ABSTRACT
Herein, we developed a doxorubicin (Dox)-loaded and 4T1 cancer cell membrane-modified hydrogenated manganese oxide nanoparticles (mHMnO-Dox) to elicit systemic antitumor immune responses. The results revealed that mHMnO-Dox actively recognized tumor cells and then effectively delivered Dox into the cells. Upon entering tumor cells, the mHMnO-Dox underwent rapid degradation and abundant release of Mn2+ and chemotherapeutic drugs. The released Mn2+ not only catalysed a Fenton-type reaction to produce excessive reactive oxygen species (ROS) but also activated the cGAS-STING pathway to boost dendritic cell (DC) maturation. This process increased cytotoxic T lymphocyte infiltration as well as natural killer cell recruitment into the tumor site. In addition, the released Dox could contribute to a chemotherapeutic effect, while activating DC cells and subsequently intensifying immune responses through immunogenic cell death (ICD) of tumor cells. Consequently, the mHMnO-Dox suppressed the primary and distal tumor growth and inhibited tumor relapse and metastasis, as well as prolonged the lifespan of tumor-bearing mice. Thus, the mHMnO-Dox multimodally activated DC cells to demonstrate synergistic antitumor activity, which was mediated via the activation of the cGAS-STING signalling pathway to regulate tumor microenvironment, ICD-mediated immunotherapy and ROS-mediated CDT. These findings suggest the therapeutic potential of mHMnO-Dox in cancer immunotherapy. STATEMENT OF SIGNIFICANCE: A cancer cell membrane-camouflaged hydrogenated mesoporous manganese oxide (mHMnO) has been developed as a cGAS-STING agonist and ICD inducer. The mHMnO effectively induced abundance of ROS production in cancer cells, which caused cancer cell death and then promoted DC maturation via tumour-associated antigen presentation. Meanwhile, the mHMnO significantly activated cGAS-STING pathway to facilitate DC maturation and cytotoxic T lymphocyte infiltration as well as natural killer cell recruitment, which further enhanced tumour immune response. In addition, the combination of the mHMnO and Dox could synergistically promote tumour ICD and then multimodally induce DC maturation, achieving an enhanced CIT. Overall, this study provides a potential strategy to design novel immunologic adjuvant for enhanced CIT.
Subject(s)
Immunotherapy , Manganese Compounds , Neoplasms , Oxides , Animals , Mice , Reactive Oxygen Species , Doxorubicin , Neoplasms/drug therapy , Dendritic Cells , Tumor MicroenvironmentABSTRACT
The formation of blood vessel system under a relatively higher Cu2+ ion level is an indispensable precondition for tumor proliferation and migration, which was assisted in forming the tumor immune microenvironment. Herein, a copper ions nano-reaper (LMDFP) is rationally designed not only for chelating copper ions in tumors, but also for combination with photothermal therapy (PTT) to improve antitumor efficiency. Under 808 nm laser irradiation, the fabricated nano-reaper converts light energy into thermal energy to kill tumor cells and promotes the release of D-penicillamine (DPA) in LMDFP. Photothermal properties of LMDFP can cause tumor ablation in situ, which further induces immunogenic cell death (ICD) to promote systematic antitumor immunity. The released DPA exerts an anti-angiogenesis effect on the tumor through chelating copper ions, and inhibits the expression of programmed death ligand 1 (PD-L1), which synergizes with PTT to enhance antitumor immunity and inhibit tumor metastasis. Meanwhile, the nanoplatform can emit near-infrared-IIb (NIR-IIb) fluorescence under 980 nm excitation, which can be used to track the nano-reaper and determine the optimal time point for PTT. Thus, the fabricated nano-reaper shows powerful potential in inhibiting tumor growth and metastasis, and holds great promise for the application of copper nanochelator in precise tumor treatment.
Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Phototherapy , Copper/pharmacology , Fluorescence , Neoplasms/drug therapy , Ions , Cell Line, Tumor , Tumor MicroenvironmentABSTRACT
Xinyang black tea (XYBT) is characterized by the honey sugar-like aroma which is produced during the fermentation process. However, the formation of this typical aroma is still unclear. We here performed widely targeted volatileomics analysis combined with GC-MS and detected 116 aroma active compounds (AACs) with OAV > 1. These AACs were mainly divided into terpenoids, pyrazine, volatile sulfur compounds, esters, and aldehydes. Among them, 25 significant differences AACs (SDAACs) with significant differences in fermentation processes were identified, comprising phenylacetaldehyde, dihydroactinidiolide, α-damascenone, ß-ionone, methyl salicylate, and so forth. In addition, sensory descriptions and partial least squares discriminant analysis demonstrated that phenylacetaldehyde was identified as the key volatile for the honey sugar-like aroma. We further speculated that phenylacetaldehyde responsible for the aroma of XYBT was probably produced from the degradation of L-phenylalanine and styrene. In conclusion, this study helps us better understand the components and formation mechanism of the honey sugar-like aroma of XYBT, providing new insight into improving the processing techniques for black tea quality.
Subject(s)
Camellia sinensis , Volatile Organic Compounds , Odorants/analysis , Tea , Fermentation , Olfactometry/methods , Volatile Organic Compounds/analysis , SugarsABSTRACT
2D semiconductors, such as molybdenum disulfide (MoS2 ), have attracted tremendous attention in constructing advanced monolithic integrated circuits (ICs) for future flexible and energy-efficient electronics. However, the development of large-scale ICs based on 2D materials is still in its early stage, mainly due to the non-uniformity of the individual devices and little investigation of device and circuit-level optimization. Herein, a 4-inch high-quality monolayer MoS2 film is successfully synthesized, which is then used to fabricate top-gated (TG) MoS2 field-effect transistors with wafer-scale uniformity. Some basic circuits such as static random access memory and ring oscillators are examined. A pass-transistor logic configuration based on pseudo-NMOS is then employed to design more complex MoS2 logic circuits, which are successfully fabricated with proper logic functions tested. These preliminary integration efforts show the promising potential of wafer-scale 2D semiconductors for application in complex ICs.
ABSTRACT
Background: To search and obtain the relevant evidence of prevention and management of lower extremity deep venous thrombosis (DVT) after gynecological malignant tumor operation and to summarize the relevant evidence. Methods: We searched the JBI evidence summary, up to date, the national comprehensive cancer network of the United States, the guide library of the National Institute of clinical medicine of the United Kingdom, PubMed, the Chinese biomedical literature database, CNKI, Wanfang, and other relevant evidence on the prevention and management of DVT in patients with gynecological malignant tumors. It includes clinical practice guidelines, best practice information book, expert consensus, evidence summary, original research, etc. The retrieval time limit is from database establishment till August 20, 2021. Two researchers independently evaluated the literature quality, combined with professional judgment, and extracted the literature that met the standards. Results: Finally, 18 literatures were included, including eight guidelines, three evidence summaries, four systematic evaluations, two expert consensuses, and one best practice information volume. A total of 26 pieces of the best evidence on the prevention and management of postoperative venous thrombosis in gynecological malignant tumors were summarized. It includes risk assessment, drug prevention, mechanical prevention, management strategy, and health education. Conclusion: This study summarized the best evidence of risk, prevention, and health management of DVT in postoperative patients with gynecological malignant tumors to provide evidence-based basis for clinical nurses and to improve the nursing level.
ABSTRACT
BACKGROUND: Mild cognitive impairment (MCI), as a common neurodegenerative aging disease representing an intermediate stage between normal cognitive functioning and dementia, poses an excessive burden on health care. The clinical benefit of Chinese herbal medicines (CHMs) for MCI remains inconclusive. This study is aimed at evaluating the efficacy and acceptability of CHMs through meta-analysis and trial sequential analysis (TSA). METHODS: We applied extensive strategies on preliminary literature screening to identify relevant randomized controlled trials which meticulously compare any of CHMs interventions with placebo groups as monotherapy for MCI. The primary outcome of this study is the change of global cognitive function, and the secondary outcomes include assessments of activities of daily living, mood, and adverse events. Data synthesis, risk of bias assessment, sensitivity and subgroup analyses, and TSA will be conducted with application of Review Manager, Stata, and TSA software. The quality of the evidence will be evaluated using the Grading of Recommendations Assessment, Development and Evaluation instrument. INPLASY registration number: INPLASY202190006 (https://inplasy.com/inplasy-2021-9-0006/). RESULTS: This study will confirm the clinical efficacy and safety of CHMs when used in the treatment of patients with MCI. CONCLUSION: This study will provide reliable evidence and references for the selection of CHMs in therapy and future clinical research of MCI.
Subject(s)
Cognitive Dysfunction/drug therapy , Drugs, Chinese Herbal/therapeutic use , Activities of Daily Living , Affect/drug effects , China , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/adverse effects , Humans , Randomized Controlled Trials as Topic , Research DesignABSTRACT
BACKGROUND: Gynostemma pentaphyllum is an important perennial medicinal herb belonging to the family Cucurbitaceae. Aerial stem-to-rhizome transition before entering the winter is an adaptive regenerative strategy in G. pentaphyllum that enables it to survive during winter. However, the molecular regulation of aerial stem-to-rhizome transition is unknown in plants. Here, integrated transcriptome and miRNA analysis was conducted to investigate the regulatory network of stem-to-rhizome transition. RESULTS: Nine transcriptome libraries prepared from stem/rhizome samples collected at three stages of developmental stem-to-rhizome transition were sequenced and a total of 5428 differentially expressed genes (DEGs) were identified. DEGs associated with gravitropism, cell wall biosynthesis, photoperiod, hormone signaling, and carbohydrate metabolism were found to regulate stem-to-rhizome transition. Nine small RNA libraries were parallelly sequenced, and seven significantly differentially expressed miRNAs (DEMs) were identified, including four known and three novel miRNAs. The seven DEMs targeted 123 mRNAs, and six pairs of miRNA-target showed significantly opposite expression trends. The GpmiR166b-GpECH2 module involved in stem-to-rhizome transition probably promotes cell expansion by IBA-to-IAA conversion, and the GpmiR166e-GpSGT-like module probably protects IAA from degradation, thereby promoting rhizome formation. GpmiR156a was found to be involved in stem-to-rhizome transition by inhibiting the expression of GpSPL13A/GpSPL6, which are believed to negatively regulate vegetative phase transition. GpmiR156a and a novel miRNA Co.47071 co-repressed the expression of growth inhibitor GpRAV-like during stem-to-rhizome transition. These miRNAs and their targets were first reported to be involved in the formation of rhizomes. In this study, the expression patterns of DEGs, DEMs and their targets were further validated by quantitative real-time PCR, supporting the reliability of sequencing data. CONCLUSIONS: Our study revealed a comprehensive molecular network regulating the transition of aerial stem to rhizome in G. pentaphyllum. These results broaden our understanding of developmental phase transitions in plants.
Subject(s)
Gene Expression Regulation, Plant , Gynostemma/genetics , MicroRNAs/genetics , Plant Components, Aerial/genetics , RNA, Plant/genetics , Rhizome/genetics , Transcriptome , Adaptation, Physiological/genetics , Carbohydrate Metabolism/genetics , China , Cold Temperature , Gene Expression Profiling , Gene Library , Gene Ontology , Gravitropism/genetics , Gynostemma/metabolism , MicroRNAs/classification , MicroRNAs/metabolism , Molecular Sequence Annotation , Plant Components, Aerial/metabolism , Plants, Medicinal , RNA, Plant/classification , RNA, Plant/metabolism , Rhizome/metabolism , Signal TransductionABSTRACT
The number of patients with type 2 diabetes mellitus (T2DM) is increasing rapidly worldwide. Glucose transporter 4 (GLUT4) is one of the main proteins that transport blood glucose into the cells and is a target in the treatment of T2DM. In this study, we investigated the mechanism of action of dandelion chloroform extract (DCE) on glucose uptake in L6 cells. The glucose consumption of L6 cell culture supernatant was measured by a glucose uptake assay kit, and the dynamic changes of intracellular GLUT4 and calcium (Ca2+) levels were monitored by laser scanning confocal microscopy in L6 cell lines stably expressing IRAP-mOrange. The GLUT4 fusion with the plasma membrane (PM) was traced via myc-GLUT4-mOrange. GLUT4 expression and AMP-activated protein kinase (AMPK), protein kinase B (PKB/Akt), protein kinase C (PKC), and phosphorylation levels were determined by performing western blotting. GLUT4 mRNA expression was detected by real-time PCR. DCE up-regulated GLUT4 expression, promoted GLUT4 translocation and fusion to the membrane eventually leading to glucose uptake, and induced AMPK phosphorylation in L6 cells. The AMPK inhibitory compound C significantly inhibited DCE-induced GLUT4 expression and translocation while no inhibitory effect was observed by the phosphatidylinositol 3-kinase (PI3K) inhibitor Wortmannin and PKC inhibitor Gö6983. These data suggested that DCE promoted GLUT4 expression and transport to the membrane through the AMPK signaling pathway, thereby stimulating GLUT4 fusion with PM to enhance glucose uptake in L6 cells. DCE-induced GLUT4 translocation was also found to be Ca2+-independent. Together, these findings indicate that DCE could be a new hypoglycemic agent for the treatment of T2DM.
ABSTRACT
The involvement of posterior cingulate cortex (PCC) on ketamine-induced psychosis relevant behaviors was investigated in rats. Bilateral infusion of muscimol, a GABAA receptor agonist, into the PCC significantly antagonized ketamine-induced deficit in prepulse inhibition of a startle reflex (PPI), deficit in gating of hippocampal auditory evoked potentials, and behavioral hyperlocomotion in a dose dependent manner. Local infusion of ketamine directly into the PCC also induced a PPI deficit. Systemic injection of ketamine (3mg/kg,s.c.) induced an increase in power of electrographic activity in the gamma band (30-100Hz) in both the PCC and the hippocampus; peak theta (4-10Hz) power was not significantly altered, but peak theta frequency was increased by ketamine. In order to exclude volume conduction from the hippocampus to PCC, inactivation of the hippocampus was made by local infusion of muscimol into the hippocampus prior to ketamine administration. Muscimol in the hippocampus effectively blocked ketamine-induced increase of gamma power in the hippocampus but not in the PCC, suggesting independent generation of gamma waves in PCC and hippocampus. It is suggested that the PCC is part of the brain network mediating ketamine-induced psychosis related behaviors.
Subject(s)
Behavior, Animal/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Gyrus Cinguli/physiopathology , Ketamine/pharmacology , Psychoses, Substance-Induced/physiopathology , Reflex, Startle/drug effects , Acoustic Stimulation , Animals , Dose-Response Relationship, Drug , Evoked Potentials, Auditory/drug effects , Gyrus Cinguli/drug effects , Hippocampus/drug effects , Hippocampus/physiopathology , RatsABSTRACT
Cilostazol(CTL) is a phosphodiesterase inhibitor, which has been widely used as anti-platelet agent. It also has preventive effects on various central nervous system (CNS) diseases, including ischemic stroke, Parkinson's disease and Alzheimer disease. However, the molecular mechanism underlying the protective effects of CTL is still unclear, and whether CTL can prevent I/R induced cognitive deficit has not been reported. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The open field tasks and Morris water maze were used to assess the effect of CTL on anxiety-like behavioral and cognitive impairment after I/R. Western blotting were performed to examine the expression of related proteins, and HE-staining was used to detect the percentage of neuronal death in the hippocampal CA1 region. Here we found that CTL significantly improved cognitive deficits and the behavior of rats in Morris water maze and open field tasks (P<0.05). HE staining results showed that CTL could significantly protect CA1 neurons against cerebral I/R (P<0.05). Additionally, Akt1 phosphorylation levels were evidently up-regulated (P<0.05), while the activation of JNK3, which is an important contributor to I/R-induced neuron apoptosis, was reduced by CTL after I/R (P<0.05), and caspase-3 levels were also decreased by CTL treatment. Furthermore, all of CTL's protective effects were reversed by LY294002, which is a PI3K/Akt1 inhibitor. Taken together, our results suggest that CTL could protect hippocampal neurons and ameliorate the impairment of learning/memory abilities and locomotor/ exploratory activities in ischemic stroke via a PI3K-Akt1/JNK3/caspase-3 dependent mechanism.
Subject(s)
Brain Ischemia/drug therapy , Cognition Disorders/drug therapy , Hippocampus/drug effects , Neuroprotective Agents/pharmacology , Reperfusion Injury/drug therapy , Tetrazoles/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/physiology , Brain Ischemia/complications , Brain Ischemia/enzymology , Brain Ischemia/pathology , Caspase 3/metabolism , Cilostazol , Cognition Disorders/enzymology , Cognition Disorders/etiology , Cognition Disorders/pathology , Disease Models, Animal , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacology , Hippocampus/enzymology , Hippocampus/pathology , Male , Mitogen-Activated Protein Kinase 10/antagonists & inhibitors , Mitogen-Activated Protein Kinase 10/metabolism , Neurons/drug effects , Neurons/enzymology , Neurons/pathology , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Reperfusion Injury/complications , Reperfusion Injury/enzymology , Reperfusion Injury/pathologyABSTRACT
BACKGROUND: A paradox in epilepsy and psychiatry is that temporal lobe epilepsy is often predisposed to schizophrenic-like psychosis, whereas convulsive therapy can relieve schizophrenic symptoms. We have previously demonstrated that the nucleus accumbens is a key structure in mediating postictal psychosis induced by a hippocampal electrographic seizure. OBJECTIVE/HYPOTHESIS: The purpose of this study is to test a hypothesis that accumbens kindling cumulating in a single (1-time) or repeated (5-times) convulsive seizures have different effects on animal models of psychosis. METHODS: Electrical stimulation at 60 Hz was applied to nucleus accumbens to evoke afterdischarges until one, or five, convulsive seizures that involved the hind limbs (stage 5 seizures) were attained. Behavioral tests, performed at 3 days after the last seizure, included gating of hippocampal auditory evoked potentials (AEP) and prepulse inhibition to an acoustic startle response (PPI), tested without drug injection or after ketamine (3 mg/kg s.c.) injection, as well as locomotion induced by ketamine or methamphetamine (1 mg/kg i.p.). RESULTS: Compared to non-kindled control rats, 1-time, but not 5-times, convulsive seizures induced PPI deficit and decreased gating of hippocampal AEP, without drug injection. Compared to non-kindled rats, 5-times, but not 1-time, convulsive seizures antagonized ketamine-induced hyperlocomotion, ketamine-induced PPI deficit and AEP gating decrease. However, both 1- and 5-times convulsive seizures significantly enhanced methamphetamine-induced locomotion as compared to non-kindled rats. CONCLUSIONS: Accumbens kindling ending with 1 convulsive seizure may induce schizophrenic-like behaviors, while repeated (≥5) convulsive seizures induced by accumbens kindling may have therapeutic effects on dopamine independent psychosis.
Subject(s)
Hippocampus/physiopathology , Kindling, Neurologic/physiology , Nucleus Accumbens/physiopathology , Psychotic Disorders/physiopathology , Reflex, Startle/physiology , Seizures/physiopathology , Acoustic Stimulation , Animals , Behavior, Animal/physiology , Central Nervous System Stimulants/pharmacology , Electric Stimulation , Evoked Potentials, Auditory/drug effects , Evoked Potentials, Auditory/physiology , Excitatory Amino Acid Antagonists/pharmacology , Hippocampus/drug effects , Ketamine/pharmacology , Male , Methamphetamine/pharmacology , Motor Activity/drug effects , Motor Activity/physiology , Rats , Rats, Long-EvansABSTRACT
OBJECTIVE: Using the gamma-butyrolactone (GBL) model of absence seizures in Long-Evans rats, this study investigated if 2.5-6 Hz paroxysmal discharges (PDs) induced by GBL were synchronized among the thalamocortical system and the hippocampus, and whether inactivation of the hippocampus affected PDs. METHODS: Local field potentials were recorded by chronically implanted depth electrodes in the neocortex (frontal, parietal, visual), ventrolateral thalamus and dorsal hippocampal CA1 area. In separate experiments, multiple unit recordings were made at the hippocampal CA1 pyramidal cell layer, or the mid-septotemporal hippocampus was inactivated by local infusion of GABAA receptor agonist muscimol. RESULTS: As PDs developed following GBL injection, coherence of local field potentials at 2.5-6 Hz increased between the hippocampus and thalamus, and between the hippocampus and the neocortex. Hippocampal theta rhythm was disrupted when GBL induced immobility in the rats. The probability of hippocampal multiple unit firing significantly increased at 40-80 ms prior to the negative peak of thalamic PDs. Coherence between hippocampal multiple unit activity and thalamic field potentials at 2.5-6 Hz was significantly increased after GBL injection. Muscimol infusion to inactivate the mid-septotemporal hippocampus, as compared to saline infusion, significantly decreased the peak frequency of the PDs induced by GBL, decreased 30-120 Hz hippocampal gamma power, and hastened the transition of PDs to 1-2 Hz slow waves. SIGNIFICANCE: During GBL induced 2.5-6 Hz PDs, a hallmark of absence seizure, increased synchronization between the hippocampus and the thalamocortical network was indicated by frequency and temporal correlation analysis. These results suggest that the hippocampus was entrained by thalamocortical activity in the present model of absence seizures. Prolonged synchronization of the hippocampus may result in synaptic alterations that may explain the cognitive and memory deficits in some patients with absence seizures and absence status epilepticus.
Subject(s)
Epilepsy, Absence/physiopathology , Hippocampus/physiopathology , Seizures/physiopathology , 4-Butyrolactone , Animals , Cerebral Cortex/physiopathology , Cortical Synchronization/physiology , Disease Models, Animal , Electrodes, Implanted , GABA-A Receptor Agonists/pharmacology , Hippocampus/drug effects , Male , Muscimol/pharmacology , Neural Pathways/drug effects , Neural Pathways/physiopathology , Neurons/physiology , Rats, Long-Evans , Receptors, GABA-A/metabolism , Thalamus/physiopathology , Theta Rhythm/physiologyABSTRACT
Polygonum capitatum Buch.-Ham.ex D. Don, a traditional Miao-nationality herbal medicine, has been widely used in the treatment of various urologic disorders. Recent pharmacological studies demonstrated that a pure compound, FR429, isolated from the ethanol extracts of P. capitatum could selectively inhibit the growth of four hepatocellular carcinoma (HCC) cell lines in a dose-dependent manner. Thus, P. capitatum probably exhibits potential antitumor activity. However, there is very little information on the metabolism of substances present in P. capitatum extracts. In this study, gallic acid, quercetrin, ethanol extracts and ethyl acetate fraction of ethnolic extract (EtOAc fraction) of P. capitatum were cultured anaerobically with rat intestinal bacteria. A highly sensitive and selective liquid chromatography electrospray ionization-ion trap-time of fight mass spectrometry (LC/MSn-IT-TOF) technique was employed to identify and characterize the resulting metabolites. A total of 22 metabolites (M1-M22), including tannins, phenolic acids and flavonoids, were detected and characterized. The overall results demonstrated that the intestinal bacteria played an important role in the metabolism of P. capitatum, and the main metabolic pathways were hydrolysis, reduction and oxidation reactions. Our results provided a basis for the estimation of the metabolic transformation of P. capitatum in vivo.
Subject(s)
Bacteria/metabolism , Biotransformation , Drugs, Chinese Herbal/chemistry , Metabolome , Plants, Medicinal/chemistry , Polygonum/chemistry , Polygonum/metabolism , Animals , Cell Line, Tumor , Chromatography, Liquid , Drugs, Chinese Herbal/pharmacology , Gallic Acid/chemistry , Gallic Acid/metabolism , Humans , Intestines/microbiology , Male , Mass Spectrometry , Metabolic Networks and Pathways , Metabolomics , Microbiota/drug effects , Quercetin/analogs & derivatives , Quercetin/chemistry , Quercetin/metabolism , RatsABSTRACT
FR429, an ellagitannin (a type of polyphenol), is isolated and purified from Polygonum capitatum Buch.-Ham.ex D. Don which is the original herbal medicine of the "Re-Lin-Qing" formula used clinically to treat urinary tract infection in China. FR429 has been investigated for its antitumor potential in tumor-bearing nude mice in vivo, but its in vitro anti-tumor effect in hepatoma cell lines was low. Thus, it was of our interest to investigate its metabolism pathways for supporting its in vivo antitumor potential. The metabolic profiles of FR429 were studied in vitro by liquid chromatography coupled to ion trap time-of-flight mass spectrometry. Total eight metabolites were identified in rat and human liver microsomes, cytosol, and rat primary hepatocytes in vitro. Ellagic acid, a reported anti-angiogenic agent, was one of the main metabolites in these biological matrices. Methylated metabolites catalyzed by catechol-O-methyl transferase (COMT) were observed mainly in the in vitro incubation with rat liver cytosol, which was verified by using a COMT specific inhibitor entacapone and supported by molecular docking analysis. Methylated and sulfated metabolites were also found in rat primary hepatocytes in a time-dependent manner. In conclusion, the in vitro metabolism pathways of FR429 were hydrolysis, methylation and sulfation. The anti-tumor effects of its major metabolites should be further studied.
Subject(s)
Cytosol/chemistry , Glucosides/chemistry , Hepatocytes/metabolism , Hydrolyzable Tannins/chemistry , Hydrolyzable Tannins/metabolism , Microsomes, Liver/metabolism , Polygonum/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Catalytic Domain , Glucosides/pharmacology , Hepatocytes/chemistry , Humans , Hydrolyzable Tannins/pharmacology , Metabolomics , Mice , Microsomes, Liver/chemistry , Molecular Docking Simulation , Molecular Structure , Rats , Spectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationABSTRACT
Deep brain stimulation (DBS) has been shown to be effective for relief of Parkinson's disease, depression and obsessive-compulsive disorder in humans, but the effect of DBS on psychosis is largely unknown. In previous studies, we showed that inactivation of the medial septum or nucleus accumbens normalized the hyperactive and psychosis-related behaviors induced by psychoactive drugs. We hypothesized that DBS of the medial septum or nucleus accumbens normalizes the ketamine-induced abnormal behaviors and brain activity in freely moving rats. Male Long-Evans rats were subcutaneously injected with ketamine (3 mg/kg) alone, or given ketamine and DBS, or injected with saline alone. Subcutaneous injection of ketamine resulted in loss of gating of hippocampal auditory evoked potentials (AEPs), deficit in prepulse inhibition (PPI) and hyperlocomotion, accompanied by increased hippocampal gamma oscillations of 70-100 Hz. Continuous 130-Hz stimulation of the nucleus accumbens, or 100-Hz burst stimulation of the medial septum (1s on and 5s off) significantly attenuated ketamine-induced PPI deficit and hyperlocomotion. Medial septal stimulation also prevented the loss of gating of hippocampal AEPs and the increase in hippocampal gamma waves induced by ketamine. Neither septal or accumbens DBS alone without ketamine injection affected spontaneous locomotion or PPI. The results suggest that DBS of the medial septum or nucleus accumbens may be an effective method to alleviate psychiatric symptoms of schizophrenia. The effect of medial septal DBS in suppressing both hippocampal gamma oscillations and abnormal behaviors induced by ketamine suggests that hippocampal gamma oscillations are a correlate of disrupted behaviors.
Subject(s)
Deep Brain Stimulation/methods , Excitatory Amino Acid Antagonists/toxicity , Ketamine/toxicity , Nucleus Accumbens/physiology , Psychotic Disorders , Septal Nuclei/physiology , Acoustic Stimulation/adverse effects , Analysis of Variance , Animals , Electroencephalography , Evoked Potentials, Auditory , Male , Motor Activity/drug effects , Motor Activity/physiology , Psychoacoustics , Psychotic Disorders/etiology , Psychotic Disorders/therapy , Rats , Rats, Long-Evans , Reflex, Startle/drug effectsABSTRACT
1-Hydroxyl-2,3,5-trimethoxyxanthone (HM-1) is one of the main constituents extracted from Halenia elliptica D. Don, which is a traditionally used Tibetan medicinal plant. The aim of this study was to illustrate the proposed metabolic pathways of HM-1 and identify which cytochrome P450 (CYP450) isoforms involved in its metabolism by using pooled human liver microsomes (HLMs) and recombinant CYP450 isoforms with selective chemical inhibitors. Metabolites were identified by high performance liquid chromatography coupled to ion trap time-of-flight mass spectrometry (LCMS(n)-ESI-IT-TOF) and nuclear magnetic resonance spectroscopy (hydrogen-1 NMR and carbon-13 NMR). Three metabolites (M1-M3) were identified, which demonstrated that demethylation and hydroxylation were the major Phase I metabolic reactions for HM-1 in HLMs. The structure of another metabolite (M4) was still unclear. The enzymatic kinetics of M1 (K(m)=23.19±14.20 µM) and M2 (Km=32.06±17.09 µM) exhibited substrate inhibition; whereas, the formation of M3 (K(m)=5.73±0.70 µM) and M4 (K(m)=16.43±5.12 µM) displayed Michaelis-Menten kinetics. The intrinsic clearance (V(max)/K(m)) of M3 was highest among these metabolites, suggesting that M3 was the major metabolite of HM-1. Moreover, CYP3A4 and CYP2C8 were the primary CYP450 isoform responsible for the metabolism of HM-1. CYP1A2, CYP2A6, CYP2B6, CYP2C9 and CYP2C19 were also involved in HM-1 metabolism, especially in the formation of M3. This study finally provides evidence of substrate inhibition and metabolism-based drug-drug interaction for the medicinal preparations containing HM-1 used in clinic.
Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Gentianaceae/chemistry , Microsomes, Liver/enzymology , Plants, Medicinal/chemistry , Xanthones/metabolism , Chromatography, High Pressure Liquid , Cytochrome P-450 Enzyme System/chemistry , Gentianaceae/metabolism , Humans , Kinetics , Magnetic Resonance Spectroscopy , Molecular Structure , Plants, Medicinal/metabolism , Protein Isoforms , Tibet , Xanthones/chemistryABSTRACT
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and is the third most common cause of cancer-related deaths. Currently available treatment options for HCC patients are scarce resulting in an urgent need to develop a novel effective cure. Polygonum capitatum is a medicinal herb which has been used to treat inflammatory diseases in Miao nationality of China. We recently isolated a pure compound davidiin from P. capitatum extract. Four HCC cell lines were treated with davidiin. Cell viability was recorded by MTT assay. siRNAs targeting enhancer of zeste homolog 2 (EZH2) were applied to modulate the expression of EZH2. Established xenograft mice models of HCC were applied to evaluate the in vivo anticancer activity of davidiin. We investigated the anticancer activity and the underlying mechanism of davidiin. The compound inhibited HCC cell growth and also suppressed tumor growth in xenografted HCC mouse. Such inhibition was facilitated by specifically downregulation on EZH2. The compound possesses anticancer activity both in vitro and in vivo which warrants further clinical investigation as a potential anti-HCC agent.
Subject(s)
Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic/drug effects , Hydrolyzable Tannins/pharmacology , Liver Neoplasms/genetics , Polycomb Repressive Complex 2/genetics , Tannins/pharmacology , Animals , Apoptosis/drug effects , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Enhancer of Zeste Homolog 2 Protein , Gene Knockdown Techniques , Humans , Hydrolyzable Tannins/chemistry , Liver Neoplasms/pathology , Male , Mice , Proteasome Endopeptidase Complex/metabolism , Tannins/chemistry , Tumor Burden/drug effects , Xenograft Model Antitumor AssaysABSTRACT
FR429 is an ellagitannin with a potential antitumor activity, isolated and purified from Polygonum capitatum Buch.-Ham.ex D.Don, which is a traditional Miao-nationality herbal medicine in Guizhou and Yunnan of China. Our preliminary result of pharmacology study has indicated that the antitumor activity of FR429. However, the metabolism of FR429 has not been reported yet. In this study, LC-ion trap-time of flight mass spectrometry (LC-IT-TOF/MS) was used to characterize unpredictable metabolites of FR429 biotransformed by intestinal bacteria in vitro. Total thirteen metabolites were detected and characterized via comparisons of their accurate molecular masses and fragment ions of each MS(n) stage with those of the parent drug, and four of them were also elucidated by NMR. The results demonstrated that FR429 could be transformed by intestinal bacteria in vitro, mainly via hydrolysis and reduction reaction. This work provided a basis for the further study on the biotansformation of FR429 in vivo.
Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Bacteria/metabolism , Chromatography, Liquid/methods , Glucosides/chemistry , Glucosides/pharmacokinetics , Hydrolyzable Tannins/chemistry , Hydrolyzable Tannins/pharmacokinetics , Intestinal Mucosa/metabolism , Intestines/microbiology , Animals , Biotransformation , Herbal Medicine , Hydrolysis , Magnetic Resonance Spectroscopy/methods , Medicine, Chinese Traditional , Rats , Rats, Sprague-DawleyABSTRACT
Halenia elliptica D. Don is a Tibetan herb and medicinal preparations containing Halenia elliptica have been commonly used for the treatment of hepatitis B virus infection in China. The metabolism of 1-hydroxy-2,3,5-trimethoxy-xanthone (HM-1) to its metabolites is mediated through cytochrome P450 enzymes. This study aimed to investigate the herb-drug interaction potential of HM-1 by studying its effects on the metabolism of model probe substrates of five major CYP450 isoforms in human liver microsomes. HM-1 showed moderate inhibitory effects on CYP1A2 (IC50 = 1.06 µM) and CYP2C9 (IC50 = 3.89 µM), minimal inhibition on CYP3A4 (IC20 = 11.94 µM), but no inhibition on model CYP2D6 (dextromethorphan) and CYP2E1 (chlorzoxazone) probe substrates. Inhibition kinetic studies showed that the K(i) values of HM-1 on CYP1A2, CYP2C9 and CYP3A4 were 5.12 µM, 2.00 µM and 95.03 µM, respectively. HM-1 competitively inhibited testosterone 6ß-hydroxylation (CYP3A4) but displayed mixed type inhibitions for phenacetin O-deethylation (CYP1A2) and tolbutamide 4-hydroxylation (CYP2C9). Molecular docking study confirmed the inhibition modes of HM-1 on these human CYP isoforms.
Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Gentianaceae/chemistry , Herb-Drug Interactions , Plant Extracts/pharmacology , Xanthones/pharmacology , Humans , Phenacetin/metabolism , Testosterone/metabolism , Tolbutamide/metabolismABSTRACT
In a previous study, we reported a rat model of early-life limbic seizures which resulted in a loss of GABA(B) receptor inhibition in the hippocampus. Since gating of auditory evoked potentials in the hippocampus (auditory gating) requires GABA(B) receptors and spatial behaviors depend on the hippocampus, we hypothesize that rats with early-life limbic seizures manifest deficits of auditory gating and spatial behaviors. Seizure rats were given a single injection of GABA(B) receptor antagonist CGP56999A (1-1.2 mg/kg i.p.) on postnatal day (PND) 15, which induced multiple limbic seizures in 8h; control rats were given saline injection. When tested at 3-9 weeks after seizure/control treatment, seizure as compared to control rats showed no difference in finding a hidden platform in the water maze, but were deficient in learning and maintaining consecutive criterion performance in the 8-arm radial arm maze. Auditory gating, as measured by paired-click (conditioning followed by test click) average auditory evoked potentials in the hippocampus, revealed a significant difference between seizure rats and controls. Seizure as compared to control rats showed an increased ratio of the test to conditioning click response as adolescents (50 days old) or adults (70 days old). Heterosynaptic electric paired-pulse depression of hippocampal population excitatory postsynaptic potential in freely moving rats, a measure of hippocampal GABA(B)-receptor mediated inhibition, was decreased in seizure as compared to control rats. Seizure as compared to control rats showed increased locomotor activity in a novel open field for the first 10 min, and decreased activity at 15-60 min. However, auditory prepulse inhibition, a measure of sensorimotor gating, revealed no difference between seizure and control rats. In conclusion, early-life limbic seizures induced a long-lasting deficit in auditory gating, likely caused by GABA(B) receptor-mediated inhibition loss in the hippocampus. Auditory gating loss is a symptom of schizophrenia, and thus GABA(B) receptor inhibition loss in the hippocampus provides a mechanism linking early-life seizures to a psychiatric symptom.