Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Inflammopharmacology ; 31(1): 231-240, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36436183

ABSTRACT

BACKGROUND: In this study, we summarized the preclinical investigations of the neuroprotective activities of Hibiscus sabdariffa (HSD) extract via its effect on memory function, neuroinflammation and oxidative damage in the central nervous system, which may help to guide future studies. METHODS: Preclinical studies that investigated the effect of HSD extract on memory impairment, neuroinflammation and oxidative stress-induced neuronal damage were searched systematically in PubMed, EBSCOhost (including MEDLINE, CINAHL, APA PsycInfo, etc.), Web of Science (WoS) and Scopus. Parameters and indexes included Morris water maze, passive avoidance test, acetylcholinesterase activity, interleukin 1 (IL-1), tumour necrosis factor-alpha (TNF-α), MAPK, malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS) and mitochondria membrane potential (MMP). RESULTS: A total of 285 documents were identified; however, only ten articles were included and used for meta-analysis. The meta-analytic outcome revealed that HSD did not show any significant effect on memory function, neuroinflammatory biomarkers (IL-1, MAPK) and oxidative stress (GSH, MDA, ROS and MMP) in neuronal cells and tissues. CONCLUSIONS: Individual study revealed that HSD showed improved memory function, attenuated neuroinflammation and prevented oxidative damage to neurons. However, a conflicting result was observed from the meta-analytic outcomes which showed that HSD has no significant effect on cognitive impairment, neuroinflammation and oxidative stress-induced neuronal damage. However the contradiction in this finding may be associated with small number of studies included. Hence, more studies on the memory-enhacing effects and anti-neuroinflammatory activity of HSD in preclinical and clinical model are required to validate its neuroprotective effect.


Subject(s)
Hibiscus , Porifera , Animals , Antioxidants/pharmacology , Hibiscus/metabolism , Reactive Oxygen Species , Acetylcholinesterase/metabolism , Neuroinflammatory Diseases , Oxidative Stress , Plant Extracts/pharmacology , Glutathione
2.
J Food Biochem ; 46(12): e14498, 2022 12.
Article in English | MEDLINE | ID: mdl-36350831

ABSTRACT

This study examined the antiproliferative and apoptotic-inducing effects of Ecklonia maxima (KP) and Ulva rigida (URL) extracts in the human liver cancer (HepG2) cell line model. HepG2 cells were cultured and grown in an incubator (5% CO2 ) at 37°C. Cell viability was determined, while the effect of the extracts on apoptosis, ROS production, mitochondria membrane potential, and antioxidant enzymes were also assessed. KP and URL induced cytotoxic effects on HepG2 cells at the concentrations tested (0-1000 µg/ml). The morphological characteristics of the cells after treatment with KP and URL revealed cell shrinkage of the nucleus, cell injury, and damage compared to the control. The fluorescent micrographs from the apoptotic assay revealed induction of apoptosis and necrosis in HepG2 cells after treatment with KP and URL (200 and 400 µg/ml). The extracts also induced ROS production and reduced mitochondria membrane potential in HepG2 cells. The apoptotic-inducing effects, activation of ROS generation, and disruption of antioxidant enzymes are associated with the cytotoxic effects of the seaweed extracts. KP and URL showed good anticancer properties and could be explored as a good source of nutraceuticals, food additives, and dietary supplements to prevent uncontrolled proliferation of HepG2 cells. PRACTICAL APPLICATIONS: Seaweeds are reservoirs of nutrients and naturally occurring biologically active compounds, including sterols, phlorotannins, and polyunsaturated fatty acids. Due to the presence of these compounds, they are used as emulsifying agents, nutraceuticals, and additives in functional foods. Evidence suggests that seaweed bioactives may inhibit uncontrolled cell proliferation and induce apoptosis in cancer cells. Hence, exploring the antiproliferative and apoptotic-inducing effects of Ecklonia maxima and Ulva rigida will provide insights into their anticancer potentials as functional foods and nutraceuticals.


Subject(s)
Phaeophyceae , Seaweed , Ulva , Humans , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Hep G2 Cells , Plant Extracts/pharmacology , Apoptosis , Water
3.
Molecules ; 26(14)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34299383

ABSTRACT

Microalgae is a rich source of polyunsaturated fatty acid. This study was conducted to identify and isolate microalgal strain with the potentials for producing polyunsaturated fatty acids (PUFAs) and determine its cytotoxic effect on some cancer cells. The algal strain (Chlorella sp. S14) was cultivated using modified BG-11 media, and algal biomass obtained was used for fatty acid extraction. Gas chromatographic-mass spectrometry was used to identify and quantify the levels of the fatty acid constituents. The total content of monounsaturated fatty acids (1.12%) was low compared to polyunsaturated fatty acids (PUFAs) (52.87%). Furthermore, n-3 PUFAs accounted for (12.37%) of total PUFAs with the presence of α-linolenic acid (2.16%) and cis-11,14,17-eicosatrienoic acid (2.16%). The PUFA-rich extract did not exhibit a cytotoxic effect on normal cells. Treatment with the PUFA-rich extract (150 µg/mL) significantly reduced cell viability in MCF-7 (31.58%) and A549 (62.56%) cells after the 48 h treatment. Furthermore, treatment of MCF-7 with fatty acid extracts (125 and 150 µg/mL) showed a significant reduction in MDA levels, increase in catalase activities and decrease in GSH level compared to untreated cells. However, a slight decrease in MDA level was observed in A549 cells after the 48 h treatment. There are no significant changes in catalase activities and GSH level in treated A549 cells. However, a slight reduction of NO levels was observed in treated MCF-7 and A549 cells. These results indicate the potentials of PUFA-rich extracts from Chlorella sp. S14 to reduce viability and modulate redox status in A549 and MCF-7 cells.


Subject(s)
Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Cell Proliferation , Chlorella/chemistry , Fatty Acids, Unsaturated/pharmacology , Neoplasms/drug therapy , Plant Extracts/pharmacology , Humans , Tumor Cells, Cultured
4.
J Food Biochem ; 45(3): e13395, 2021 03.
Article in English | MEDLINE | ID: mdl-32720328

ABSTRACT

In this study, Chlorococcum sp. was investigated for its cholinesterase inhibitory potentials and antioxidant activity. The algal sample was cultivated, harvested, and extracted sequentially using n-hexane, dichloromethane, and ethanol. The extracts were characterized using Fourier transmission infra-red (FTIR) and Gas Chromatography-Mass Spectrometry. The metal chelating, radical scavenging activities, as well as anticholinesterase potentials of the algal extract, was also investigated. FTIR characterization of the microalgal biomass revealed the presence of phenolic compounds, alkaloids, polysaccharides, and fatty acids. The extracts showed the presence of phytol, neophytadiene, butylated hydroxyl toluene, and 3-tert-butyl-4-hydroxyanisole. The ethanol extract showed the highest DPPH (IC50  = 147.40 µg/ml) and OH (IC50  = 493.90 µg/ml) radical scavenging and metal chelating (IC50  = 83.25 µg/ml) activities. Similarly, the ethanol extract (IC50  = 13.83 µg/ml) exhibited the highest acetylcholinesterase inhibitory activity, while the dichloromethane extract showed the highest butyrylcholinesterase inhibitory activity. All the extracts exhibited antioxidant properties and inhibitory effects against butyrylcholinesterase and acetylcholinesterase; however, ethanol extracts showed better activity. PRACTICAL APPLICATIONS: Biomass obtained from some microalgal species is commonly used as dietary supplements and nutraceuticals due to the presence of high-valued products. However, the antioxidant and anticholinesterase activities of biomass from Chlorococcum sp. have not been explored. Chlorococcum sp. extracts contain some antioxidants such as 3-tert-Butyl-4-hydroxyanisole, butylated hydroxytoluene, phytol, and neophytadiene. Characterization of the extracts also revealed the presence of phenolic compounds, polysaccharides, and fatty acids. These compounds may contribute to the observed antioxidant and anticholinesterase activities of Chlorococcum sp. The result of this study suggests that Chlorococcum sp. may contain some nutraceuticals which could be used as antioxidants and cholinesterase inhibitors.


Subject(s)
Antioxidants , Chlorophyceae/chemistry , Plant Extracts , Antioxidants/pharmacology , Butyrylcholinesterase , Cholinesterase Inhibitors/pharmacology , Phytochemicals , Plant Extracts/pharmacology
5.
BMC Complement Med Ther ; 20(1): 251, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32799855

ABSTRACT

BACKGROUND: Sulfated polysaccharides from marine algae are known to possess antioxidative activities, however, their therapeutic role in metal-induced neurodegeneration has not been explored. In this study, the neuroprotective potentials of sulfated polysaccharides isolated from Ecklonia maxima (PKPM), Gelidium pristoides (PMNP), Ulva lactuca (PULV), Ulva rigida (PURL) and Gracilaria gracilis (PGCL) against Zn-induced neurodegeneration in rats' hippocampal neuronal cells (HT-22) were assessed. METHODS: Cells were cultured and maintained at 37 °C. Control cells did not contain Zinc sulphate (ZnSO4) while other experimental groups contain Zn (50 µM) alone or in combination with sulfated polysaccharides (0.4 or 0.8 mg/mL). Cell viability was assessed using MTT assay while apoptotic assay was also determined using acridine orange and ethidium bromide staining technique. Oxidative stress parameters (superoxide dismutase and catalase activities, glutathione and nitric oxide levels) and acetylcholinesterase activity were also assessed in neuronal cells treated with or without Zn. RESULTS: Zn significantly reduced cell viability to about 50%. However, sulfated polysaccharides improved cell viability to about 95%. The sulfated polysaccharides also prevented late apoptosis and necrosis triggered by Zn. Furthermore, superoxide dismutase and catalase activities including glutathione content were significantly low in cells induced with Zn. Treatment with sulfated polysaccharides triggered a significant increase in antioxidant enzymes and glutathione content as well as a decrease in the activity of acetylcholinesterase in cells treated with Zn. CONCLUSION: PKPM, PGCL, PURL, PULV and PMNP exhibit neuroprotective effects against neuronal damage induced by Zn and this may be attributed to inhibition of apoptosis, oxidative damage and acetylcholinesterase activity. These polysaccharides may be good therapeutic agents to protect neuronal cells against Zn - induced pathological processes associated with Alzheimer's disease.


Subject(s)
Antioxidants/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Seaweed , Animals , Apoptosis/drug effects , Cell Line , Cholinergic Agents/pharmacology , Disease Models, Animal , Hippocampus/drug effects , Oxidative Stress/drug effects , South Africa , Sulfates/pharmacology , Zinc Sulfate/toxicity
6.
Int J Biol Macromol ; 161: 875-890, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32535205

ABSTRACT

This study reports a ≅12.5 kDa protein tetrachloro-1,4-benzoquinone reductase (CpsD) from Bacillus cereus strain AOA-CPS1 (BcAOA). CpsD is purified to homogeneity with a total yield of 35% and specific activity of 160 U·mg-1 of protein. CpsD showed optimal activity at pH 7.5 and 40 °C. The enzyme was found to be functionally stable between pH 7.0-7.5 and temperature between 30 °C and 35 °C. CpsD activity was enhanced by Fe2+ and inhibited by sodium azide and SDS. CpsD followed Michaelis-Menten kinetic exhibiting an apparent vmax, Km, kcat and kcat/Km values of 0.071 µmol·s-1, 94 µmol, 0.029 s-1 and 3.13 × 10-4 s-1·µmol-1, respectively, for substrate tetrachloro-1,4-benzoquinone. The bioinformatics analysis indicated that CpsD belongs to the PCD/DCoH superfamily, with specific conserved protein domains of pterin-4α-carbinolamine  dehydratase (PCD). This study proposed that CpsD catalysed the reduction of tetrachloro-1,4-benzoquinone to tetrachloro-p-hydroquinone and released the products found in phenylalanine hydroxylation system (PheOHS) via a Ping-Pong or atypical ternary mechanism; and regulate expression of phenylalanine 4-monooxygenase by blocking reverse flux in BcAOA PheOHS using a probable Yin-Yang mechanism. The study also concluded that CpsD may play a catalytic and regulatory role in BcAOA PheOHS and pentachlorophenol degradation pathway.


Subject(s)
Bacillus cereus/metabolism , Bacterial Proteins/immunology , Chloranil/metabolism , Galactosyltransferases/immunology , Hydroxylation/physiology , Pentachlorophenol/metabolism , Phenylalanine/metabolism , Kinetics , Oxidoreductases/metabolism
7.
Int J Biol Macromol ; 146: 1000-1008, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31726146

ABSTRACT

A 61.3 kDa Phenol hydroxylase (PheA) was purified and characterized from Pseudomonas sp. KZNSA (PKZNSA). Cell free extract of the isolate grown in mineral salt medium supplemented with 600 ppm phenol showed 21.58 U/mL of PheA activity with a specific activity of 7.67 U/mg of protein. The enzyme was purified to 1.6-fold with a total yield of 33.6%. The purified PheA was optimally active at pH 8 and temperature 30 °C, with ≈95% stability at pH 7.5 and temperature 30 °C after 2 h. The Lineweaver-Burk plot showed the vmax and Km values of 4.04 µM/min and 4.03 µM, respectively, for the substrate phenol. The ES-MS data generated from the tryptic digested fragments of pure protein and PCR amplification of a ≈600 bp gene from genomic DNA of PKZNSA lead to the determination of complete amino acid and nucleotide sequence of PheA. Bioinformatics tools and homology modelling studies indicated that PheA from PKZNSA is likely a probable protein kinase UbiB (2-octaprenylphenol hydroxylase) involving Lys and Asp at positions 153 and 288 for binding and active site, respectively. Characterization and optimization of PheA activity may be useful for a better understanding of 2,4-dichlorophenol degradation by this organism and for potential industrial application of the enzyme.


Subject(s)
Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/isolation & purification , Models, Molecular , Pseudomonas/enzymology , Amino Acid Sequence , Base Sequence , Biophysical Phenomena , Enzyme Inhibitors/pharmacology , Enzyme Stability/drug effects , Hydrogen-Ion Concentration , Ions , Metals/pharmacology , Phylogeny , Pseudomonas/genetics , RNA, Ribosomal, 16S/genetics , Substrate Specificity/drug effects , Temperature
8.
J Food Biochem ; 43(7): e12870, 2019 07.
Article in English | MEDLINE | ID: mdl-31353743

ABSTRACT

In this study, we evaluated the anti-amyloidogenic, anticholinesterase, and antioxidant potentials of hydroethanolic extracts of Ecklonia maxima (ECK), Gelidium pristoides (GLD), Gracilaria gracilis (GCL), and Ulva lactuca (ULT). The effect of the extracts on ß-amyloid (Aß1-42 ) peptide were determined using electron microscope. The effects of the extracts on ß-secretase and cholinesterase activities, as well as their radical scavenging and metal chelating activities were also assessed. Electron micrographs revealed that ECK, GLD, GCL, and ULT incubated with Aß1-42 at different intervals (0-96 hr) showed very low levels of fibrils compared to the control. The extracts also inhibited ß-secretase, acetylcholinesterase, and butyrylcholinesterase activities in a dose-dependent manner. Furthermore, the extracts scavenged hydroxyl radicals and were able to chelate Fe2+ in a dose-dependent manner. Our findings suggest that the seaweed extracts are potential sources of lead compounds and novel inhibitors of ß-amyloid aggregation, ß-secretase, and cholinesterases for the management of Alzheimer's diseases. PRACTICAL APPLICATIONS: Seaweeds have been identified as good sources of naturally occurring bioactive compounds with several medicinal properties. They are commonly used as functional foods and development of nutraceuticals, dietary supplements, and cosmeceuticals. However, the neuroprotective effects of many species of seaweeds have not been fully explored. The findings of this study suggests that Gracilaria gracilis, Ulva lactuca, Ecklonia maxima, and Gelidium pristoides are potential sources of cholinesterase, beta-secretase, and amyloid protein aggregation inhibitors. Hence, this support the use of these seaweeds as alternative sources of antioxidants and natural compounds with neuroprotective potentials for the management of Alzheimer's disease.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/chemistry , Cholinesterase Inhibitors/chemistry , Phaeophyceae/chemistry , Plant Extracts/chemistry , Seaweed/chemistry , Ulva/chemistry , Acetylcholinesterase/chemistry , Africa , Amyloid Precursor Protein Secretases/chemistry , Cholinesterase Inhibitors/isolation & purification , Humans , Plant Extracts/isolation & purification , Protein Aggregates
9.
Metab Brain Dis ; 34(6): 1615-1627, 2019 12.
Article in English | MEDLINE | ID: mdl-31346859

ABSTRACT

Zinc plays an important role in neuronal signaling and neurotransmission. However, dyshomeostasis of this metal or its accumulation in the brain has been linked with neurological disorders such as Alzheimer's disease and Parkinson's disease. In this study, the neuroprotective effects of Ecklonia maxima (KPM), Gracilaria gracilis (GCL), Ulva lactuca (ULT) and Gelidium pristoides (MNP) in Zn -induced neurotoxicity in HT-22 cells was examined. Cells were treated with Zinc sulphate and/or aqueous - ethanol extracts and cell viability, apoptosis, acetylcholinesterase activity, including some antioxidant enzymes (catalase and superoxide dismutase activity) and glutathione (GSH) levels were determined. Malondialdehyde and nitric oxide levels produced in the Zn and/or seaweed extract treated cells were also determined. Prior treatment with the seaweed extracts improved cell viability and inhibited Zn - induced cell death. Acetylcholinesterase activity was significantly high in Zn treated cells compared to the control. Pre-treatment with the seaweed extracts triggered a decrease in acetylcholinesterase activity in Zn - treated cells. Furthermore, treatment with Zn caused a significant reduction in GSH levels as well as a decrease in superoxide dismutase and catalase activities. In contrast, the seaweed extract increased antioxidant enzyme activities and GSH levels. An increase in malondialdehyde and nitric oxide levels was also reversed after treatment with the seaweed extracts. These results suggest that the seaweed extracts improved cholinergic transmission disrupted by Zn - induced neurotoxicity and protected the cells against oxidative damage and neuroinflammation. The neuroprotective effects of the seaweed extracts could be linked to their bioactive constituents. Hence these seaweeds are potential sources of active ingredients with neuroprotective potentials and could be used for the development of functional foods and/or nutraceuticals.


Subject(s)
Acetylcholinesterase/metabolism , Apoptosis/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Seaweed , Animals , Catalase/metabolism , Cell Line , Glutathione/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Mice , Neurons/metabolism , Nitric Oxide/metabolism , Oxidation-Reduction , Superoxide Dismutase/metabolism , Zinc/pharmacology
10.
Pharm Biol ; 57(1): 460-469, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31335235

ABSTRACT

Context: Seaweeds contain bioactive compounds with different biological activities. They are used as functional ingredients for the development of therapeutic agents to combat degenerative diseases. Objective: This study investigated the phenolic composition, antioxidant activity, cholinesterase inhibitory and anti-amyloidogenic activities of aqueous extracts of Gracilaria beckeri (J.Agardh) Papenfuss (Gracilariaceae) (RED-AQ), Ecklonia maxima (Osbeck) Papenfuss (Lessoniaceae) (ECK-AQ), Ulva rigida (C.Agardh) Linnaeus (Ulvaceae) (URL-AQ) and Gelidium pristoides (Turner) Kützing (Gelidiaceae) (GEL-AQ). Materials and methods: Phenolic composition of the seaweed extracts was determined using liquid chromatography mass spectrometry. Radical scavenging and metal chelating activities were assessed in vitro. The effect of the extracts (21-84 µg/mL) on acetylcholinesterase and butyrylcholinesterase activities were also investigated using an in vitro colorimetric assay. Transmission electron microscope and thioflavin-T fluorescence assay were used to examine the anti-amyloidogenic activities of the extracts. Results: Phloroglucinol, catechin, epicatechin 3-glucoside were identified in the extracts. ECK-AQ (IC50=30.42 and 280.47 µg/mL) exhibited the highest OH• scavenging and metal chelating activities, while RED-AQ (41.23 and 334.45 µg/mL) exhibited the lowest. Similarly, ECK-AQ (IC50 = 49.41 and 52.11 µg/mL) exhibited higher inhibitory effects on acetylcholinesterase and butyrylcholinesterase activities, while RED-AQ (64.56 and 63.03 µg/mL) showed the least activities. Rapid formation of ß-amyloid (Aß1-42) fibrils and aggregates was observed in electron micrographs of the control after 72 and 96 h. The reduction of Aß1-42 aggregates occurred after co-treatment with the seaweed extracts. Discussion and conclusion: ECK-AQ, GEL-AQ, URL-AQ and RED-AQ may possess neuroprotective potential and could be explored for the management of Alzheimer's disease.


Subject(s)
Acetylcholinesterase/drug effects , Butyrylcholinesterase/drug effects , Phenols/analysis , Plant Extracts/chemistry , Plant Extracts/pharmacology , Seaweed/chemistry , Amyloid beta-Peptides/drug effects , Antioxidants , Free Radical Scavengers/pharmacology , Mass Spectrometry
11.
Electron. j. biotechnol ; 40: 1-9, July. 2019. tab, graf, ilus
Article in English | LILACS | ID: biblio-1053195

ABSTRACT

BACKGROUND: Microalgae are aquatic chlorophyll-containing organisms comprising unicellular microscopic forms, and their biomasses are potential sources of bioactive compounds, biofuels and food-based products. However, the neuroprotective effects of microalgal biomass have not been fully explored. In this study, biomass from two Chlorella species was characterized, and their antioxidant, anticholinesterase and anti-amyloidogenic activities were investigated. RESULTS: GC­MS analysis of the extracts revealed the presence of some phenols, sterols, steroids, fatty acids and terpenes. Ethanol extract of Chlorella sorokiniana (14.21 mg GAE/g) and dichloromethane extract of Chlorella minutissima (20.65 mg QE/g) had the highest total phenol and flavonoid contents, respectively. All the extracts scavenged 2,2-diphenyl-1-picrylhydrazyl, 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonate) and hydroxyl radicals. The highest metal chelating activity of the extracts was observed in the ethanol extracts of C. minutissima (102.60 µg/mL) and C. sorokiniana (107.84 µg/mL). Furthermore, the cholinesterase inhibitory activities of the extracts showed that ethanol extract of C. sorokiniana (13.34 µg/mL) exhibited the highest acetylcholinesterase inhibitory activity, while dichloromethane extract of C. minutissima (11.78 µg/mL) showed the highest butyrylcholinesterase inhibitory activity. Incubation of the ß-amyloid protein increased the aggregation of amyloid fibrils after 96 h. However, ethanol extract of C. sorokiniana and C. minutissima inhibited further aggregation of Aß1­42 and caused disaggregation of matured protein fibrils compared to the control. This study reveals the modulatory effects of C. sorokiniana and C. minutissima extracts on some mediators of Alzheimer's disease and provides insights into their potential benefits as functional food, nutraceutics or therapeutic agent for the management of this neurodegenerative disease.


Subject(s)
Chlorella/chemistry , Cholinesterase Inhibitors/pharmacology , Amyloid beta-Peptides/antagonists & inhibitors , Antioxidants/pharmacology , Phenols/analysis , Steroids/analysis , Sterols/analysis , Terpenes/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cholinesterase Inhibitors/chemistry , Spectroscopy, Fourier Transform Infrared , Neuroprotective Agents , Biomass , Ethanol , Fatty Acids/analysis , Microalgae , Alzheimer Disease/prevention & control , Amyloid/drug effects , Gas Chromatography-Mass Spectrometry , Antioxidants/chemistry
12.
Molecules ; 22(3)2017 Mar 18.
Article in English | MEDLINE | ID: mdl-28335462

ABSTRACT

Current research is geared towards the discovery of new compounds with strong neuroprotective potential and few or no side effects compared to synthetic drugs. This review focuses on the potentials of extracts and biologically active compounds derived from microalgal biomass for the treatment and management of Alzheimer's disease (AD). Microalgal research has gained much attention recently due to its contribution to the production of renewable fuels and the ability of alga cells to produce several secondary metabolites such as carotenoids, polyphenols, sterols, polyunsaturated fatty acids and polysaccharides. These compounds exhibit several pharmacological activities and possess neuroprotective potential. The pathogenesis of Alzheimer's disease (AD) involves complex mechanisms that are associated with oxidative stress, cholinergic dysfunction, neuronal damage, protein misfolding and aggregation. The antioxidant, anticholinesterase activities as well as the inhibitory effects of some bioactive compounds from microalgae extracts on ß-amyloid aggregation and neuronal death are discussed extensively. Phytochemical compounds from microalgae are used as pharmaceuticals, nutraceuticals and food supplements, and may possess neuroprotective potentials that are relevant to the management and/or treatment of AD.


Subject(s)
Alzheimer Disease/prevention & control , Microalgae/chemistry , Neuroprotective Agents/pharmacology , Alzheimer Disease/metabolism , Amyloid/antagonists & inhibitors , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Antioxidants/chemistry , Antioxidants/pharmacology , Biomass , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Dietary Supplements , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Lipid Peroxidation/drug effects , Neuroprotective Agents/chemistry , Oxidative Stress/drug effects
13.
J Biosci Bioeng ; 117(1): 57-64, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23845914

ABSTRACT

A broad range of aroma-active esters produced during fermentation are vital for the complex flavour of beer. This study assessed the influence of fermentation temperature, pH, and wort nutritional supplements on the production of yeast-derived ester compounds and the overall fermentation performance. The best fermentation performance was achieved when wort was supplemented with 0.75 g/l l-leucine resulting in highest reducing sugar and FAN (free amino nitrogen) utilization and ethanol production. At optimum fermentation pH of 5, 38.27% reducing sugars and 35.28% FAN was utilized resulting in 4.07% (v/v) ethanol. Wort supplemented with zinc sulphate (0.12 g/l) resulted in 5.01% ethanol (v/v) production and 54.32% reducing sugar utilization. Increase in fermentation temperature from 18°C to room temperature (± 22.5°C) resulted in 17.03% increased ethanol production and 14.42% and 62.82% increase in total acetate ester concentration and total ethyl ester concentration, respectively. Supplementation of worth with 0.12 g/l ZnSO4 resulted in 2.46-fold increase in both isoamyl acetate and ethyl decanoate concentration, while a 7.05-fold and 1.96-fold increase in the concentration of isoamyl acetate and ethyl decanoate, respectively was obtained upon 0.75 g/l l-leucine supplementation. Wort supplemented with l-leucine (0.75 g/l) yielded the highest beer foam head stability with a rating of 2.67, while highest yeast viability was achieved when wort was supplemented with 0.12 g/l zinc sulphate. Results from this study suggest that supplementing wort with essential nutrients required for yeast growth and optimizing the fermentation conditions could be an effective way of improving fermentation performance and controlling aroma-active esters in beer.


Subject(s)
Beer/analysis , Esters/metabolism , Fermentation , Flavoring Agents/metabolism , Odorants , Volatile Organic Compounds/metabolism , Beer/microbiology , Esters/analysis , Hordeum/chemistry , Leucine/chemistry , Saccharomyces cerevisiae/physiology , Temperature , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL