Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Arch Environ Contam Toxicol ; 86(3): 249-261, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38494559

ABSTRACT

Selenium (Se) bioaccumulation and toxicity in aquatic vertebrates have been thoroughly investigated. Limited information is available on Se bioaccumulation at the base of aquatic food webs. In this study, we evaluated Se bioaccumulation in two benthic macroinvertebrates (BMI), Hyalella azteca and Chironomus dilutus raised in the laboratory and caged in-situ to a Canadian boreal lake e (i.e., McClean Lake) that receives continuous low-level inputs of Se (< 1 µg/L) from a uranium mill. Additional Se bioaccumulation assays were conducted in the laboratory with these BMI to (i) confirm field results, (ii) compare Se bioaccumulation in lab-read and native H. azteca populations and (iii) identify the major Se exposure pathway (surface water, top 1 cm and top 2-3 cm sediment layers) leading to Se bioaccumulation in H. azteca. Field and laboratory studies indicated overall comparable Se bioaccumulation and trophic transfer factors (TTFs) in co-exposed H. azteca (whole-body Se 0.9-3.1 µg/g d.w; TTFs 0.6-6.3) and C. dilutus (whole-body Se at 0.7-3.2 µg Se/g d.w.; TTFs 0.7-3.4). Native and lab-reared H. azteca populations exposed to sediment and periphyton from McClean Lake exhibited similar Se uptake and bioaccumulation (NLR, p = 0.003; 4.1 ± 0.8 µg Se/g d.w), demonstrating that lab-reared organisms are good surrogates to assess on-site Se bioaccumulation potential. The greater Se concentrations in H. azteca exposed to the top 1-3 cm sediment layer relative to waterborne exposure, corroborates the importance of the sediment-detrital pathway leading to greater Se bioaccumulation potential to higher trophic levels via BMI.


Subject(s)
Amphipoda , Ants , Chironomidae , Selenium , Water Pollutants, Chemical , Animals , Selenium/toxicity , Selenium/metabolism , Chironomidae/metabolism , Bioaccumulation , Canada , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Geologic Sediments
2.
Sci Total Environ ; 912: 169338, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38104801

ABSTRACT

Selenium (Se) is an essential micronutrient that becomes toxic when exposures minimally exceed those that are physiologically required. Studies on Se contaminated aquatic environments have identified that embryo-larval fishes are at particular risk of Se toxicity, primarily due to maternal Se transfer to developing eggs during oogenesis. This study emulated these exposures in embryo-larval fathead minnow (FHM), rainbow trout (RBT), white sucker (WSu), and white sturgeon (WSt) using embryonic selenomethionine (SeMet) microinjections. Adverse Se-outcomes observed across these species included spinal and edematous deformities, total individuals deformed, and reduced survival. Spinal deformity was the most sensitive sublethal endpoint and developed at the lowest concentrations in WSt (10 % effects concentration (EC10) = 12.42 µg (total) Se/g dry weight (d.w.)) followed by WSu (EC10 = 14.49 µg Se/g d.w.) and FHM (EC10 = 18.10 µg Se/g d.w.). High mortality was observed in RBT, but SeMet influences were confounded by the species' innate sensitivity to the microinjections themselves. 5 % hazardous concentrations derived across exposure type data subsets were ∼49 % higher when derived from within-species maternal transfer exclusive data as opposed to all, or within-species microinjection exclusive, data. These results support the current exclusion of SeMet microinjections during regulatory guideline derivation and their inclusion when studying mechanistic Se toxicity across phylogenetically distant fishes.


Subject(s)
Cyprinidae , Selenium , Water Pollutants, Chemical , Animals , Selenomethionine/toxicity , Larva , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Fishes , Selenium/toxicity
3.
Environ Res ; 244: 117951, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38135097

ABSTRACT

Diluted treated effluent from the McClean Lake uranium mill in northern Saskatchewan is released into Vulture Lake, which flows into the east basin of McClean Lake; this input could potentially cause a variety of disturbances to the aquatic systems. This study aimed to determine the potential effects of diluted effluent exposure (metals and major ions) on benthic macroinvertebrates in Vulture Lake and McClean Lake. Two monitoring locations located in Vulture Lake and eight in McClean Lake were used for collection water, sediment, and benthic macroinvertebrates. Complementary surface water bioassays were performed with larvae of the midge Chironomus dilutus using lake water from selected sites. Results indicated that total macroinvertebrate abundance and Margalef index (MI) did not follow the diluted effluent pattern. In addition, while the MI from artificial substrate samplers showed higher values in Vulture Lake and lower values at McClean Lake sites 4 and 5 (closer to effluent diffuser), the values recorded for sediment grab samples registered lower indices in Vulture Lake and higher values for sites 4 and 5. The final model from a Generalized Additive Modelling (GAM) approach suggested that electrical conductivity (EC), selenium (Se), and chloride (Cl) in water, and total organic carbon (TOC) and cadmium (Cd) in sediment are key variables that collectively may have influenced macroinvertebrate community composition at the study sites. Finally, across all test endpoints in the bioassays, exposure to lake water from Vulture Lake and McClean Lake had no statistically significant effects on C. dilutus.


Subject(s)
Uranium , Water Pollutants, Chemical , Saskatchewan , Lakes , Uranium/toxicity , Water Pollutants, Chemical/analysis , Water/chemistry , Environmental Monitoring
4.
Environ Res ; 234: 116157, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37196689

ABSTRACT

Few studies have investigated the potential influence of sampling method and season on Se bioaccumulation at the base of the aquatic food chain. In particular, the effects of low water temperature associated with prolonged ice-cover periods on Se uptake by periphyton and further transfer to benthic macroinvertebrates (BMI) have been overlooked. Such information is crucial to help improve Se modelling and risk assessment at sites receiving continuous Se inputs. To date, this seems to be the first study to address these research questions. Here, we examined potential differences related to sampling methods (artificial substrates vs. grab samples) and seasons (summer vs. winter) on Se dynamics in the benthic food chain of a boreal lake (McClean Lake) receiving continuous low-level Se input from a Saskatchewan uranium milling operation. During summer 2019, water, sediment grab samples and artificial substrates were sampled from 8 sites with varying mill-treated effluent exposure. In winter 2021, water and sediment grab samples were sampled at 4 locations in McClean Lake. Water, sediment, and biological samples were subsequently analyzed for total Se concentrations. Enrichment functions (EF) in periphyton and trophic transfer factors (TTF) in BMI were calculated for both sampling methods and seasons. Periphyton collected with artificial substrates (Hester-Dendy samplers and glass plates) exhibited significantly higher mean Se concentrations (2.4 ± 1.5 µg/g d.w) than periphyton collected from the surface of sediment grab samples (1.1 ± 1.3 µg/g d.w). Selenium concentrations in periphyton sampled in winter (3.5 ± 1.0 µg/g d.w) were significantly greater than summer (1.1 ± 1.3 µg/g d.w). Nevertheless, Se bioaccumulation in BMI was similar between seasons, possibly suggesting that invertebrates are not actively feeding in winter. Further investigations are necessary to verify if peak Se bioaccumulation in BMI takes place in spring, coinciding with the reproductive and developmental windows of some fish species.


Subject(s)
Selenium , Water Pollutants, Chemical , Animals , Food Chain , Selenium/analysis , Lakes , Seasons , Water Pollutants, Chemical/analysis , Water , Environmental Monitoring
5.
Integr Environ Assess Manag ; 19(2): 395-411, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35665593

ABSTRACT

There is an increasing trend in the use of real-time sensor technology to remotely monitor aquatic ecosystems. Commercially available probes, however, are currently not able to measure aqueous selenium (Se) concentrations. Because of the well-described bioaccumulation potential and associated toxicity of Se in oviparous vertebrates, it is crucial to monitor Se concentrations at sites receiving continuous effluent Se input. This study aimed to estimate Se concentrations in a boreal lake (McClean Lake) downstream from a Saskatchewan uranium mill using real-time electrical conductivity (EC) data measured by autonomous sensors. Additionally, this study aimed to derive a site-specific total aqueous Se (TSe) threshold based on Se concentrations in periphyton and benthic macroinvertebrates sampled from the same lake. To characterize effluent distribution within the lake, eight Smart Water (Libelium) sensor units were programmed to report EC and temperature for five and seven consecutive weeks in 2018 and 2019, respectively. In parallel, periphyton and benthic macroinvertebrates were sampled with Hester-Dendy's artificial substrate samplers (n = 4) at the same sites and subsequently analyzed for Se concentrations. Electrical conductivity was measured with a handheld field meter for sensor data validation and adjusted to the median lake water temperature (13 °C) registered for the deployment periods. Results demonstrated good accuracy of sensor readings relative to handheld field meter readings and the successful use of real-time EC in estimating TSe exposure (r = 0.87; r2 = 0.84). Linear regression equations derived for Se in detritivores versus Se in periphyton and Se in periphyton versus sensor-estimated TSe were used to estimate a site-specific TSe threshold of 0.7 µg/L (±0.2). Moreover, mean Se concentrations in periphyton (16.7 ± 4.4 µg/g dry weight [d.w.]) and benthic detritivores (6.0 ± 0.4 µg/g d.w.) from one of the exposure sites helped identify an area with potential for high Se bioaccumulation and toxicity in aquatic organisms in McClean Lake. Integr Environ Assess Manag 2023;19:395-411. © 2022 SETAC.


Subject(s)
Selenium , Water Pollutants, Chemical , Animals , Selenium/toxicity , Lakes/chemistry , Ecosystem , Saskatchewan , Water/chemistry , Water Pollutants, Chemical/analysis
6.
Environ Toxicol Chem ; 41(9): 2181-2192, 2022 09.
Article in English | MEDLINE | ID: mdl-35770712

ABSTRACT

Selenium (Se) is an essential micronutrient with a narrow essentiality-toxicity range known to bioaccumulate in aquatic food webs. Selenium uptake and trophic transfer at the base of aquatic food chains represent a great source of uncertainty for Se risk assessment. The goal of the present study was to investigate Se distribution in water and sediment and its subsequent transfer into the periphyton-benthic macroinvertebrate (BMI) food chain in boreal lakes downstream from a Saskatchewan uranium mill. In particular, the present study aimed to assess potential differences in Se bioaccumulation patterns by BMI taxa to contribute to the current knowledge gap. During summer 2018 and 2019, water, sediment, periphyton, and BMI were sampled at two sites in Vulture Lake, seven sites in McClean Lake east basin, and one reference site in McClean Lake west basin. Periphyton and BMI taxa were sampled with artificial substrates (Hester-Dendy) deployed for 5 weeks in 2018 and 7 weeks in 2019; BMI were sorted into the lowest practical achievable taxonomic level and analyzed for total Se concentrations. At the diluted effluent exposure sites, Se concentrations in BMI ranged from 1.3 to 18.0 µg/g dry weight and from 0.3 to 49.3 µg/g dry weight in 2018 and 2019, respectively, whereas concentrations ranged from 0.01 to 3.5 µg/g dry weight at the reference site. Selenium concentrations in periphyton and some BMI taxa sampled near the effluent diffuser (Se < 1 µg/L) reached levels comparable to higher effluent exposure sites (Se > 2 µg/L). Despite differences in Se bioaccumulation among BMI taxa, an approximately one-to-one trophic transfer ratio was observed for benthic primary consumers and benthic predatory taxa. Environ Toxicol Chem 2022;41:2181-2192. © 2022 SETAC.


Subject(s)
Periphyton , Selenium , Water Pollutants, Chemical , Environmental Monitoring , Food Chain , Lakes , Selenium/toxicity , Water
7.
Environ Toxicol Chem ; 41(7): 1765-1777, 2022 07.
Article in English | MEDLINE | ID: mdl-35404490

ABSTRACT

There is increasing interest in using autonomous sensor technology to monitor aquatic ecosystems in real time and in employing such monitoring data to perform better ecological risk assessments. At seven locations in McClean Lake in northern Saskatchewan (Canada) that received diluted uranium milling effluent, we deployed sensor units to track effluent distribution and help predict potential biological effects on aquatic invertebrates. Water was also collected from each location on multiple occasions to measure major ions, dissolved metals, and routine water quality, and sediment was sampled to analyze total metals. The ecotoxicological risk to aquatic invertebrates was estimated using hazard quotients (HQs). The cumulative risk was estimated by summing the individual HQs, and the major ions risk was based on total osmolarity. The results indicated temporal and spatial variations in effluent exposure based on sensor electrical conductivity (EC) measurements in the McClean Lake East Basin. Individual HQs for water ranged from "moderate" (0.40-0.69) to "very high" (greater than 1) for silver, cadmium, arsenic, selenium, mercury, iron, and thallium. At all sites, major ions risk was less than 1. Individual HQs for sediment were "moderate" (0.40-0.69), "high" (0.7-0.99), and "very high" (greater than 1) for vanadium and cadmium. The cumulative risk in water and sediment for all metals combined was greater than 1 at some sites in Vulture Lake (which discharged into McClean Lake) and in McClean Lake itself. A more detailed estimation of the risks for aqueous selenium and arsenic (the only two metals that had good correlation with sensor EC data) indicated that their 90th percentile HQ values were less than 1 in McClean Lake, suggesting that these contaminants of concern do not represent a significant direct risk to aquatic invertebrate communities. Environ Toxicol Chem 2022;41:1765-1777. © 2022 SETAC.


Subject(s)
Arsenic , Selenium , Uranium , Water Pollutants, Chemical , Animals , Cadmium , Ecosystem , Environmental Monitoring/methods , Geologic Sediments , Invertebrates , Saskatchewan , Selenium/analysis , Uranium/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
8.
Environ Res ; 212(Pt A): 113151, 2022 09.
Article in English | MEDLINE | ID: mdl-35318011

ABSTRACT

Selenium (Se) is an environmental contaminant of global concern that can cause adverse effects in fish at elevated levels. Fish gut microbiome play essential roles in gastrointestinal function and host health and can be perturbed by environmental contaminants, including metals and metalloids. Here, an in-situ Se exposure of female finescale dace (Phoxinus neogaeus) using mesocosms was conducted to determine the impacts of Se accumulation on the gut microbiome and morphometric endpoints. Prior to this study, the gut microbiome of finescale dace, a widespread Cyprinid throughout North America, had not been characterized. Exposure to Se caused a hormetic response of alpha diversity of the gut microbiome, with greater diversity at the lesser concentration of 1.6 µg Se/L, relative to that of fish exposed to the greater concentration of 5.6 µg Se/L. Select gut microbiome taxa of fish were differentially abundant between aqueous exposure concentrations and significantly correlated with liver-somatic index (LSI). The potential effects of gut microbiome dysbiosis on condition of wild fish might be a consideration when assessing adverse effects of Se in aquatic environments. More research regarding effects of Se on field-collected fish gut microbiome and the potential adverse effects or benefits on the host is warranted.


Subject(s)
Cyprinidae , Gastrointestinal Microbiome , Selenium , Animals , Cyprinidae/physiology , Female , Metals , North America , Selenium/analysis , Selenium/toxicity
9.
Environ Toxicol Chem ; 41(1): 95-107, 2022 01.
Article in English | MEDLINE | ID: mdl-34808000

ABSTRACT

Selenium (Se) is a contaminant of concern in Canada mainly due to its teratogenic effects on fish and birds. However, few studies have assessed the effects of Se on invertebrates in a field setting. The objective of this experiment was to assess potential community-level impacts of Se additions on zooplankton and benthic macroinvertebrates in a boreal lake ecosystem. From June to August 2018, Se (as selenite) was added to six limnocorrals in Lake 239 at the International Institute for Sustainable Development-Experimental Lakes Area, Northwestern Ontario, Canada, to achieve mean measured aqueous concentrations of 0.4, 0.8, 1.6, 3.4, 5.6 and 7.9 µg Se/L, with three untreated limnocorrals serving as controls (background Se = 0.08-0.09 µg/L). Periphyton, phytoplankton, and invertebrates (zooplankton and benthos) were monitored for 63 days. Zooplankton community composition shifted as a function of Se exposure, with Cladocera biomass and density decreasing with increasing Se concentrations. Similarly, cumulative abundance and biomass of Heptageniidae decreased with increasing Se treatment throughout the experimental period. The present study demonstrated that Se can have impacts on aquatic invertebrates at environmentally relevant exposure levels, and that future ecological risk assessments should consider the impacts of Se on both vertebrates and invertebrates. Environ Toxicol Chem 2022;41:95-107. © 2021 SETAC.


Subject(s)
Cladocera , Selenium , Water Pollutants, Chemical , Animals , Ecosystem , Invertebrates , Lakes , Ontario , Phytoplankton , Selenium/analysis , Selenium/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Zooplankton
10.
Environ Pollut ; 280: 116956, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33799129

ABSTRACT

Selenium (Se) is both an essential micronutrient and a contaminant of concern that is of particular interest in mining-influenced waterbodies in Canada. The objective of this research was to characterize the trophic dynamics of selenium along a gradient of exposure concentrations in a Canadian boreal lake ecosystem. From June 20 to August 22, 2018, six limnocorrals (littoral, ∼3000 L enclosures) were spiked with mean measured concentrations of 0.4, 0.8, 1.6, 3.4, 5.6 and 7.9 µg Se/L as selenite, and three limnocorrals served as untreated controls (background aqueous Se = 0.08-0.09 µg/L). Total Se (TSe) concentrations in water, periphyton, phytoplankton, sediment, benthic macroinvertebrates, zooplankton and female finescale dace (Phoxinus neogaeus; added on day 21 of the experiment) were measured throughout and at the end of the experiment. Total Se bioaccumulation by organisms was generally non-linear. Greater uptake by phytoplankton than periphyton was observed. Taxonomic differences in accumulation of TSe by invertebrates (Heptageniidae = Chironomidae > zooplankton) were observed as well. Fish muscle and ovary tissue TSe bioaccumulation was more variable than that at lower trophic levels and uptake patterns indicated that fish did not reach steady state concentrations. This research provides field-derived models for the uptake of Se by algae and invertebrates, and contributes to a better understanding of the dynamics of TSe bioaccumulation over a gradient of exposure concentrations in cold-water lentic systems.


Subject(s)
Selenium , Water Pollutants, Chemical , Animals , Canada , Ecosystem , Female , Food Chain , Lakes , Selenium/analysis , Water Pollutants, Chemical/analysis
11.
Aquat Toxicol ; 216: 105299, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31593906

ABSTRACT

Selenium (Se) is an essential trace element of concern that is known to contaminate aquatic ecosystems as a consequence of releases from anthropogenic activities. Selenium is of particular toxicological concern for egg-laying vertebrates as they bioaccumulate Se through the diet and deposit excess Se to embryo-offspring via maternal transfer, a process which has been shown to result in significant teratogenic effects. The purpose of the present study was to determine and compare the in ovo effects of Se exposure on early development of a laboratory model fish species native to North American freshwater systems, the fathead minnow (Pimephales promelas), through two different exposure routes, maternal transfer and microinjection. For maternal transfer studies, fathead minnow breeding groups (3 females: 2 males) were exposed to diets containing Se-background levels (1.21 µg Se/g food, dry mass [dm]) or environmentally relevant concentrations of selenomethionine (SeMet; 3.88, 8.75 and 26.5 µg Se/g food dm) and bred for 28 days. Embryos were collected at different time points throughout the study to measure Se concentrations and to assess teratogenicity in embryos. While exposure to dietary Se did not negatively affect fecundity among treatment groups, the lowest treatment group (3.88 µg Se/g food dm) produced on average the most embryos per day, per female. The maternal transfer of excess Se occurred rapidly upon onset of exposure, reaching steady-state after approximately 14 days, and embryo Se concentrations increased in a dose-dependent manner. The greatest concentrations of maternally transferred Se significantly increased the total proportion of deformed embryo-larval fathead minnows but did not impact hatchability or survival. In a second study, fathead minnow embryos were injected with SeMet at concentrations of 0.00 (vehicle control), 9.73, 13.5 and 18.9 µg Se/g embryo dm. Microinjection of SeMet did not affect hatchability but significantly increased the proportion of deformed embryo-larval fish in a dose-dependent manner. There was a greater proportion of deformed fathead minnows at embryo Se concentrations of 18.9 µg Se/g embryo dm when exposed via microinjection versus maternal transfer at concentrations of 28.4 µg Se/g embryo dm. However, the findings suggest that both exposure routes induced analogous developmental toxicities in early life stage fish at Se concentrations between 9.73 and 13.5 µg Se/g embryo dm. Overall, this study demonstrated that microinjection has utility for studying the effects of Se in embryo-larval fish and is a promising method for the study of early life stage Se exposure in egg-laying vertebrates.


Subject(s)
Cyprinidae/embryology , Embryo, Nonmammalian/drug effects , Maternal Exposure , Microinjections , Selenomethionine/administration & dosage , Selenomethionine/toxicity , Animals , Antioxidants/pharmacology , Diet , Ecosystem , Female , Fresh Water , Larva/drug effects , Life Cycle Stages/drug effects , Linear Models , Male , Reproduction/drug effects , Selenium/analysis , Water Pollutants, Chemical/toxicity
12.
Ecotoxicol Environ Saf ; 182: 109354, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31272025

ABSTRACT

Selenium (Se) is a contaminant of concern in many aquatic ecosystems due to its narrow range between essentiality and toxicity in oviparous (yolk-bearing) vertebrates. The objective of the present study was to determine the effects of Se, experimentally added to in situ limnocorrals as selenite, on invertebrate communities and fathead minnow (Pimephales promelas) at environmentally realistic Se concentrations. Nine limnocorrals were deployed in a mesotrophic lake at the International Institute for Sustainable Development - Experimental Lakes Area in Ontario, Canada in May 2017. From June 1 to August 17, 2017, selenite was added to six enclosures to attain mean measured aqueous Se concentrations of 1.0 ±â€¯0.10 or 8.9 ±â€¯2.7 µg/L Se (in triplicate) and three limnocorrals were untreated controls (background mean aqueous Se = 0.12 ±â€¯0.03 µg/L). Benthic macroinvertebrates were collected throughout and at the end of the exposure period using artificial substrates to determine density, dry biomass, diversity, and taxa richness at the family level. Reproductively mature female fathead minnows (added on d 33 of the study) were collected throughout and at the end of the exposure period. After 77 d, Chironomidae and Gammaridae densities and biomass were significantly lower in the 8.9 µg/L Se treatment relative to the 1.0 µg/L Se treatment and the control. Invertebrate diversity (measured as Shannon's and Simpson's indices) significantly declined in the 1.0 µg/L and 8.9 µg/L Se treatments relative to the control (0.12 µg/L Se group). Fulton's condition factor for fathead minnow was significantly less in the 8.9 µg/L treatment compared to 0.12 and 1.0 µg/L Se experimental groups. The results of this study indicated that exposure to relatively low aqueous selenite concentrations can negatively affect invertebrate density and biomass, as well as fish condition. More research is necessary to characterize the risk of selenite exposure to aquatic invertebrates under realistic field conditions, and future risk assessments may need to consider reduced food availability as a factor that may impair the health of higher trophic level organisms in areas with elevated selenite.


Subject(s)
Ecosystem , Selenium/toxicity , Water Pollutants, Chemical/toxicity , Animals , Aquatic Organisms/physiology , Chironomidae , Cyprinidae/physiology , Female , Invertebrates/physiology , Lakes , Ontario , Reproduction/drug effects , Selenious Acid/toxicity
13.
Ecotoxicol Environ Saf ; 180: 693-704, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31146156

ABSTRACT

Selenium (Se) enrichment has been demonstrated to vary by several orders of magnitude among species of planktonic algae. This is a substantial source of uncertainty when modelling Se biodynamics in aquatic systems. In addition, Se bioconcentration data are largely lacking for periphytic species of algae, and for multi-species periphyton biofilms, adding to the challenge of modelling Se transfer in periphyton-based food webs. To better predict Se dynamics in periphyton dominated, freshwater ecosystems, the goal of this study was to assess the relative influence of periphyton community composition on the uptake of waterborne Se oxyanions. Naturally grown freshwater periphyton communities, sampled from five different water bodies, were exposed to environmentally relevant concentrations of selenite [Se(IV)] or selenate [Se(VI)] (nominal concentrations of 5 and 25 µg Se L-1) under similar, controlled laboratory conditions for a period of 8 days. Unique periphyton assemblages were derived from the five different field sites, as confirmed by light microscopy and targeted DNA sequencing of the plastid 23S rRNA gene in algae. Selenium accumulation demonstrated a maximum of 23.6-fold difference for Se(IV) enrichment and 2.1-fold difference for Se(VI) enrichment across the periphyton/biofilm assemblages tested. The assemblage from one field site demonstrated both high accumulation of Se(IV) and iron, and was subjected to additional experimentation to elucidate the mechanism(s) of Se accumulation. Selenite accumulation (at nominal concentrations of 5 and 25 µg Se L-1 and mean pH of 7.5 across all treatment replicates) was assessed in both unaltered and heat-killed periphyton, and in periphyton from the same site grown without light to exclude phototrophic organisms. Following an exposure length of 8 days, all periphyton treatments showed similar levels of Se accumulation, indicating that much of the apparent uptake of Se(IV) was due to non-biological processes (i.e., surface adsorption). The results of this study will help reduce uncertainty in the prediction of Se dynamics and food-chain transfer in freshwater environments. Further exploration of the ecological consequences of extracellular adsorption of Se(IV) to periphyton, rather than intracellular absorption, is recommended to further refine predictions related to Se biodynamics in freshwater food webs.


Subject(s)
Fresh Water , Periphyton/physiology , Selenium/metabolism , Adsorption , Ecosystem , Food Chain , Fresh Water/chemistry , Periphyton/genetics , RNA, Ribosomal, 23S/genetics , Selenic Acid/analysis , Selenic Acid/metabolism , Selenious Acid/analysis , Selenious Acid/metabolism , Selenium/analysis
14.
Ecotoxicol Environ Saf ; 179: 301-309, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31075562

ABSTRACT

Alberta's oil sands petroleum coke (PC) generation has in recent years surpassed 10 million tonnes. Petroleum coke has been proposed as an industrial-scale sorbent to reduce concentrations of organic chemicals in oil sands process-affected water (OSPW). However, PC contains up to 1000 mg of vanadium (V) per kg of PC, and during the treatment it leaches from coke reaching levels of up to 7 mg/L in "treated" OSPW. Little information is available on how common water quality variables affect the toxicity of V to aquatic organisms. Here descriptive relationships are presented to describe how site-specific surface water characteristics representative of the Alberta oil sands region influence the toxicity of V to Daphnia pulex. Results revealed that when D. pulex was exposed to an increase in pH, a threshold relationship was found where acute V toxicity increased from a lethal median concentration (LC50) of 1.7 to 1.2 mg V/L between pH 6 and 7 and then levelled off at around 1 mg V/L. When alkalinity (from 75 to 541 mg/L as CaCO3) and sulphate (from 54 to 394 mg/L) increased, the acute toxicity of V decreased slightly with LC50s changing from 0.6 to 1.6, and from 0.9 to 1.4, respectively. When the length of V exposure was extended (from 2 to 21 d), only an increase of sulphate from 135 to 480 mg/L caused a slight increase in V toxicity from a LC50 of 0.6 to 0.4 mg V/L, the opposite trend seen in the acute exposures. In addition, the influence of two OSPW representative mixtures of increasing sodium and sulphate, and increasing alkalinity and sulphate on V acute toxicity to D. pulex were evaluated; only the mixture of increasing sodium (from 18 to 536 mg/L) and sulphate (from 55 to 242 mg/L) caused a slight decrease in V acute toxicity (LC50 1.0-2.1 mg V/L). Evidence is presented that variations in surface water chemistry can affect V toxicity to daphnids, although only to a small degree (i.e. within a maximum factor of 2 in all cases evaluated here). These relationships should be considered when creating new water quality guidelines or local benchmarks for V.


Subject(s)
Daphnia/drug effects , Models, Theoretical , Oil and Gas Fields , Rivers/chemistry , Vanadium/toxicity , Water Pollutants, Chemical/toxicity , Alberta , Animals , Coke/analysis , Lethal Dose 50 , Petroleum/analysis , Toxicity Tests, Acute , Toxicity Tests, Chronic , Wastewater/chemistry , Water Quality/standards
15.
Environ Toxicol Chem ; 38(9): 1954-1966, 2019 09.
Article in English | MEDLINE | ID: mdl-31145497

ABSTRACT

Human activities have increased the release of selenium (Se) to aquatic environments, but information about the trophic transfer dynamics of Se in Canadian boreal lake systems is limited. In the present study, Se was added as selenite to limnocorrals (2-m-diameter, 3000-L in situ enclosures) in a boreal lake in northwestern Ontario to reach nominal concentrations of 1 and 10 µg Se/L in triplicate each for 77 d, and 3 additional limnocorrals were controls with no Se added. Total Se concentrations were determined in water, sediment, periphyton, benthic macroinvertebrates, zooplankton, and reproductively mature female fathead minnows (Pimephales promelas; added on day 33) collected throughout (and at the end of) the exposure period. Mean measured water Se concentrations in the control, 1-, and 10-µg/L treatments were 0.12, 1.0, and 8.9 µg/L. At the end of exposure (day 77), enrichment functions ranged from 7772 L/kg dry mass in the 8.9-µg/L treatment to 23 495 L/kg dry mass in the 0.12-µg/L treatment, and trophic transfer factors for benthic macroinvertebrates ranged from 0.49 for Gammaridae to 2.3 for Chironomidae. Selenium accumulated in fathead minnow ovaries to concentrations near or above the current US Environmental Protection Agency criterion (15.1 µg/g dry mass for fish ovary/egg) in the 1.0- and 8.9-µg/L treatments, suggesting that, depending on aqueous Se speciation, such exposures have the potential to cause Se accumulation in fish to levels of concern in cold-water, boreal lake systems. Environ Toxicol Chem 2019;38:1954-1966. © 2019 SETAC.


Subject(s)
Ecosystem , Lakes/chemistry , Selenium/metabolism , Animals , Chironomidae/growth & development , Cyprinidae/metabolism , Female , Food Chain , Geologic Sediments/analysis , Larva/chemistry , Muscles/chemistry , Muscles/metabolism , Selenium/chemistry
16.
Environ Toxicol Chem ; 37(4): 1146-1157, 2018 04.
Article in English | MEDLINE | ID: mdl-29236329

ABSTRACT

Assessment of uranium (U)-contaminated sediment is often hindered by the inability to accurately account for the physicochemical properties of sediment that modify U bioavailability. The present goal was to determine whether sediment-associated U bioavailability could be predicted over a wide range of conditions and sediment properties using simple regressions and a geochemical speciation model, the Windermere Humic Aqueous Model (WHAM7). Data from a U-contaminated field sediment bioaccumulation test, along with previously published bioaccumulation studies with U-spiked field and formulated sediments, were used to examine the models. Observed U concentrations in Chironomus dilutus larvae exposed to U-spiked and U-contaminated sediments correlated well (r2 > 0.74, p < 0.001) with the WHAM-calculated concentration of U bound to humic acid, indicating that humic acid may be a suitable surrogate for U binding sites (biotic ligands) in C. dilutus larvae. Subsequently, the concentration of U in C. dilutus was predicted with WHAM7 by numerically optimizing the equivalent mass of humic acid per gram of organism. The predicted concentrations of U in C. dilutus larvae exposed to U-spiked and U-contaminated field sediment compared well with the observed values, where one of the regression models provided a slightly better fit (mean absolute error = 18.1 mg U/kg dry wt) than WHAM7 (mean absolute error = 34.2 mg U/kg dry wt). The regression model provides a predictive capacity with a minimal number of variables, whereas WHAM7 provides additional complementary insight into the chemical variables influencing the speciation, sorption, and bioavailability of U in sediment. The present results indicate that physicochemical properties of sediment can be used to account for variability in U bioavailability as measured through bioaccumulation in chironomids exposed to U-contaminated sediments. Environ Toxicol Chem 2018;37:1146-1157. © 2017 SETAC.


Subject(s)
Chemical Phenomena , Chironomidae/metabolism , Fresh Water/chemistry , Geologic Sediments/chemistry , Uranium/metabolism , Adsorption , Animals , Biological Availability , Biota , Chironomidae/drug effects , Endpoint Determination , Humic Substances/analysis , Larva/drug effects , Larva/metabolism , Regression Analysis , Soil Pollutants, Radioactive/toxicity
17.
Environ Sci Technol ; 51(13): 7532-7541, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28569068

ABSTRACT

A major source of uncertainty in predicting selenium (Se) distribution in aquatic food webs lies in the enrichment factor (EF), the ratio of Se bioconcentration in primary producers and microorganisms relative to the concentration of Se in the surrounding water. It has been well demonstrated that EFs can vary dramatically among individual algal taxa, but data are lacking regarding the influence of periphyton community composition on EFs for a given geochemical form of Se. Therefore, the goals of this study were first to assess whether different periphyton communities could be established in aquaria with the same starting inoculum using different light and nutrient regimes, and second, to determine if the periphyton assemblage composition influences the uptake of waterborne Se (as selenite) and subsequent Se transfer to a model macroinvertebrate primary consumer. Periphyton biofilms were grown in aquaria containing filtered pond water (from Saskatoon, SK) spiked with approximately 20 µg Se/L (mean measured concentration 21.0 ± 1.2 µg Se/L), added as selenite. Five different light and nutrient regimes were applied to the aquaria (three replicates per treatment) to influence biofilm community development. After 6 weeks of biofilm maturation, 40 to 80 immature cultured snails (Stagnicola elodes) were added to each aquarium. The bacterial and algal members of the periphyton community were characterized by targeted metagenomic analyses before and after addition of snails to ensure the snails themselves did not significantly alter the biofilm community. Samples were collected for Se analysis of water, periphyton, and whole-body snail. The nutrient and light treatments resulted in substantially different compositions of the periphytic biofilms, with each being relatively consistent across replicates and throughout the study. Although the aqueous concentration of dissolved Se administered to treatments was constant, uptake by the different periphytic biofilms differed significantly. Both the low-light (61.8 ± 12.1 µg Se/g d.w.) and high-light (30.5 ± 4.7 µg Se/g d.w.) biofilms, which were found to have high proportions of cyanobacteria, contained statistically higher concentrations of Se relative to the other treatments. Furthermore, the concentration of Se in bulk periphyton was predictive of Se bioaccumulation in grazing snails but as an inverse relationship, opposite to expectations. The trophic transfer factor was inversely correlated with periphyton enrichment factor (r = -0.841). A number of different bacterial and algal taxa were correlated (either positively or negatively) with Se accumulation in periphyton biofilm and snails. Recent advancements in genetic methods make it possible to conduct detailed characterization of periphyton assemblages and begin to understand the influence that periphyton composition has on Se biodynamics in aquatic systems.


Subject(s)
Food Chain , Selenium , Animals , Cyanobacteria , Microalgae , Selenious Acid , Snails
18.
J Toxicol Environ Health A ; 80(1): 18-31, 2017.
Article in English | MEDLINE | ID: mdl-27905863

ABSTRACT

To better understand the risks and benefits of eating wild-harvested fish from the Northwest Territories, Canada, levels of total mercury (HgT) and selenium (Se) and composition of omega-3 fatty acid (n-3 FA) were measured in muscle tissue of fish harvested from lakes in the Dehcho Region, Northwest Territories, Canada. Average HgT levels ranged from 0.057 mg/kg (cisco) to 0.551 mg/kg (northern pike), while average n-3 FA concentrations ranged from 101 mg/100 g (burbot) to 1,689 mg/100 g (lake trout). In contrast to HgT and n-3 FA, mean Se concentrations were relatively similar among species. Consequently, species such as lake whitefish, cisco, and longnose sucker displayed the highest nutrient levels relative to HgT content. Levels of HgT tended to increase with fish size, while Se and n-3 FA levels were typically not associated with fork length or fish weight. Interestingly, HgT concentration was occasionally inversely related to tissue nutrient content. Significant negative correlations were observed between Hg and n-3 FA for lake trout, northern pike, and walleye. There were also significant negative correlations between Hg and Se noted for lake whitefish, cisco, and northern pike. Samples with the highest nutritional content displayed, on occasion, lower levels of HgT. This study provides valuable information for the design of probabilistic models capable of refining public health messaging related to minimizing Hg risks and maximizing nutrient levels in wild-harvested fish in the Canadian subarctic.


Subject(s)
Environmental Exposure , Fatty Acids, Omega-3/metabolism , Fishes/metabolism , Food Contamination/analysis , Mercury/metabolism , Selenium/metabolism , Water Pollutants, Chemical/metabolism , Animals , Eating , Environmental Monitoring , Humans , Northwest Territories
19.
Environ Pollut ; 220(Pt B): 873-881, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27825841

ABSTRACT

Uranium (U) can enter aquatic environments from natural and anthropogenic processes, accumulating in sediments to concentrations that could, if bioavailable, adversely affect benthic organisms. To better predict the sorption and mobility of U in aquatic ecosystems, we investigated the sediment-solution partition coefficients (Kd) of U for nine uncontaminated freshwater sediments with a wide range of physicochemical characteristics over an environmentally relevant pH range. Test solutions were reconstituted to mimic water quality conditions and U(VI) concentrations (0.023-2.3 mg U/L) found downstream of Canadian U mines. Adsorption of U(VI) to each sediment was greatest at pH 6 and 7, and significantly reduced at pH 8. There were significant differences in pH-dependent sorption among sediments with different physicochemical properties, with sorption increasing up until thresholds of 12% total organic carbon, 37% fine fraction (≤50 µm), and 29 g/kg of iron content. The Kd values for U(VI) were predicted using the Windermere Humic Aqueous Model (WHAM) using total U(VI) concentrations, and water and sediment physicochemical parameters. Predicted Kd-U values were generally within a factor of three of the observed values. These results improve the understanding and assessment of U sorption to field sediment, and quantify the relationship with sediment properties that may influence the bioavailability and ecological risk of U-contaminated sediments.


Subject(s)
Fresh Water/analysis , Fresh Water/chemistry , Geologic Sediments/chemistry , Uranium/analysis , Uranium/chemistry , Water Pollutants, Radioactive/analysis , Water Pollutants, Radioactive/chemistry , Adsorption , Canada , Environmental Monitoring , Hydrogen-Ion Concentration , Models, Theoretical , Saskatchewan
20.
Chemosphere ; 148: 77-85, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26802266

ABSTRACT

The partitioning of metals between dissolved and solid phases directly affects metal bioavailability to benthic invertebrates and is influenced by metal-binding properties of sediment phases. Little research has been done examining the effects of sediment properties on the bioavailability of uranium (U) to freshwater benthic invertebrates. In the present study, 18 field sediments with a wide range of properties (total organic carbon, fine fraction, cation exchange capacity, and iron content) were amended with the same concentrations of U to characterize the effects of these sediment properties on U bioavailability to freshwater midge, Chironomus dilutus. Bioaccumulation of U by C. dilutus larvae varied by over an order of magnitude when exposed to sediments spiked with 50 mg U kg(-1) d.w. (5-69 mg U kg(-1) d.w.) and 500 mg U kg(-1) d.w. (20-452 mg U kg(-1) d.w.), depending on the type of sediment. Variance in U bioaccumulation was best explained by differences in the cation exchange capacity, fine fraction (≤50 µm particle size), and Fe content of U-spiked sediment, with generated regression equations predicting observed bioaccumulation within a factor of two. The presented regression equations offer an easy-to-apply method for accounting for the influence of sediment properties on U bioavailability in freshwater sediment, with fine fraction being the single most practical variable. This research strongly supports that risk assessments and guidelines for U-contaminated sediments should not ignore the influence of sediment properties that can result in substantial differences in the bioaccumulation of U in benthic invertebrates.


Subject(s)
Chironomidae/drug effects , Geologic Sediments/chemistry , Uranium/analysis , Water Pollutants, Radioactive/analysis , Animals , Biological Availability , Chemical Phenomena , Chironomidae/metabolism , Fresh Water/chemistry , Larva/drug effects , Larva/metabolism , Models, Theoretical , Uranium/metabolism , Water Pollutants, Radioactive/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL