Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Publication year range
1.
J Dairy Sci ; 106(11): 7566-7577, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37641344

ABSTRACT

Some cellulolytic bacteria cannot transport branched-chain AA (BCAA) and do not express complete synthesis pathways, thus depending on cross-feeding for branched-chain volatile fatty acid (BCVFA) precursors for membrane lipids or for reductive carboxylation to BCAA. Our objective was to assess BCVFA uptake for BCAA synthesis in continuous cultures administered high forage (HF) and low forage (LF) diets without or with corn oil (CO). We hypothesized that BCVFA would be used for BCAA synthesis more in the HF than in LF diets. To help overcome bacterial inhibition by polyunsaturated fatty acids in CO, BCVFA usage for bacterial BCAA synthesis was hypothesized to decrease when CO was added to HF diets. The study was an incomplete block design with 8 dual-flow fermenters used in 4 periods with 8 treatments (n = 4) arranged as a 2 × 2 × 2 factorial. The factors were: HF or LF (67 or 33% forage, 33:67 alfalfa:orchardgrass pellets), without or with supplemental CO (3% of dry matter), and without or with 2.15 mmol/d (5 mg/d 13C) each of isovalerate, isobutyrate, and 2-methylbutyrate for one combined BCVFA treatment. The flow of bacterial BCAA increased by 10.7% by supplementing BCVFA and 9.14% with LF versus HF; similarly, dosing BCVFA versus without BCVFA increased BCAA by 1.98% in total bacterial AA, whereas LF increased BCAA by 1.92% versus HF. Additionally, BCVFA supplementation increased bacterial AA flow by 16.6% when supplemented in HF - CO and 12.4% in LF + CO diets, but not in the HF + CO (-1.5%) or LF - CO (+6.7%) diets (Diet × CO × BCVFA interaction). The recovery of 13C in bacterial AA flow was 31% lower with LF than with HF. Of the total 13C recovered in bacteria, 13.8, 17.3, and 30.2% were recovered in Val, Ile, and Leu, respectively; negligible 13C was recovered in other AA. When fermenters were dosed with BCVFA, nonbacterial and total effluent flows of AA, particularly of alanine and proline, suggest decreased peptidolysis. Increased ruminal outflow of bacterial AA, especially BCAA, but also nonbacterial AA could potentially support postabsorptive responses from BCVFA supplementation to dairy cattle.

2.
J Dairy Sci ; 106(11): 7530-7547, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37532627

ABSTRACT

Branched-chain amino acids are deaminated by amylolytic bacteria to branched-chain volatile fatty acids (BCVFA), which are growth factors for cellulolytic bacteria. Our objective was to determine the dietary conditions that would increase the uptake of BCVFA by rumen bacteria. We hypothesized that increased forage would increase cellulolytic bacterial abundance and incorporation of BCVFA into their structure. Supplemental polyunsaturated fatty acids, supplied via corn oil (CO), should inhibit cellulolytic bacteria growth, but we hypothesized that additional BCVFA would alleviate that inhibition. Further, supplemental BCVFA should increase neutral detergent fiber degradation and efficiency of bacterial protein synthesis more with the high forage and low polyunsaturated fatty acid dietary combination. The study was an incomplete block design with 8 dual-flow continuous cultures used in 4 periods with 8 treatments (n = 4 per treatment) arranged as a 2 × 2 × 2 factorial. The factors were: high forage (HF) or low forage (LF; 67 or 33%), without or with supplemental CO (3% dry matter), and without or with 2.15 mmol/d (which included 5 mg/d of 13C each of BCVFA isovalerate, isobutyrate, and 2-methylbutyrate). The isonitrogenous diets consisted of 33:67 alfalfa:orchardgrass pellet, and was replaced with a concentrate pellet that mainly consisted of ground corn, soybean meal, and soybean hulls for the LF diet. The main effect of supplementing BCVFA increased neutral detergent fiber (NDF) degradability by 7.6%, and CO increased NDF degradability only in LF diets. Supplemental BCVFA increased bacterial N by 1.5 g/kg organic matter truly degraded (6.6%) and 0.05 g/g truly degraded N (6.5%). The relative sequence abundance decreased with LF for Fibrobacter succinogenes, Ruminococcus flavefaciens, and genus Butyrivibrio compared with HF. Recovery of the total 13C dose in bacterial pellets decreased from 144 µg/ mg with HF to 98.9 µg/ mg with LF. Although isotope recovery in bacteria was greater with HF, BCVFA supplementation increased NDF degradability and efficiency of microbial protein synthesis under all dietary conditions. Therefore, supplemental BCVFA has potential to improve feed efficiency in dairy cows even with dietary conditions that might otherwise inhibit cellulolytic bacteria.

3.
J Dairy Sci ; 106(11): 7548-7565, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37532628

ABSTRACT

To maintain membrane homeostasis, ruminal bacteria synthesize branched-chain fatty acids (BCFA) or their derivatives (vinyl ethers) that are recovered during methylation procedures as branched-chain aldehydes (BCALD). Many strains of cellulolytic bacteria require 1 or more branched-chain volatile fatty acid (BCVFA). Therefore, the objective of this study was to investigate BCVFA incorporation into bacterial lipids under different dietary conditions. The study was an incomplete block design with 8 continuous culture fermenters used in 4 periods with treatments (n = 4) arranged as a 2 × 2 × 2 factorial. The factors were high (HF) or low forage (LF, 67 or 33% forage, 33:67 alfalfa:orchardgrass), without or with supplemental corn oil (CO; 3% dry matter, 1.5% linoleic fatty acid), and without or with 2.15 mmol/d (5 mg/d 13C each of isovalerate, isobutyrate, and 2-methylbutyrate). After methylation of bacterial pellets collected from each fermenter's effluent, fatty acids and fatty aldehydes were separated before analysis by gas chromatography and isotope ratio mass spectrometry. Supplementation of BCVFA did not influence biohydrogenation extent. Label was only recovered in branched-chain lipids. Lower forage inclusion decreased BCFA in bacterial fatty acid profile from 9.45% with HF to 7.06% with LF and decreased BCALD in bacterial aldehyde profile from 55.4% with HF to 51.4% with LF. Supplemental CO tended to decrease iso even-chain BCFA and decreased iso even-chain BCALD in their bacterial lipid profiles. The main 18:1 isomer was cis-9 18:1, which increased (P < 0.01) by 25% from CO (data not shown). Dose recovery in bacterial lipids was 43.3% lower with LF than HF. Supplemental CO decreased recovery in the HF diet but increased recovery with LF (diet × CO interaction). Recovery from anteiso odd-chain BCFA and BCALD was the greatest; therefore, 2-methylbutyrate was the BCVFA primer most used for branched-chain lipid synthesis. Recovery in iso odd-chain fatty acids (isovalerate as primer) was greater than label recovery in iso even-chain fatty acids (isobutyrate as primer). Fatty aldehydes were less than 6% of total bacterial lipids, but 26.0% of 13C recovered in lipids were recovered in BCALD because greater than 50% of aldehydes were branched-chain. Because BCFA and BCALD are important in the function and growth of bacteria, especially cellulolytics, BCVFA supplementation can support the rumen microbial consortium, increasing fiber degradation and efficiency of microbial protein synthesis.

4.
J Dairy Sci ; 106(6): 4018-4029, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37059661

ABSTRACT

Some cellulolytic bacteria require 1 or more branched-chain volatile fatty acids (BCVFA) for the synthesis of branched-chain AA and branched-chain long-chain fatty acids because they are not able to uptake branched-chain AA or lack 1 or more enzymes to synthesize branched-chain AA de novo. Supplemental BCVFA and valerate were included previously as a feed additive that was later removed from the market; these older studies and more current studies have noted improvements in neutral detergent fiber digestibility and milk efficiency. However, most studies provided a single BCVFA or else isobutyrate (IB), 2-methylbutyrate (MB), isovalerate, and valerate altogether without exploring optimal combinations. Our objective was to determine a combination of isoacids that is optimal for milk production. Sixty (28 primiparous and 32 multiparous) lactating Jersey cows (106 ± 54 days in milk) were blocked and assigned randomly to either a control (CON) treatment without any isoacids, MB [12.3 mmol/kg dry matter (DM)], MB + IB (7.7 and 12.6 mmol/kg DM of MB and IB, respectively), or all 4 isoacids (6.2, 7.3, 4.2, and 5.1 mmol/kg DM of MB, IB, isovalerate, and valerate, respectively). Cattle were fed the CON treatment for a 2-wk period, then were assigned randomly within a block to treatments for 8 wk (n = 15). There was a trend for an interaction of supplement and parity for milk components. There were no differences in components for primiparous cows, whereas MB + IB tended to increase protein concentration by 0.04 and 0.08 percentage units in multiparous cows compared with the CON and MB treatments, respectively. Feeding MB + IB increased fat concentration by 0.23 to 0.31 percentage units compared with all other treatments in multiparous cows. Milk yield and dry matter intake (DMI) did not change with treatment. Treatment interacted with week for milk net energy for lactation/DMI; MB + IB tended to increase milk net energy of lactation/DMI by 0.10 Mcal/kg compared with MB and approached a trend for CON, mainly during the early weeks of the treatment period, whereas differences decreased during the last 2 wk of the treatment period. Cows fed MB had the highest 15:0 anteiso fatty acids in the total milk fatty acid profile, which was greater than that for CON or MB + IB cows, but not cows supplemented with isoacids. Cows fed MB alone had the numerically lowest milk net energy for lactation/DMI. The combination of MB + IB appeared optimal for increasing feed efficiency in our study and was not at the expense of average daily gain. Further research is needed for evaluating how potential changes in supplemental isoacid dosage should vary under differing dietary conditions.


Subject(s)
Lactation , Milk , Pregnancy , Female , Cattle , Animals , Milk/metabolism , Lactation/physiology , Valerates/metabolism , Digestion , Animal Feed/analysis , Fatty Acids/metabolism , Diet/veterinary , Fatty Acids, Volatile/metabolism
5.
J Dairy Sci ; 104(9): 9868-9885, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34253360

ABSTRACT

Our objectives were to evaluate potential interactions in culture conditions that influence how exogenously dosed branched-chain VFA (BCVFA) would be recovered as elongated fatty acids (FA) or would affect bacterial populations. A 2 × 2 × 2 factorial arrangement of treatments evaluated 3 factors: (1) without versus with BCVFA (0 vs. 2 mmol/d each of isobutyrate, isovalerate, and 2-methylbutyrate; each dose was partially substituted with 13C-enriched tracers before and during the collection period); (2) high versus low pH (ranging diurnally from 6.3 to 6.8 vs. 5.7 to 6.2); and (3) low versus high particulate-phase passage rate (kp; 2.5 vs. 5.0%/h) in continuous cultures administered a 50:50 forage:concentrate diet twice daily. Samples of effluent were collected and composited before harvesting bacteria from which FA and DNA were extracted. Profiles and enrichments of FA in bacteria were evaluated by gas chromatography and isotope-ratio mass spectrometry. The 13C enrichment in bacterial FA was calculated as percentage recovery of dosed 13C-labeled BCVFA. Dosing BCVFA increased the even-chain iso-FA, preventing the reduced concentration at higher kp and potentially as a physiological response to decreased pH. However, decreasing pH decreased recovery of 13C in these even-chain FA, suggesting greater reliance on isobutyrate produced from degradation of dietary valine. The iso-FA were decreased, whereas anteiso-FA and 16:0 increased with decreasing pH. Thus, 2-methylbutyrate still appeared to be important as a precursor for anteiso-FA to counter the increased rigidity of bacterial membranes that had more saturated straight-chain FA when pH decreased. Provision of BCVFA stimulated the relative sequence abundance of Fibrobacter and Treponema, both of which require isobutyrate and 2-methylbutyrate. Numerous bacterial community members were shifted by low pH, including increased Prevotella and genera within the phylum Proteobacteria, at the expense of members within phylum Firmicutes. Because of relatively few interactions with pH and kp, supplementation of BCVFA can stimulate neutral detergent fiber degradability via key fibrolytic bacteria across a range of conditions. Decreasing pH shifted bacterial populations and their FA composition, suggesting that further research is needed to distinguish pH from dietary changes.


Subject(s)
Fatty Acids , Rumen , Animal Feed/analysis , Animals , Detergents/metabolism , Diet/veterinary , Digestion , Fatty Acids/metabolism , Fatty Acids, Volatile/metabolism , Fermentation , Gas Chromatography-Mass Spectrometry/veterinary , Hydrogen-Ion Concentration , Rumen/metabolism
6.
J Dairy Sci ; 104(9): 9853-9867, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34147227

ABSTRACT

To support improving genetic potential for increased milk production, intake of digestible carbohydrate must also increase to provide digestible energy and microbial protein synthesis. We hypothesized that the provision of exogenous branched-chain volatile fatty acids (BCVFA) would improve both neutral detergent fiber (NDF) degradability and efficiency of microbial protein synthesis. However, BCVFA should be more beneficial with increasing efficiency of bacterial protein synthesis associated with increasing passage rate (kp). We also hypothesized that decreasing pH would increase the need for isobutyrate over 2-methylbutyrate. To study these effects independent from other sources of variation in vivo, we evaluated continuous cultures without (control) versus with BCVFA (0 vs. 2 mmol/d each of isobutyrate, isovalerate, and 2-methylbutyrate), low versus high kp of the particulate phase (2.5 vs. 5.0%/h), and high versus low pH (ranging from 6.3 to 6.8 diurnally vs. 5.7 to 6.2) in a 2 × 2 × 2 factorial arrangement of treatments. Diets were 50% forage pellets and 50% grain pellets administered twice daily. Without an interaction, NDF degradability tended to increase from 29.7 to 35.0% for main effects of control compared with BCVFA treatments. Provision of BCVFA increased methanogenesis, presumably resulting from improved NDF degradability. Decreasing pH decreased methane production. Total volatile fatty acid (VFA) and acetate production were decreased with increasing kp, even though true organic matter degradability and bacterial nitrogen flow were not affected by treatments. Decreasing pH decreased acetate but increased propionate and valerate production, probably resulting from a shift in bacterial taxa and associated VFA stoichiometry. Decreasing pH decreased isobutyrate and isovalerate production while increasing 2-methylbutyrate production on a net basis (subtracting doses). Supplementing BCVFA improved NDF degradability in continuous cultures administered moderate (15.4%) crude protein diets (excluding urea in buffer) without major interactions with culture pH and kp.


Subject(s)
Detergents , Rumen , Animal Feed/analysis , Animals , Detergents/metabolism , Diet/veterinary , Dietary Fiber/metabolism , Digestion , Fatty Acids, Volatile/metabolism , Fermentation , Hydrogen-Ion Concentration , Rumen/metabolism
7.
J Dairy Sci ; 104(2): 1604-1619, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33358812

ABSTRACT

The experiment was conducted to understand ruminal effects of diet modification during moderate milk fat depression (MFD) and ruminal effects of 2-hydroxy-4-(methylthio)-butanoic acid (HMTBa) and isoacids on alleviating MFD. Five ruminally cannulated cows were used in a 5 × 5 Latin square design with the following 5 dietary treatments (dry matter basis): a high-forage and low-starch control diet with 1.5% safflower oil (HF-C); a low-forage and high-starch control diet with 1.5% safflower oil (LF-C); the LF-C diet supplemented with HMTBa (0.11%; 28 g/d; LF-HMTBa); the LF-C diet supplemented with isoacids [(IA) 0.24%; 60 g/d; LF-IA]; and the LF-C diet supplemented with HMTBa and IA (LF-COMB). The experiment consisted of 5 periods with 21 d per period (14-d diet adaptation and 7-d sampling). Ruminal samples were collected to determine fermentation characteristics (0, 1, 3, and 6 h after feeding), long-chain fatty acid (FA) profile (6 h after feeding), and bacterial community structure by analyzing 16S gene amplicon sequences (3 h after feeding). Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) in a Latin square design. Preplanned comparisons between HF-C and LF-C were conducted, and the main effects of HMTBa and IA and their interaction within the LF diets were examined. The LF-C diet decreased ruminal pH and the ratio of acetate to propionate, with no major changes detected in ruminal FA profile compared with HF-C. The α-diversity for LF-C was lower compared with HF-C, and ß-diversity also differed between LF-C and HF-C. The relative abundance of bacterial phyla and genera associated indirectly with fiber degradation was influenced by LF-C versus HF-C. As the main effect of HMTBa within the LF diets, HMTBa increased the ratio of acetate to propionate and butyrate molar proportion. Ruminal saturated FA were increased and unsaturated FA concentration were decreased by HMTBa, with minimal changes detected in ruminal bacterial diversity and community. As the main effect of IA, IA supplementation increased ruminal concentration of all branched-chain volatile FA and valerate and increased the percentage of trans-10 C18 isomers in total FA. In addition, α-diversity and the number of functional features were increased for IA. Changes in the abundances of bacterial phyla and genera were minimal for IA. Interactions between HMTBa and IA were observed for ruminal variables and some bacterial taxa abundances. In conclusion, increasing diet fermentability (LF-C vs. HF-C) influenced rumen fermentation and bacterial community structure without major changes in FA profile. Supplementation of HMTBa increased biohydrogenation capacity, and supplemental IA increased bacterial diversity, possibly alleviating MFD. The combination of HMTBa and IA had no associative effects in the rumen and need further studies to understand the interactive mechanism.


Subject(s)
Cattle , Fatty Acids/analysis , Fermentation/drug effects , Methionine/analogs & derivatives , Milk/drug effects , Rumen/drug effects , Animal Feed/analysis , Animals , Bacteria/classification , Butyric Acid/administration & dosage , Butyric Acid/metabolism , Diet/veterinary , Dietary Supplements , Female , Lactation/drug effects , Methionine/administration & dosage , Milk/chemistry , Rumen/metabolism , Rumen/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL