrahippocampally injected with Aß. MATERIALS AND METHODS: To model AD, 4 µg of aggregated Aß was injected into the hippocampus. To test the effects of EOCO, behavioral performance in the Morris water maze was tested 4 days after injection. After behavioral testing, brain sections were prepared for TTC staining and TUNEL assay. RESULTS: Inhaled EOCO protected spatial learning and memory from the impairments induced by Aß(1-40) injection. In addition, the behavioral deficits accompanying Aß(1-40)-induced AD were attenuated by inhalation of EOCO. Furthermore, acetylcholinesterase (AChE) activity and neuronal apoptosis were significantly inhibited in rats treated with Aß(1-40) and EOCO compared to rats treated only with Aß(1-40). DISCUSSION AND CONCLUSION: EOCO suppressed both AD-related neuronal cell apoptosis and AD-related dysfunction of the memory system. Thus, the results of this study support EOCO as a candidate drug for the treatment of AD.


Subject(s)
Amyloid beta-Peptides/toxicity , Chamaecyparis , Cognition Disorders/drug therapy , Oils, Volatile/administration & dosage , Peptide Fragments/toxicity , Plant Extracts/administration & dosage , Administration, Inhalation , Amyloid beta-Peptides/antagonists & inhibitors , Animals , Cognition Disorders/chemically induced , Cognition Disorders/psychology , Male , Maze Learning/drug effects , Maze Learning/physiology , Oils, Volatile/isolation & purification , Peptide Fragments/antagonists & inhibitors , Plant Extracts/isolation & purification , Plant Leaves , Random Allocation , Rats , Rats, Sprague-Dawley
17.
J Med Food ; 14(1-2): 9-16, 2011.
Article in English | MEDLINE | ID: mdl-21244239

ABSTRACT

Histone acetylation, which is regulated by histone acetyltransferases (HATs) and deacetylases, is an epigenetic mechanism that influences eukaryotic transcription. Significant changes in histone acetylation are associated with cancer; therefore, manipulating the acetylation status of key gene targets is likely crucial for effective cancer therapy. Grape seed extract (GSE) has a known protective effect against prostate cancer. Here, we showed that GSE significantly inhibited HAT activity by 30-80% in vitro (P < .05). Furthermore, we demonstrated significant repression of androgen receptor (AR)-mediated transcription by GSE in prostate cancer cells by measuring luciferase activity using a pGL3-PSA construct bearing the AR element in the human prostate cancer cell line LNCaP (P < .05). GSE treatment also decreased the mRNA level of the AR-regulated genes PSA and NKX 3.1. Finally, GSE inhibited growth of LNCaP cells. These results indicate that GSE potently inhibits HAT, leading to decreased AR-mediated transcription and cancer cell growth, and implicate GSE as a novel candidate for therapeutic activity against prostate cancer.


Subject(s)
Grape Seed Extract/pharmacology , Grape Seed Extract/therapeutic use , Histone Acetyltransferases/antagonists & inhibitors , Prostatic Neoplasms/enzymology , Receptors, Androgen/metabolism , Transcription, Genetic/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/physiopathology , Receptors, Androgen/genetics
18.
J Med Food ; 13(2): 364-70, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20412020

ABSTRACT

The effects of the turmeric ethyl acetate fraction (TEF) from the methanolic extract from Curcuma longa L. on lipid metabolism and underlying mechanisms of lipolysis were investigated in 3T3-L1 adipocytes. The intracellular lipid droplets were stained with Oil red O dye and quantified. Compared to the control, lipid accumulation was significantly decreased by 46.6% with treatment by TEF at the concentration of 20 microg/mL. The intracellular triglyceride (TG) level was also reduced by 37.9% at the concentration of 20 microg/mL. To determine the mechanism for TG content reduction, levels of glucose uptake and glycerol release were measured. Incubation of the 3T3-L1 adipocytes with TEF for 4 hours significantly lowered the cellular level of glucose in a dose-dependent manner. Furthermore, cellular expression of insulin-responsive glucose transporter (GLUT)-4 was decreased by 46%, indicating that reduced glucose uptake was due to a decrease in cellular GLUT-4 expression. In addition, the level of free glycerol released into the cultured medium was increased by 36.4% with the treatment by TEF. In subsequent measurements using quantitative real-time polymerase chain reaction, mRNA levels of hormone-sensitive lipase (HSL) and adipose TG lipase (ATGL) were elevated by 34.8% and 16.9%, respectively, at the concentration of 20 microg/mL. These results suggest that TEF partially inhibits lipogenesis by the suppression of glucose uptake via the decreased expression of cellular GLUT-4 and stimulates lipolysis through the induction of HSL and/or ATGL gene expression, resulting in the increased glycerol release.


Subject(s)
Adipocytes/drug effects , Curcuma/chemistry , Glucose Transporter Type 4/metabolism , Glucose/metabolism , Lipolysis/drug effects , Plant Extracts/pharmacology , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Biological Transport , Dose-Response Relationship, Drug , Glycerol/metabolism , Lipase/genetics , Lipase/metabolism , Mice , Organelles/drug effects , Organelles/metabolism , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sterol Esterase/genetics , Sterol Esterase/metabolism , Triglycerides/metabolism
19.
Food Chem Toxicol ; 48(6): 1632-7, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20347918

ABSTRACT

The protective effects of Taraxacum officinale (dandelion) root against alcoholic liver damage were investigated in HepG2/2E1 cells and ICR mice. When an increase in the production of reactive oxygen species was induced by 300 mM ethanol in vitro, cell viability was drastically decreased by 39%. However, in the presence of hot water extract (TOH) from T. officinale root, no hepatocytic damage was observed in the cells treated with ethanol, while ethanol-extract (TOE) did not show potent hepatoprotective activity. Mice, which received TOH (1 g/kg bw/day) with ethanol revealed complete prevention of alcohol-induced hepatotoxicity as evidenced by the significant reductions of serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities compared to ethanol-alone administered mice. When compared to the ethanol-alone treated group, the mice receiving ethanol plus TOH exhibited significant increases in hepatic antioxidant activities, including catalase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, and glutathione. Furthermore, the amelioration of malondialdehyde levels indicated TOH's protective effects against liver damage mediated by alcohol in vivo. These results suggest that the aqueous extract of T. officinale root has protective action against alcohol-induced toxicity in the liver by elevating antioxidative potentials and decreasing lipid peroxidation.


Subject(s)
Ethanol/toxicity , Liver/drug effects , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Taraxacum/chemistry , Animals , Glutathione/metabolism , In Vitro Techniques , Liver/metabolism , Malondialdehyde/metabolism , Mice
20.
J Med Food ; 12(6): 1190-8, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20041771

ABSTRACT

In this study, we examined the effect of Platycodi Radix (PR) supplementation in chronically alcoholic rats. Sprague-Dawley rats were divided into three groups: control group (no alcohol), alcohol group (36.8% of total calories), and 0.3% PR group. The levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were increased by alcohol treatment, and PR supplementation normalized the AST level. Moreover, alcohol-induced cytochrome P450 2E1 was decreased by PR treatment. Proteomic analysis of liver tissues of alcohol-exposed rats and PR-supplemented rats revealed that 50 different proteins functionally characterized as involved with cytoskeleton regulation, signal transduction, cytokine, apoptosis, and reactive oxygen species metabolism showed significant quantitative changes. The expression levels of glutathione S-transferase mu, Bcl-2-like protein, and peroxiredoxin IV were decreased in the alcoholic group, whereas the levels of these proteins were increased more than threefold in the PR group. However, the expression levels of smooth muscle actin, cytochrome P450 2D, mitogen-activated protein kinase 8, and 3alpha-hydroxysteroid dehydrogenase were increased in the alcohol group and were decreased in the PR group. These data suggest that the antioxidant enzymes may play a protective role against alcohol-induced damage via oxidative stress defense mechanisms induced by PR supplementation.


Subject(s)
Alcoholism/drug therapy , Liver/chemistry , Liver/drug effects , Protective Agents/pharmacology , Proteomics , Saponins/pharmacology , Alanine Transaminase/metabolism , Alcoholism/enzymology , Animals , Aspartate Aminotransferases/metabolism , Cytochrome P-450 CYP2E1/metabolism , Disease Models, Animal , Gene Expression/drug effects , Glutathione Transferase/metabolism , Humans , Liver/enzymology , Male , Platycodon/chemistry , Random Allocation , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL