Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Neurotox Res ; 39(2): 256-265, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32588354

ABSTRACT

Mesaconitine, one of Aconitum carmichaelii Debx bioactive compounds, was shown to evoke Ca2+ homeostasis and its related physiological effects in endothelial cell types. However, the effect of mesaconitine on Ca2+ signaling and cell viability in human brain microvascular endothelial cells is unclear. This study focused on exploring whether mesaconitine changed cytosolic Ca2+ concentrations ([Ca2+]i), affected cell viability, and established the relationship between Ca2+ signaling and viability in HBEC-5i human brain microvascular endothelial cells. In HBEC-5i cells, cell viability was measured by the cell proliferation reagent (WST-1). [Ca2+]i was measured by the Ca2+-sensitive fluorescent dye fura-2. Mesaconitine (10-100 µM) concentration dependently induced [Ca2+]i rises. Ca2+ removal reduced the signal by approximately 25%. Mesaconitine (40-100 µM) caused cytotoxicity in HBEC-5i cells. This cytotoxic response was significantly reversed by chelation of cytosolic Ca2+ with BAPTA/AM. In Ca2+-containing medium, mesaconitine-induced Ca2+ entry was inhibited by 25% by modulators of store-operated Ca2+ channels and protein kinase C (PKC). Furthermore, mesaconitine also induced Mn2+ influx suggesting of Ca2+ entry. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished mesaconitine-evoked [Ca2+]i rises. Conversely, treatment with mesaconitine abolished thapsigargin-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 abolished mesaconitine-induced [Ca2+]i rises. In sum, mesaconitine caused cytotoxicity that was triggered by preceding [Ca2+]i rises. Furthermore, mesaconitine induced [Ca2+]i rises by evoking Ca2+ entry via PKC-sensitive store-operated Ca2+ channels and PLC-dependent Ca2+ release from the endoplasmic reticulum. It suggests that Ca2+ signaling have a potential cytotoxic effect on mesaconitine-treated human brain microvascular endothelial cells.


Subject(s)
Aconitine/analogs & derivatives , Calcium Signaling/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Aconitine/administration & dosage , Aconitum , Cell Line , Cell Survival/drug effects , Humans , Plant Extracts/toxicity
2.
Chin J Physiol ; 63(2): 60-67, 2020.
Article in English | MEDLINE | ID: mdl-32341231

ABSTRACT

Tectorigenin, a traditional Chinese medicine, is isolated from the flower of plants such as Pueraria thomsonii Benth. It is an O-methylated isoflavone, a type of flavonoid. Previous studies have shown that tectorigenin evoked various physiological responses in different models, but the effect of tectorigenin on cytosolic-free Ca2+ levels ([Ca2+]i) and cytotoxicity in renal tubular cells is unknown. Our research explored if tectorigenin changed Ca2+ signal transduction and viability in Madin-Darby Canine Kidney (MDCK) renal tubular cells. [Ca2+]iin suspended cells were measured by applying the fluorescent Ca2+-sensitive probe fura-2. Viability was explored by using water-soluble tetrazolium-1 as a fluorescent dye. Tectorigenin at concentrations of 5-50 µM induced [Ca2+]irises. Ca2+ removal reduced the signal by approximately 20%. Tectorigenin (50 µM) induced Mn2+ influx suggesting of Ca2+ entry. Tectorigenin-induced Ca2+ entry was inhibited by 10% by three inhibitors of store-operated Ca2+ channels, namely, nifedipine, econazole, and SKF96365. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin inhibited 83% of tectorigenin-evoked [Ca2+]irises. Conversely, treatment with tectorigenin abolished thapsigargin-evoked [Ca2+]irises. Inhibition of phospholipase C with U73122 inhibited 50% of tectorigenin-induced [Ca2+]irises. Tectorigenin at concentrations between 10 and 60 µM killed cells in a concentration-dependent fashion. Chelation of cytosolic Ca2+ with 1,2-bis (2-aminophenoxy)ethane-N, N, N', N'-tetraacetic acid/acetoxy methyl did not reverse tectorigenin's cytotoxicity. Our data suggest that, in MDCK cells, tectorigenin evoked [Ca2+]irises and induced cell death that was not associated with [Ca2+]irises. Therefore, tectorigenin may be a Ca2+-independent cytotoxic agent for kidney cells.


Subject(s)
Calcium Signaling , Animals , Apoptosis , Calcium , Cell Line, Tumor , Cell Survival , Dogs , Isoflavones , Type C Phospholipases
3.
Food Chem Toxicol ; 107(Pt A): 280-292, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28689919

ABSTRACT

Researches have been conducted to explore the biological effect of gastrodin, a natural compound extracted from the rhizome of Gastrodia elata Blume, in different models. However, the effects of gastrodin on cytotoxicity, cell cycle distribution and oxidative stress in glia cells have not been explored. The aim of this study was to investigate the cytotoxic effect of gastrodin and its mechanisms in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. In DBTRG-05MG cells but not in CTX TNA2 cells, gastrodin (20-30 µM) induced cytotoxicity, G2/M phase cell cycle arrest and apoptosis. Regarding oxidative stress, gastrodin (20-30 µM) elevated intracellular ROS levels but reduced GSH levels. Treatment with the antioxidant NAC (10 µM) partially reversed gastrodin-altered antioxidant enzymes levels. Furthermore, gastrodin induced mitochondria-associated apoptosis. The apoptotic effects evoked by gastrodin were partially inhibited by the antioxidant NAC and the pancaspase inhibitor Z-VAD-FMK. Together, in DBTRG-05MG cells, but not in CTX TNA2 cells, gastrodin activated ROS-associated mitochondrial apoptotic pathways that involved cell cycle arrest. These data provide insight into the molecular mechanisms governing the ability of gastrodin to induce cytotoxicity in human glioblastoma cells and further suggest that gastrodin is a new potential agent for the treatment of human gliblasoma.


Subject(s)
Apoptosis/drug effects , Benzyl Alcohols/pharmacology , Cell Cycle Checkpoints/drug effects , Gastrodia/chemistry , Glioblastoma/drug therapy , Glucosides/pharmacology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Tumor Suppressor Protein p53/metabolism , Animals , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/metabolism , Cell Line, Tumor , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/physiopathology , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Rats , Reactive Oxygen Species/metabolism , Rhizome/chemistry , Tumor Suppressor Protein p53/genetics
4.
Tumour Biol ; 37(4): 4665-78, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26508031

ABSTRACT

Esculetin (6,7-dihydroxycoumarin), a derivative of coumarin compound, is found in traditional medicinal herbs. It has been shown that esculetin triggers diverse cellular signal transduction pathways leading to regulation of physiology in different models. However, whether esculetin affects Ca(2+) homeostasis in breast cancer cells has not been explored. This study examined the underlying mechanism of cytotoxicity induced by esculetin and established the relationship between Ca(2+) signaling and cytotoxicity in human breast cancer cells. The results showed that esculetin induced concentration-dependent rises in the intracellular Ca(2+) concentration ([Ca(2+)]i) in ZR-75-1 (but not in MCF-7 and MDA-MB-231) human breast cancer cells. In ZR-75-1 cells, this Ca(2+) signal response was reduced by removing extracellular Ca(2+) and was inhibited by the store-operated Ca(2+) channel blocker 2-aminoethoxydiphenyl borate (2-APB). In Ca(2+)-free medium, pre-treatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) abolished esculetin-induced [Ca(2+)]i rises. Conversely, incubation with esculetin abolished TG-induced [Ca(2+)]i rises. Esculetin induced cytotoxicity that involved apoptosis, as supported by the reduction of mitochondrial membrane potential and the release of cytochrome c and the proteolytic activation of caspase-9/caspase-3, which were partially reversed by pre-chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Moreover, esculetin increased the percentage of cells in G2/M phase and regulated the expressions of p53, p21, CDK1, and cyclin B1. Together, in ZR-75-1 cells, esculetin induced [Ca(2+)]i rises by releasing Ca(2+) from the ER and causing Ca(2+) influx through 2-APB-sensitive store-operated Ca(2+) entry. Furthermore, esculetin activated Ca(2+)-associated mitochondrial apoptotic pathways that involved G2/M cell cycle arrest. Graphical abstract The summary of esculetin-evoked [Ca(2+)]i rises and -activated Ca(2+)-associated mitochondrial apoptotic pathways that involved cell cycle arrest. The natural coumarin derivative esculetin caused Ca(2+) influx via 2-APB-sensitive store-operated Ca(2+) entry and induced Ca(2+) release from the endoplasmic reticulum. Moreover, esculetin activated the mitochondrial pathway of apoptosis in a Ca(2+)-associated manner that involved G2/M arrest.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Umbelliferones/pharmacology , Breast Neoplasms/drug therapy , Calcium , Calcium Signaling , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , G1 Phase Cell Cycle Checkpoints , Humans , Inhibitory Concentration 50 , Membrane Potential, Mitochondrial/drug effects , Mitochondria
5.
Lasers Surg Med ; 47(9): 756-64, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26395333

ABSTRACT

BACKGROUND AND OBJECTIVES: Low-power laser irradiation (LPLI) is known to regulate cell proliferation and migration in clinical use. Recent studies have shown that LPLI induces cell death in some certain types of cancer cell lines. However, the cytotoxic selectivity of LPLI for cancer cells is not fully understood. The aim of this study was to compare the cytotoxic effects of LPLI in both human oral cancer OC2 cells and normal human gingival fibroblast (HGF) cells. MATERIALS AND METHODS: LPLI at 810 nm with an energy density from 10 to 60 J/cm(2) was used to irradiate human oral cancer OC2 cells and normal HGF cells. RESULTS: We found that LPLI significantly diminished cell viability of human oral cancer OC2 cells due to cell cycle arrest at the G1 phase and the induction of cell death but that it had no or little effects on cell cycle progression and death in normal HGF cells. Moreover, the production of reactive oxygen species (ROS) and the loss of mitochondrial membrane potential (MMP) were elevated in human oral cancer OC2 cells compared with the un-irradiated cells. In contrast, these effects remained unchanged in normal HGF cells after exposure to LPLI. LPLI also induced apoptosis in caspase-3 dependent manner in human oral cancer OC2 cells, a mode of action that could be mediated by ROS and mitochondrial damage. CONCLUSION: Our findings imply LPLI might be a potential therapy for oral cancers.


Subject(s)
Low-Level Light Therapy , Mouth Neoplasms/pathology , Mouth Neoplasms/radiotherapy , Apoptosis/radiation effects , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Fibroblasts/radiation effects , Gingiva/radiation effects , Humans , Tumor Cells, Cultured
6.
Chin J Physiol ; 58(5): 285-93, 2015 Oct 31.
Article in English | MEDLINE | ID: mdl-26387652

ABSTRACT

The effect of the anti-inflammatory compound NPC-14686 on intracellular Ca²âº concentration ([Ca²âº](i)) and viability in OC2 human oral cancer cells was investigated. The Ca²âº-sensitive fluorescent probe fura-2 was used to examine [Ca²âº](i). NPC-14686 induced [Ca²âº](i) rises in a concentration-dependent fashion. The effect was reduced approximately by 10% by removing extracellular Ca²âº. NPC-14686- elicited Ca²âº signal was decreased by nifedipine, econazole, SKF96365, and GF109203X. In Ca²âº-free medium, incubation with the endoplasmic reticulum Ca²âº pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) abolished NPC-14686-induced [Ca²âº](i) rises. Conversely, pretreatment with NPC-14686 abolished thapsigargin or BHQ-induced [Ca²âº](i) rises. Inhibition of phospholipase C with U73122 abolished NPC-14686-induced [Ca²âº](i) rises. At 20-100 µM, NPC-14686 inhibited cell viability, which was not reversed by chelating cytosolic Ca²âº with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'- tetraacetic acid-acetoxymethyl ester (BAPTA/AM). NPC-14686 between 20 µM and 40 µM also induced apoptosis. Collectively, in OC2 cells, NPC-14686 induced [Ca²âº](i) rises by evoking phospholipase C-dependent Ca²âº release from the endoplasmic reticulum and Ca²âº entry via protein kinase C-regulated store-operated Ca²âº channels. NPC-14686 also caused Ca²âº-independent apoptosis.


Subject(s)
Aminobutyrates/therapeutic use , Apoptosis/drug effects , Calcium/metabolism , Carcinoma, Squamous Cell/drug therapy , Mouth Neoplasms/drug therapy , Aminobutyrates/pharmacology , Calcium Channels/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Drug Evaluation, Preclinical , Endoplasmic Reticulum/metabolism , Fura-2 , Homeostasis , Humans , Type C Phospholipases/metabolism
7.
Chem Biol Interact ; 221: 13-23, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25106108

ABSTRACT

Honokiol, an active constituent of oriental medicinal herb Magnolia officinalis, caused Ca(2+) mobilization and apoptosis in different cancer cells. In vivo, honokiol crossed the blood-brain or -cerebrospinal fluid barrier, suggesting that it may be an effective drug for the treatment of brain tumors, including glioblastoma. This study examined the effect of honokiol on intracellular Ca(2+) concentration ([Ca(2+)]i) and apoptosis in DBTRG-05MG human glioblastoma cells. Honokiol concentration-dependently induced a [Ca(2+)]i rise. The signal was decreased partially by removal of extracellular Ca(2+). Honokiol-triggered [Ca(2+)]i rise was not suppressed by store-operated Ca(2+) channel blockers (nifedipine, econazole, SK&F96365) and the protein kinase C (PKC) activator phorbol 12-myristate 13 acetate (PMA), but was inhibited by the PKC inhibitor GF109203X. GF109203X-induced inhibition was not altered by removal of extracellular Ca(2+). In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) or 2,5-di-tert-butylhydroquinone (BHQ) abolished honokiol-induced [Ca(2+)]i rise. Conversely, incubation with honokiol abolished TG or BHQ-induced [Ca(2+)]i rise. Inhibition of phospholipase C (PLC) with U73122 abolished honokiol-induced [Ca(2+)]i rise. Honokiol (20-80µM) reduced the cell viability, which was not reversed by prechelating cytosolic Ca(2+) with BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester). Honokiol (20-60µM) enhanced reactive oxygen species (ROS) production, decreased mitochondrial membrane potential, released cytochrome c, and activated caspase-9/caspase-3. Together, honokiol induced a [Ca(2+)]i rise by inducing PLC-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via PKC-dependent, non store-operated Ca(2+) channels. Moreover, honokiol activated the mitochondrial pathway of apoptosis in DBTRG-05MG human glioblastoma cells.


Subject(s)
Biphenyl Compounds/pharmacology , Calcium/analysis , Lignans/pharmacology , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Calcium Signaling/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Estrenes/pharmacology , Glioblastoma/physiopathology , Homeostasis , Humans , Phosphodiesterase Inhibitors/pharmacology , Pyrrolidinones/pharmacology , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL