Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Chin J Integr Med ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561489

ABSTRACT

Prostate cancer is a prevalent and debilitating disease that necessitates effective prevention and treatment strategies. Green tea, a well-known beverage derived from the Camellia sinensis plant, contains bioactive compounds with potential health benefits, including catechins and polyphenols. This comprehensive review aims to explore the potential benefits of green tea in prostate cancer prevention and treatment by examining existing literature. Green tea possesses antioxidant, anti-inflammatory, and anti-carcinogenic properties attributed to its catechins, particularly epigallocatechin gallate. Epidemiological studies have reported an inverse association between green tea consumption and prostate cancer risk, with potential protection against aggressive forms of the disease. Laboratory studies demonstrate that green tea components inhibit tumor growth, induce apoptosis, and modulate signaling pathways critical to prostate cancer development and progression. Clinical trials and human studies further support the potential benefits of green tea. Green tea consumption has been found to be associated with a reduction in prostate-specific antigen levels, tumor markers, and played a potential role in slowing disease progression. However, challenges remain, including optimal dosage determination, formulation standardization, and conducting large-scale, long-term clinical trials. The review suggests future research should focus on combinatorial approaches with conventional therapies and personalized medicine strategies to identify patient subgroups most likely to benefit from green tea interventions.

2.
J Ethnopharmacol ; 330: 118152, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38614260

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xinyang tablet (XYT) has been used for heart failure (HF) for over twenty years in clinical practice, but the underlying molecular mechanism remains poorly understood. AIMS OF THE STUDY: In the present study, we aimed to explore the protective effects of XYT in HF in vivo and in vitro. MATERIALS AND METHODS: Transverse aortic constriction was performed in vivo to establish a mouse model of cardiac pressure overload. Echocardiography, tissue staining, and real-time quantitative PCR (qPCR) were examined to evaluate the protective effects of XYT on cardiac function and structure. Adenosine 5'-triphosphate production, reactive oxygen species staining, and measurement of malondialdehyde and superoxide dismutase was used to detect mitochondrial damage. Mitochondrial ultrastructure was observed by transmission electron microscope. Immunofluorescence staining, qPCR, and Western blotting were performed to evaluate the effect of XYT on the mitochondrial unfolded protein response and mitophagy, and to identify its potential pharmacological mechanism. In vitro, HL-1 cells and neonatal mouse cardiomyocytes were stimulated with Angiotensin II to establish the cell model. Western blotting, qPCR, immunofluorescence staining, and flow cytometry were utilized to determine the effects of XYT on cardiomyocytes. HL-1 cells overexpressing receptor-interacting serum/three-protein kinase 3 (RIPK3) were generated by transfection of RIPK3-overexpressing lentiviral vectors. Cells were then co-treated with XYT to determine the molecular mechanisms. RESULTS: In the present study, XYT was found to exerta protective effect on cardiac function and structure in the pressure overload mice. And it was also found XYT reduced mitochondrial damage by enhancing mitochondrial unfolded protein response and restoring mitophagy. Further studies showed that XYT achieved its cardioprotective role through regulating the RIPK3/FUN14 domain containing 1 (FUNDC1) signaling. Moreover, the overexpression of RIPK3 successfully reversed the XYT-induced protective effects and significantly attenuated the positive effects on the mitochondrial unfolded protein response and mitophagy. CONCLUSIONS: Our findings indicated that XYT prevented pressure overload-induced HF through regulating the RIPK3/FUNDC1-mediated mitochondrial unfolded protein response and mitophagy. The information gained from this study provides a potential strategy for attenuating mitochondrial damage in the context of pressure overload-induced heart failure using XYT.


Subject(s)
Disease Models, Animal , Drugs, Chinese Herbal , Mice, Inbred C57BL , Mitophagy , Myocytes, Cardiac , Unfolded Protein Response , Animals , Mitophagy/drug effects , Unfolded Protein Response/drug effects , Mice , Male , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Heart Failure/drug therapy , Heart Failure/metabolism , Heart Failure/physiopathology , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Tablets , Cell Line , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
3.
Pharm Biol ; 62(1): 42-52, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38112463

ABSTRACT

CONTEXT: Liuwei Dihuang pill (LWDH) has been used to treat postmenopausal osteoporosis (PMOP). OBJECTIVE: To explore the effects and mechanisms of action of LWDH in PMOP. MATERIALS AND METHODS: Forty-eight female Sprague-Dawley rats were divided into four groups: sham-operated (SHAM), ovariectomized (OVX), LWDH high dose (LWDH-H, 1.6 g/kg/d) and LWDH low dose (LWDH-L, 0.8 g/kg/d); the doses were administered after ovariectomy via gavage for eight weeks. After eight weeks, the bone microarchitecture was evaluated. The effect of LWDH on the differentiation of bone marrow mesenchymal stem cells (BMSCs) was assessed via osteogenesis- and lipogenesis-induced BMSC differentiation. The senescence-related biological indices were also detected using senescence staining, cell cycle analysis, quantitative real-time polymerase chain reaction and western blotting. Finally, the expression levels of autophagy-related proteins and Yes-associated protein (YAP) were evaluated. RESULTS: LWDH-L and LWDH-H significantly modified OVX-induced bone loss. LWDH promoted osteogenesis and inhibited adipogenesis in OVX-BMSCs. Additionally, LWDH decreased the positive ratio of senescence OVX-BMSCs and improved cell viability, cell cycle, and the mRNA and protein levels of p53 and p21. LWDH upregulated the expression of autophagy-related proteins, LC3, Beclin1 and YAP, in OVX-BMSCs and downregulated the expression of p62. DISCUSSION AND CONCLUSIONS: LWDH improves osteoporosis by delaying the BMSC senescence through the YAP-autophagy axis.


Subject(s)
Mesenchymal Stem Cells , YAP-Signaling Proteins , Animals , Female , Humans , Rats , Autophagy , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/pharmacology , Cell Differentiation , Osteogenesis , Ovariectomy , Rats, Sprague-Dawley
4.
Medicine (Baltimore) ; 102(41): e34739, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37832094

ABSTRACT

BACKGROUND: In recent years, acupuncture has gained popularity in the management of cancer-related pain (CRP). This study aims to use bibliometric analysis to investigate the historical development, recent hotspots and research trends in this field. METHODS: The Web of Science Core Collection database was selected as the data source for this study to retrieve and obtain literature related to acupuncture and CRP. Data analyses were performed with CiteSpace and VOSviewer to conduct the bibliometric analysis. RESULTS: This bibliometric analysis was conducted from 2000 to 2022. A total of 664 publications were included in this work. The number of publications has steadily increased over the last 2 decades. The United States has the largest number of published articles (244 papers), while the People's Republic of China has the highest centrality (0.48). The primary research institutions were Memorial Sloan-Kettering Cancer Center, Kyung Hee University and Beijing University of Chinese Medicine. Mao Jun J. was the most prolific author, while Heather Greenlee was the most cited one. The most productive journal was Integrative Cancer Therapies. The most frequent keywords excluding the search subject were "electroacupuncture," "management," "quality of life," "breast cancer," "Aromatase inhibitor," "neuropathic pain," "mechanisms," and "protocol." CONCLUSION: This study explored the application value of acupuncture in the management of CRP with bibliometric analysis, offering an intuitive understanding of this topic and revealing the hotspots and research trends.


Subject(s)
Acupuncture Therapy , Cancer Pain , Electroacupuncture , Neoplasms , Humans , Cancer Pain/therapy , Quality of Life , Bibliometrics , Neoplasms/complications , Neoplasms/therapy
5.
Chin Med Sci J ; 38(3): 206-217, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37401499

ABSTRACT

Objective To explore the effects and mechanisms of a traditional Chinese medicine (TCM) prescription, "Fang-gan Decoction" (FGD), in protecting against SARS-CoV-2 spike protein-induced lung and intestinal injuries in vitro and in vivo.Methods Female BALB/c mice and three cell lines pretreated with FGD were stimulated with recombinant SARS-CoV-2 spike protein (spike protein). Hematoxylin-eosin (HE) staining and pathologic scoring of tissues, cell permeability and viability, and angiotensin-converting enzyme 2 (ACE2) expression in the lung and colon were detected. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the levels of inflammatory factors in serum and cell supernatant. The expression of NF-κB p65, p-NF-κB p65, p-IκBα, p-Smad2/3, TGF-ß1, Caspase3, and Bcl-2 was evaluated by Western blotting.Results FGD protected against the damage to the lung and colon caused by the spike protein in vivo and in vitro according to the pathologic score and cell permeability and viability (P<0.05). FGD up-regulated ACE2 expression, which was reduced by the spike protein in the lung and colon, significantly improved the deregulation of inflammatory markers caused by the spike protein, and regulated the activity of TGF-ß/Smads and NF-κB signaling.Conclusion Traditional Chinese medicine has a protective effect on lung and intestinal tissue injury stimulated by the spike protein through possible regulatory functions of the NF-κB and TGF-ß1/Smad pathways with tissue type specificity.


Subject(s)
Antineoplastic Agents , COVID-19 , Mice , Animals , Female , Humans , NF-kappa B/metabolism , Spike Glycoprotein, Coronavirus/pharmacology , Transforming Growth Factor beta1/metabolism , Angiotensin-Converting Enzyme 2/pharmacology , SARS-CoV-2/metabolism , Lung , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Epithelial Cells/metabolism , Colon
6.
J Nanobiotechnology ; 21(1): 201, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37365598

ABSTRACT

Malignant bone tumors result in high rates of disability and death and are difficult to treat in terms of killing tumors and repairing bone defects. Compared with other hyperthermia strategies, magnetic hyperthermia has become an effective therapy for treating malignant bone tumors due to its lack of depth limitations. However, tumor cells express heat shock protein (HSP) to resist hyperthermia, which reduces its curative effect. Competitive ATP consumption can reduce HSP production; fortunately, the basic principle of starvation therapy by glucose oxidase (GOx) is consuming glucose to control ATP production, thereby restricting HSP generation. We developed a triple-functional magnetic gel (Fe3O4/GOx/MgCO3@PLGA) as a magnetic bone repair hydrogels (MBRs) with liquid‒solid phase transition capability to drive magneto-thermal effects to simultaneously trigger GOx release and inhibit ATP production, reducing HSP expression and thereby achieving synergistic therapy for osteosarcoma treatment. Moreover, magnetic hyperthermia improves the effect of starvation therapy on the hypoxic microenvironment and achieves a reciprocal strengthening therapeutic effect. We further demonstrated that in situ MBRs injection effectively suppressed tumor growth in 143B osteosarcoma tumor-bearing mice and an in-situ bone tumor model in the rabbit tibial plateau. More importantly, our study also showed that liquid MBRs could effectively match bone defects and accelerate their reconstruction via magnesium ion release and enhanced osteogenic differentiation to augment the regeneration of bone defects caused by bone tumors, which generates fresh insight into malignant bone tumor treatment and the acceleration of bone defect repair.


Subject(s)
Bone Neoplasms , Hyperthermia, Induced , Osteosarcoma , Mice , Animals , Rabbits , Osteogenesis , Bone Neoplasms/therapy , Bone Neoplasms/metabolism , Osteosarcoma/therapy , Osteosarcoma/metabolism , Bone Regeneration , Heat-Shock Proteins/metabolism , Magnetic Phenomena , Adenosine Triphosphate , Cell Line, Tumor , Tumor Microenvironment
7.
Drug Dev Res ; 84(3): 458-469, 2023 05.
Article in English | MEDLINE | ID: mdl-36744648

ABSTRACT

Phytopharmaceuticals have attracted a lot of attention due to their multicomponent and multiple targets. The natural phenolic chemicals known as flavonoids are found in a wide variety of plants, fruits, vegetables, and herbs. Recently, they have been found to have modulatory effects on anxiety disorders, with current research focusing on the modulation of neurotransmitters. There has not yet been a review of the various natural flavonoid monomer compounds and total plant flavonoids that have been found to have anxiolytic effects. The study on the anti-anxiety effects of plant-derived flavonoids on neurotransmitters was reviewed in this paper. We, therefore, anticipate that further study on the conformational interaction underlying flavonoids' anti-anxiety effects will offer a theoretical framework for the creation of pertinent treatments.


Subject(s)
Anti-Anxiety Agents , Flavonoids , Flavonoids/pharmacology , Flavonoids/chemistry , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/chemistry , Plant Extracts/chemistry , Neurotransmitter Agents/pharmacology
8.
Cell Death Discov ; 8(1): 230, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35474295

ABSTRACT

Heart aging is the main susceptible factor to coronary heart disease and significantly increases the risk of heart failure, especially when the aging heart is suffering from ischemia-reperfusion injury. Numerous studies with NAD+ supplementations have suggested its use in anti-aging treatment. However, systematic reviews regarding the overall role of NAD+ in cardiac aging are scarce. The relationship between NAD+ signaling and heart aging has yet to be clarified. This review comprehensively summarizes the current studies on the role of NAD+ signaling in delaying heart aging from the following aspects: the influence of NAD+ supplementations on the aging heart; the relationship and cross-talks between NAD+ signaling and other cardiac aging-related signaling pathways; Importantly, the therapeutic potential of targeting NAD+ in delaying heart aging will be discussed. In brief, NAD+ plays a vital role in delaying heart aging. However, the abnormalities such as altered glucose and lipid metabolism, oxidative stress, and calcium overload could also interfere with NAD+ function in the heart. Therefore, the specific physiopathology of the aging heart should be considered before applying NAD+ supplementations. We believe that this article will help augment our understanding of heart aging mechanisms. In the meantime, it provides invaluable insights into possible therapeutic strategies for preventing age-related heart diseases in clinical settings.

9.
J Ethnopharmacol ; 291: 115095, 2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35176466

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bufonis (VB), an animal drug called Chansu in China, is the product of the secretion of Bufo gargarizans Cantor or B. melanostictus Schneider. As a traditional Chinese medicine (TCM) for a long time, it has been widely used in the treatment of heart failure, ulcer, pain, and various cancers. Cinobufaginn (CNB), the cardiotonic steroid or bufalene lactone extracted from VB, has the effects of detoxification, detumescence, and analgesia. AIM OF THE STUDY: The present study aimed to define the effects of CNB on non-small-cell lung cancer (NSCLC) and identify the potential molecular mechanisms. MATERIALS AND METHODS: A549 cells were treated with cinobufagin and cell viability, apoptosis, migration, and invasion were then evaluated using Cell Counting Kit-8 (CCK8) assays, flow cytometry, and Transwell assays, respectively. Moreover, the levels of proliferating cell nuclear antigen (PCNA), cytokeratin8 (CK8), poly ADP-ribose polymerase (PARP), Caspase3, Caspase8, B-cell lymphoma/lewkmia-2(Bcl-2), Bcl2-Associated X(Bax), forkhead box O1 (FOXO1), and euchromatic histone-lysine N-methyltransferase2 (G9a, EHMT2) in A549 cells were evaluated using qRT-PCR and/or Western blot analysis (WB), Co-IP, immunofluorescence, and immunohistochemistry. An in vivo imaging system, TUNEL, Immunofluorescence, and immunohistochemistry were also used to detect proliferating cell nuclear antigen(PCNA), Ki67, E-Cadherin(E-Cad), FOXO1, and G9a in mouse xenograft model experiments. RESULTS: CNB suppressed cell proliferation, migration, and invasion but promoted apoptosis in A549 cells in a dose- and time-dependent manner, while cinobufagin had no cytotoxic effect on BEAS-2B cells. In vivo, cinobufagin inhibited the proliferation, migration, and invasion of A549 cells and promoted their apoptosis. The occurrence of the above phenomena was accompanied by an increase in FOXO1 expression and a decrease in G9a expression. In A549 cells, CNB did not reverse the changes in the proliferation, migration, invasion, and apoptosis of A549 cells after FOXO1 was successfully silenced. CONCLUSION: Our study provides the first evidence that cinobufagin suppresses the malignant biological behaviours of NSCLC cells in vivo and in vitro and suggests that mechanistically, this effect may be achieved by inhibiting the expression of the histone methyltransferase G9a and activating the tumour suppressor gene FOXO1. Taken together, our findings provide important insights into the molecular mechanism underlying cinobufagin's anticancer activity, and suggest that cinobufagin could be a candidate for targeted cancer therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , A549 Cells , Animals , Apoptosis , Bufanolides , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/pharmacology , Gene Expression Regulation, Neoplastic , Histocompatibility Antigens/genetics , Histocompatibility Antigens/metabolism , Histocompatibility Antigens/pharmacology , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Lung Neoplasms/metabolism , Mice
10.
Anal Chem ; 94(3): 1705-1712, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35014798

ABSTRACT

Currently, developing versatile, easy-to-operate, and effective signal amplification strategies hold great promise in photoelectrochemical (PEC) biosensing. Herein, an ultrasensitive polyvinylpyrrolidone-treated In2S3/WO3 (In2S3-P/WO3)-functionalized paper-based PEC sensor was established for sensing ochratoxin A (OTA) based on a target-driven self-feedback (TDSF) mechanism enabled by a dual cycling tactic of PEC chemical-chemical (PECCC) redox and exonuclease III (Exo III)-assisted complementary DNA. The In2S3-P/WO3 heterojunction structure with 3D open-structure and regulable topology was initially in situ grown on Au nanoparticle-functionalized cellulose paper, which was served as a universal signal transducer to directly record photocurrent signals without complicated electrode modification, endowing the paper chip with admirable anti-interference ability and unexceptionable photoelectric conversion efficiency. With the assistance of Exo III-assisted cycling process, a trace amount of OTA could trigger substantial signal reporter ascorbic acid (AA) generated by the enzymatic catalysis of alkaline phosphatase, which could effectively provoke the PECCC redox cycling among the tris(2-carboxyethyl)phosphine acid, AA, and ferrocenecarboxylic at the In2S3-P/WO3 photoelectrode, initiating TDSF signal amplification. Based on the TDSF process induced by the Exo III-assisted recycling and PECCC redox cycling strategy, the developed paper-based PEC biosensor realized ultrasensitive determination of OTA with persuasive selectivity, high stability, and excellent reproducibility. It is believed that the proposed paper-based PEC sensing platform exhibited enormous potential for the detection of other targets in bioanalysis and clinical diagnosis.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Electrochemical Techniques , Feedback , Gold , Limit of Detection , Metal Nanoparticles/chemistry , Ochratoxins , Reproducibility of Results
11.
Front Oncol ; 12: 1034750, 2022.
Article in English | MEDLINE | ID: mdl-36591458

ABSTRACT

Background: Gou Qi Zi (Lycium barbarum) is a traditional herbal medicine with antioxidative effects. Although Gou Qi Zi has been used to prevent premature aging and in the treatment of non-small cell lung cancer (NSCLC), its mechanism of action in NSCLC remains unclear. The present study utilized network pharmacology to assess the potential mechanism of action of Gou Qi Zi in the treatment of NSCLC. Methods: The TCMSP, TCMID, SwissTargetPrediction, DrugBank, DisGeNET, GeneCards, OMIM and TTD databases were searched for the active components of Gou Qi Zi and their potential therapeutic targets in NSCLC. Protein-protein interaction networks were identified and the interactions of target proteins were analyzed. Involved pathways were determined by GO enrichment and KEGG pathway analyses using the Metascape database, and molecular docking technology was used to study the interactions between active compounds and potential targets. These results were verified by cell counting kit-8 assays, BrdU labeling, flow cytometry, immunohistochemistry, western blotting, and qRT-PCR. Results: Database searches identified 33 active components in Gou Qi Zi, 199 predicted biological targets and 113 NSCLC-related targets. A network of targets of traditional Chinese medicine compounds and potential targets of Gou Qi Zi in NSCLC was constructed. GO enrichment analysis showed that Gou Qi Zi targeting of NSCLC was mainly due to the effect of its associated lipopolysaccharide. KEGG pathway analysis showed that Gou Qi Zi acted mainly through the PI3K/AKT1 signaling pathway in the treatment of NSCLC. Molecular docking experiments showed that the bioactive compounds of Gou Qi Zi could bind to AKT1, C-MYC and TP53. These results were verified by experimental assays. Conclusion: Gou Qi Zi induces apoptosis and inhibits proliferation of NSCLC in vitro and in vivo by inhibiting the PI3K/AKT1 signaling pathway.

12.
Chin Med Sci J ; 35(3): 195-206, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32972497

ABSTRACT

Objective Transdifferentiation exists between stromal cells or between stromal cells and cancer cells. Evodiamine and berberine are predominant pharmacological components of Zuojin pill, a prescription of Traditional Chinese Medicine, playing crucial functions in remolding of tumor microenvironment. This study aimed to explore the effect of combination of evodiamine with berberine (cBerEvo) on the phenotypic transition of colon epithelial cells induced by tumor-associated fibroblasts, as well as the involved mechanisms.Methods Human normal colon epithelial cell line HCoEpiC cells were treated with the prepared conditioned medium of CCD-18Co, a human colon myofibroblast line, to induce epithelial-mesenchymal transition. Phase contrast microscope was used to observe the morphological changes. Epithelial-mesenchymal transition markers including E-cadherin, vimentin and alpha-smooth muscle actin (α-SMA) were observed with immunofluorescence microscopy. Migration was assessed by wound healing assay. Western blotting was used to detect the expressions of E-cadherin, vimentin, α-SMA, Snail, ZEB1 and Smads. Results In contrast to the control, the tumor-associated fibroblasts-like CCD-18Co cells induced down-regulation of E-cadherin and up-regulation of vimentin, α-SMA, Snail and ZEB1 (P<0.05), and promoted migration of HCoEpiCs (P<0.05), with over expression of Smads including Smad2, p-Smad2, Smad3, p-Smad3 and Smad4 (P<0.05), which were abolished by a transforming growth factor-ß (TGF-ß) receptor inhibitor LY364947 and by cBerEvo in a concentration dependent manner. In addition, cBerEvo-inhibited ratios of p-Smad2/Smad2 and p-Smad3/Smad3 were also dose dependent.Conclusion The above results suggest that cBerEvo can regulate the differentiation of colon epithelial cells induced by CCD-18Co through suppressing activity of TGF-ß/Smads signaling pathway.


Subject(s)
Berberine/pharmacology , Colon/pathology , Epithelial Cells/pathology , Quinazolines/pharmacology , Actins/metabolism , Berberine/chemistry , Biomarkers/metabolism , Cadherins/metabolism , Cell Line , Cell Movement/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/drug effects , Fluorescence , Humans , Phenotype , Quinazolines/chemistry , Signal Transduction/drug effects , Smad Proteins/metabolism , Transcription Factors/metabolism , Transforming Growth Factor beta1/metabolism , Wound Healing/drug effects
13.
ACS Nano ; 14(10): 12652-12667, 2020 10 27.
Article in English | MEDLINE | ID: mdl-32986406

ABSTRACT

Organic-inorganic hybrid materials have drawn increasing attention as photothermal agents in tumor therapy due to the advantages of green synthesis, high loading efficiency of hydrophobic drugs, facile incorporation of theranostic iron, and excellent photothermal efficiency without inert components or additives. Herein, we proposed a strategy for biomimetic engineering-mediated enhancement of photothermal performance in the tumor microenvironment (TME). This strategy is based on the specific characteristics of organic-inorganic hybrid materials and endows these materials with homologous targeting ability and photothermal stability in the TME. The hybrid materials perform the functions of cancer cells to target homolytic tumors (acting as "artificial nanotargeted cells (ANTC)"). Inspired by the pH-dependent disassembly behaviors of tannic acid (TA) and ferric ion (FeIII) and subsequent attenuation of photothermal performance, cancer cell membranes were self-deposited onto the surfaces of protoporphyrin-encapsulated TA and FeIII nanoparticles to achieve ANTC with TME-stable photothermal performance and tumor-specific phototherapy. The resulting ANTC can be used as contrast agents for concurrent photoacoustic imaging, magnetic resonance imaging, and photothermal imaging to guide the treatment. Importantly, the high loading efficiency of protoporphyrin enables the initiation of photodynamic therapy to enhance photothermal therapeutic efficiency, providing antitumor function with minimal side effects.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Animals , Cell Line, Tumor , Ferric Compounds , Mice , Mice, Inbred BALB C , Multimodal Imaging , Phototherapy , Theranostic Nanomedicine
14.
Zhongguo Zhen Jiu ; 40(5): 565-9, 2020 May 12.
Article in Chinese | MEDLINE | ID: mdl-32394668

ABSTRACT

OBJECTIVE: To explore the rules of acupoint selection and drug use in treatment of hypertension with acupoint application therapy. METHODS: The articles of the clinical research of hypertension treated with acupoint application therapy were retrieved from Chinese journal full-text database (CNKI), VIP database (VIP) and Wanfang databases from the time of establishment to January 20, 2019. The database was set up with Microsoft Excel 2010. Using the cloud platform of the ancient and modern medicine record, the frequency statistical and clustering analyses were conducted. RESULTS: A total of 117 articles were collected, including 191 prescriptions, 60 aucpoints and 236 kinds of herbal drugs. It was found in the frequency statistical analysis that the top 6 acupoints in use frequency were Yongquan (KI 1), Quchi (LI 11), Taichong (LR 3), Shenque (CV 8), Sanyinjiao (SP 6) and Neiguan (PC 6). According to the correlation analysis, corresponding to these top 6 acupoints, the pairs of acupoints were Sanyinjiao (SP 6) and Yongquan (KI 1), Shenque (CV 8) and Yongquan (KI 1), Neiguan (PC 6) and Yongquan (KI 1), Zusanli (ST 36) and Sanyinjiao (SP 6), Sanyinjiao (SP 6) and Neiguan (PC 6) with Yongquan (KI 1), as well as Yongquan (KI 1) and Neiguan (PC 6) with Sanyinjiao (SP 6). The dominant meridians were the kidney meridian, the conception vessel and the bladder meridian. The special acupoints referred to yuan-source point, luo-connecting point, back-shu point and front-mu point. The top 3 herbal drugs in use frequency included fructus evodiae, semen sinapis and rhizoma chuanxiong. The herbs used were mainly warm and slight cold in nature and neutral in property. The frequencies of the drug use were similar in the application for cold and heat purposes. The common flavors of the herbal medicines were pungent, sweat and bitter and the liver, kidney and spleen meridians were generally involved in meridian tropism. CONCLUSION: In treatment of hypertension with acupoint application therapy, the commonly used single acupoint is Yongquan (KI 1), which is generally combined with Sanyinjiao (SP 6), Shenque (CV 8), Neiguan (PC 6) and Zusanli (ST 36). The correlation is emphasized on the application of special acupoints, meridian points and zangfu organs. The vesicatory herbal drugs are predominant in the drug use. In generally, this therapy embodies the treatment principles as tonifying for the deficiency and reducing for the excess, as well as balancing of cold and heat.


Subject(s)
Acupuncture Points , Acupuncture Therapy , Hypertension/therapy , Meridians , Humans
15.
Mater Sci Eng C Mater Biol Appl ; 108: 110460, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31923975

ABSTRACT

Myelosuppression, gastrointestinal toxicity and hypersensitivities always accompany chemotherapy of osteosarcoma (OS). In addition, the intricate karyotype of OS, the lack of targeted antitumor drugs and the bone microenvironment that provides a protective alcove for tumor cells reduce the therapeutic efficacy of chemotherapy. Here, we developed a multifunctional bone cement loaded with Fe3O4 nanoparticles and the antitumor drug doxorubicin (DOX/Fe3O4@PMMA) for synergistic MH ablation and chemotherapy of OS. The localized intratumorally administered DOX/Fe3O4@PMMA can change from liquid into solid at the tumor site via a polyreaction. The designed multifunctional bone cement was constructed with Fe3O4 nanoparticles, PMMA, and an antitumor drug approved by the U.S. Food and Drug administration (FDA). The injectability, magnetic hyperthermia (MH) performance, controlled drug release profile, and synergistic therapeutic effect of DOX/Fe3O4@PMMA in vitro were investigated in detail. Furthermore, the designed DOX/Fe3O4@PMMA controlled the release of DOX, enhanced the apoptosis of OS tissue, and inhibited the proliferation of tumor cells, demonstrating synergistic MH ablation and chemotherapy of OS in vivo. The biosafety of DOX/Fe3O4@PMMA was also evaluated in detail. This strategy significantly reduced surgical time, avoided operative wounds and prevented patient pain, showing a great clinical translational potential for OS treatment.


Subject(s)
Bone Cements , Bone Neoplasms/therapy , Hyperthermia, Induced , Magnetite Nanoparticles , Osteosarcoma/therapy , Animals , Bone Cements/chemistry , Bone Cements/pharmacology , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Mice , Mice, Inbred BALB C , Mice, Nude , Osteosarcoma/metabolism , Osteosarcoma/pathology , Polymethyl Methacrylate/chemistry , Polymethyl Methacrylate/pharmacology , Xenograft Model Antitumor Assays
16.
Gene ; 728: 144279, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31821871

ABSTRACT

AIM OF THE STUDY: Chronic glomerulonephritis (CGN) is the most common form of primary glomerular disease. Qi Teng Xiao Zhuo granules have been proposed as a prescription of traditional Chinese medicine (TCM) for treatment of CGN, however,the comprehensive molecular mechanism underlying this therapeutic effectremains unclear to date. Our study aimed to evaluate and analyze the possible roles and molecular mechanisms of Qi Teng Xiao Zhuo granule-mediated treatment of CGN induced by adriamycin in rats. MATERIALS AND METHODS: RNA-sequencing and real-time polymerase chain reaction (RT-PCR) were applied to identify specifically expressed long noncoding RNAs (lncRNAs) in glomerular tissues of rats from the control group, adriamycin-induced group, and Qi Teng Xiao Zhuo granules group (n = 3). Differentially expressed lncRNAs and mRNAs (messengerRNAs) were screened out among the 3 groups. Gene ontology (GO) and pathway enrichment analyses were performed to analyze the biological functions and pathways for mRNAs. LncRNA-mRNA co-expression network was constructed to analyse for the genes. The protein-protein interaction (PPI) network was visualized. RESULTS: A total of 473 significantly up and down-regulated lncRNAs, 753 up and down-regulated mRNAs were identified. Additionally, it is worth noting that TOP2a (topoisomerase (DNA) II alpha), with the highest connectivity degree in PPI network, was enriched in variouskinds of pathways. Coding-non-coding gene co-expression networks (CNC network) were drawn based on the correlation analysis between lncRNAs and mRNAs. Ten lncRNAs, NONRATT009275.2, NONRATT025409.2, NONRATT025419.2, MSTRG.7681.1, ENSRNOT00000084373, NONRATT000512.2, NONRATT006734.2, ENSRNOT00000084386, NONRATT021738.2, ENSRNOT00000084080, were selected to analyse the relationship between LncRNAs and Qi Teng Xiao Zhuo granules via the CNC network (Coding-non-coding gene co-expression networks) and GO analysis. Real-time PCR results confirmed that the six lncRNAs were specifically expressed in the Qi Teng Xiao Zhuo granules rats. CONCLUSIONS: The ten lncRNAs might play important roles in the Qi Teng Xiao Zhuo granules treatment of CGN. Key genes, such as Ptprc (protein tyrosine phosphatase, receptor type, C), TOP2a, Fos (FBJ osteosarcoma oncogene), Myc (myelocytomatosis oncogene), etc, may be crucial biomarkers for Qi Teng Xiao Zhuo granules.


Subject(s)
Biomarkers/analysis , Drugs, Chinese Herbal/pharmacology , Gene Expression Profiling , Gene Expression Regulation/drug effects , Glomerulonephritis/genetics , RNA, Long Noncoding/genetics , Animals , Chronic Disease , Glomerulonephritis/drug therapy , Male , Protein Interaction Maps , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
17.
Theranostics ; 9(14): 4192-4207, 2019.
Article in English | MEDLINE | ID: mdl-31281541

ABSTRACT

Background: Minimally invasive modalities are of great interest in the field of treating bone tumors. However, providing reliable mechanical support and fast killing of tumor cells to achieve rapid recovery of physical function is still challenging in clinical works. Methods: A material with two functions, mechanical support and magnetic thermal ablation, was developed from Fe3O4 nanoparticles (NPs) distributed in a polymethylmethacrylate (PMMA) bone cement. The mechanical properties and efficiency of magnetic field-induced thermal ablation were systematically and successfully evaluated in vitro and ex vivo. CT images and pathological examination were successfully applied to evaluate therapeutic efficacy with a rabbit bone tumor model. Biosafety evaluation was performed with a rabbit in vivo, and a cytotoxicity test was performed in vitro. Results: An NP content of 6% Fe3O4 (PMMA-6% Fe3O4, mFe: 0.01 g) gave the most suitable performance for in vivo study. At the 56-day follow-up after treatment, bone tumors were ablated without obvious side effects. The pathological examination and new bone formation in CT images clearly illustrate that the bone tumors were completely eliminated. Correspondingly, after treatment, the tendency of bone tumors toward metastasis significantly decreased. Moreover, with well-designed mechanical properties, PMMA-6%Fe3O4 implantation endowed tumor-bearing rabbit legs with excellent bio-mimic bone structure and internal support. Biosafety evaluation did not induce an increase or decrease in the immune response, and major functional parameters were all at normal levels. Conclusion: We have presented a novel, highly efficient and minimally invasive approach for complete bone tumor regression and bone defect repair by magnetic thermal ablation based on PMMA containing Fe3O4 NPs; this approach shows excellent heating ability for rabbit VX2 tibial plateau tumor ablation upon exposure to an alternating magnetic field (AMF) and provides mechanical support for bone repair. The new and powerful dual-function implant is a promising minimally invasive agent for the treatment of bone tumors and has good clinical translation potential.


Subject(s)
Bone Neoplasms/therapy , Ferric Compounds/chemistry , Polymethyl Methacrylate/chemistry , Animals , Hyperthermia, Induced/methods , Magnetite Nanoparticles/chemistry , Mice , Rabbits , Rats
18.
EMBO Rep ; 20(9): e47892, 2019 09.
Article in English | MEDLINE | ID: mdl-31318145

ABSTRACT

The conversion of skeletal muscle fiber from fast twitch to slow-twitch is important for sustained and tonic contractile events, maintenance of energy homeostasis, and the alleviation of fatigue. Skeletal muscle remodeling is effectively induced by endurance or aerobic exercise, which also generates several tricarboxylic acid (TCA) cycle intermediates, including succinate. However, whether succinate regulates muscle fiber-type transitions remains unclear. Here, we found that dietary succinate supplementation increased endurance exercise ability, myosin heavy chain I expression, aerobic enzyme activity, oxygen consumption, and mitochondrial biogenesis in mouse skeletal muscle. By contrast, succinate decreased lactate dehydrogenase activity, lactate production, and myosin heavy chain IIb expression. Further, by using pharmacological or genetic loss-of-function models generated by phospholipase Cß antagonists, SUNCR1 global knockout, or SUNCR1 gastrocnemius-specific knockdown, we found that the effects of succinate on skeletal muscle fiber-type remodeling are mediated by SUNCR1 and its downstream calcium/NFAT signaling pathway. In summary, our results demonstrate succinate induces transition of skeletal muscle fiber via SUNCR1 signaling pathway. These findings suggest the potential beneficial use of succinate-based compounds in both athletic and sedentary populations.


Subject(s)
Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Succinic Acid/pharmacology , Animals , Citric Acid Cycle/drug effects , Male , Mice , Mice, Inbred C57BL , Muscle Contraction/drug effects , Muscle Fatigue/drug effects , Muscle, Skeletal/drug effects , Myosin Heavy Chains/metabolism , Oxygen Consumption/drug effects , Signal Transduction/drug effects
19.
Drug Des Devel Ther ; 13: 1901-1913, 2019.
Article in English | MEDLINE | ID: mdl-31239641

ABSTRACT

Objectives: To screen and study circular RNA (circRNA) expression profiles in QTXZG-mediated treatment of chronic glomerulonephritis (CGN) induced by adriamycin in rats and to research the possible roles and molecular mechanisms of QTXZG. Materials and methods: Next-generation RNA sequencing was used to identify circRNA expression profiles in CGN after QTXZG treatment compared with a CGN model group and a control group. Bioinformatics analysis was performed to predict potential target miRNAs and mRNAs. GO and pathway analyses for potential target mRNAs were used to explore the potential roles of differentially expressed (DE) circRNAs. Results: We identified 31 and 21 significantly DE circRNAs between the model group vs the control group and the model group vs the QTXZG group, respectively. Four circRNAs that resulted from the establishment of the CGN model were reversed following treatment with QTXZG. Further analysis revealed that these four circRNAs may play important roles in the development of CGN. Conclusions: This study elucidated the comprehensive expression profile of circRNAs in CGN rats after QTXZG treatment for the first time. Analysis of the circRNA-miRNA-mRNA-ceRNA network to determine potential function provided a comprehensive understanding of circRNAs that may be involved in the development of CGN. The current study indicated that therapeutic effects of QTXZG on CGN may be due to regulation of circRNA expression.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Glomerulonephritis/drug therapy , RNA, Circular/antagonists & inhibitors , Animals , Drugs, Chinese Herbal/administration & dosage , Gene Expression Profiling , Glomerulonephritis/metabolism , Glomerulonephritis/pathology , Male , Medicine, Chinese Traditional , RNA, Circular/genetics , RNA, Circular/metabolism , Rats , Rats, Sprague-Dawley
20.
Am J Chin Med ; 47(4): 879-893, 2019.
Article in English | MEDLINE | ID: mdl-31179723

ABSTRACT

Yang-Yin-Qing-Fei-Tang (YYQFT) is a well-known traditional Chinese medicine used in the treatment of chronic obstructive pulmonary emphysema, bronchitis, cytomegaloviral pneumonia, but the mechanisms of the medicine are not clear. This study aimed to identify the active components of YYQFT and elucidate the underlying mechanism on non-small cell lung cancer. First, YYQFT was extracted with different solvents, and then the most effective extract was determined by assessing their effects on non-small cell lung cancer cell growth. Second, several active compounds from YYQFT were identified, and quercetin was the one of the important active ingredients. Subsequently, the in vivo antitumor activity of quercetin was confirmed in a lung cancer xenograft model in mice. 200 µ g/mL quercetin significantly reduced tumor volume without affecting body weight of the mice. Furthermore, induction of apoptosis by quercetin was detected in tumor tissues treated with quercetin. Multiple apoptosis related genes including p53, Bax and Fas were upregulated by quercetin in tumor tissue and the ratio of Bax/Bcl-2 was increased accordingly. Our results demonstrated that quercetin, as the main effective component of the YYQFT, has potent inhibitory activity on non-small cell lung cancer by regulating the ratio of Bax/Bcl-2.


Subject(s)
Antineoplastic Agents, Phytogenic , Apoptosis/drug effects , Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Drugs, Chinese Herbal/chemistry , Lung Neoplasms/pathology , Quercetin/pharmacology , Animals , Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , Mice , Neoplasm Transplantation , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Quercetin/isolation & purification , Tumor Cells, Cultured , Tumor Suppressor Protein p53/metabolism , Up-Regulation/drug effects , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , fas Receptor/genetics , fas Receptor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL