Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Tissue Eng Part A ; 28(11-12): 525-541, 2022 06.
Article in English | MEDLINE | ID: mdl-35382591

ABSTRACT

Cardiovascular tissue engineering and regeneration strive to provide long-term, effective solutions for a growing group of patients in need of myocardial repair, vascular (access) grafts, heart valves, and regeneration of organ microcirculation. In the past two decades, ongoing convergence of disciplines and multidisciplinary collaborations between cardiothoracic surgeons, cardiologists, bioengineers, material scientists, and cell biologists have resulted in better understanding of the problems at hand and novel regenerative approaches. As a side effect, however, the field has become strongly organized and differentiated around topical areas at risk of reinvention of technologies and repetition of approaches across the areas. A better integration of knowledge and technologies from the individual topical areas and regenerative approaches and technologies may pave the way toward faster and more effective treatments to cure the cardiovascular system. This review summarizes the evolution of research and regenerative approaches in the areas of myocardial regeneration, heart valve and vascular tissue engineering, and regeneration of microcirculations; and discusses previous and potential future integration of these individual areas and developed technologies for improved clinical impact. Finally, it provides a perspective on the further integration of research organization, knowledge implementation, and valorization as a contributor to advancing cardiovascular tissue engineering and regenerative medicine. Impact Statement Despite ongoing convergence of disciplines, research in the field of cardiovascular tissue engineering and regeneration is organized and differentiated around focal areas, including myocardial regeneration, heart valve tissue engineering, vascular tissue engineering, and engineering of microcirculations. Cross-area integration of knowledge, supported by a more holistic, overarching research approach, may lead to faster and more effective treatments and prevent the reinvention of technologies across the areas. Herein, we review the evolution of research and technologies in the individual focal areas and discuss how to enhance integration of-and collaboration between-these areas for improved scientific and clinical impact.


Subject(s)
Regeneration , Tissue Engineering , Heart Valves , Humans , Myocardium , Regenerative Medicine/methods , Tissue Engineering/methods
2.
PLoS One ; 17(4): e0266834, 2022.
Article in English | MEDLINE | ID: mdl-35421132

ABSTRACT

The use of Engineered Heart Tissues (EHT) as in vitro model for disease modeling and drug screening has increased, as they provide important insight into the genetic mechanisms, cardiac toxicity or drug responses. Consequently, this has highlighted the need for a standardized, unbiased, robust and automatic way to analyze hallmark physiological features of EHTs. In this study we described and validated a standalone application to analyze physiological features of EHTs in an automatic, robust, and unbiased way, using low computational time. The standalone application "EHT Analysis" contains two analysis modes (automatic and manual) to analyzes the contractile properties and the contraction kinetics of EHTs from high speed bright field videos. As output data, the graphs of displacement, contraction force and contraction kinetics per file will be generated together with the raw data. Additionally, it also generates a summary file containing all the data from the analyzed files, which facilitates and speeds up the post analysis. From our study we highlight the importance of analyzing the axial stress which is the force per surface area (µN/mm2). This allows to have a readout overtime of tissue compaction, axial stress and leave the option to calculate at the end point of an experiment the physiological cross-section area (PSCA). We demonstrated the utility of this tool by analyzing contractile properties and compaction over time of EHTs made out of a double reporter human pluripotent stem cell (hPSC) line (NKX2.5EGFP/+-COUP-TFIImCherry/+) and different ratios of human adult cardiac fibroblasts (HCF). Our standalone application "EHT Analysis" can be applied for different studies where the physiological features of EHTs needs to be analyzed under the effect of a drug compound or in a disease model.


Subject(s)
Myocardial Contraction , Tissue Engineering , Cell Line , Drug Evaluation, Preclinical , Heart/physiology , Humans , Myocytes, Cardiac , Tissue Engineering/methods
3.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165881, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32562698

ABSTRACT

Patient-derived human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are increasingly being used for disease modeling, drug screening and regenerative medicine. However, to date, an immature, fetal-like, phenotype of hPSC-CMs restrains their full potential. Increasing evidence suggests that the metabolic state, particularly important for provision of sufficient energy in highly active contractile CMs and anabolic and regulatory processes, plays an important role in CM maturation, which affects crucial functional aspects of CMs, such as contractility and electrophysiology. During embryonic development the heart is subjected to metabolite concentrations that differ substantially from that of hPSC-derived cardiac cell cultures. A deeper understanding of the environmental and metabolic cues during embryonic heart development and how these change postnatally, will provide a framework for optimizing cell culture conditions and maturation of hPSC-CMs. Maturation of hPSC-CMs will improve the predictability of disease modeling, drug screening and drug safety assessment and broadens their applicability for personalized and regenerative medicine.


Subject(s)
Heart/embryology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Pluripotent Stem Cells/metabolism , Cell Differentiation , Cells, Cultured , Drug Evaluation, Preclinical/methods , Humans , Myocardial Contraction , Myocardium/cytology , Primary Cell Culture , Regenerative Medicine/methods , Toxicity Tests/methods
4.
Cell Stem Cell ; 18(3): 309-21, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26942851

ABSTRACT

Defined genetic models based on human pluripotent stem cells have opened new avenues for understanding disease mechanisms and drug screening. Many of these models assume cell-autonomous mechanisms of disease but it is possible that disease phenotypes or drug responses will only be evident if all cellular and extracellular components of a tissue are present and functionally mature. To derive optimal benefit from such models, complex multicellular structures with vascular components that mimic tissue niches will thus likely be necessary. Here we consider emerging research creating human tissue mimics and provide some recommendations for moving the field forward.


Subject(s)
Drug Evaluation, Preclinical/methods , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Animals , Humans
5.
EMBO Mol Med ; 7(4): 394-410, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25700171

ABSTRACT

Drugs targeting atrial-specific ion channels, Kv1.5 or Kir3.1/3.4, are being developed as new therapeutic strategies for atrial fibrillation. However, current preclinical studies carried out in non-cardiac cell lines or animal models may not accurately represent the physiology of a human cardiomyocyte (CM). In the current study, we tested whether human embryonic stem cell (hESC)-derived atrial CMs could predict atrial selectivity of pharmacological compounds. By modulating retinoic acid signaling during hESC differentiation, we generated atrial-like (hESC-atrial) and ventricular-like (hESC-ventricular) CMs. We found the expression of atrial-specific ion channel genes, KCNA5 (encoding Kv1.5) and KCNJ3 (encoding Kir 3.1), in hESC-atrial CMs and further demonstrated that these ion channel genes are regulated by COUP-TF transcription factors. Moreover, in response to multiple ion channel blocker, vernakalant, and Kv1.5 blocker, XEN-D0101, hESC-atrial but not hESC-ventricular CMs showed action potential (AP) prolongation due to a reduction in early repolarization. In hESC-atrial CMs, XEN-R0703, a novel Kir3.1/3.4 blocker restored the AP shortening caused by CCh. Neither CCh nor XEN-R0703 had an effect on hESC-ventricular CMs. In summary, we demonstrate that hESC-atrial CMs are a robust model for pre-clinical testing to assess atrial selectivity of novel antiarrhythmic drugs.


Subject(s)
Atrial Fibrillation , Drug Delivery Systems/methods , Models, Biological , Myocytes, Cardiac/metabolism , Pluripotent Stem Cells/metabolism , Potassium Channel Blockers/pharmacology , Atrial Fibrillation/drug therapy , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Drug Evaluation, Preclinical/methods , G Protein-Coupled Inwardly-Rectifying Potassium Channels/antagonists & inhibitors , G Protein-Coupled Inwardly-Rectifying Potassium Channels/biosynthesis , Gene Expression , Heart Atria/metabolism , Heart Atria/pathology , Humans , Kv1.5 Potassium Channel/antagonists & inhibitors , Kv1.5 Potassium Channel/biosynthesis , Myocytes, Cardiac/pathology , Pluripotent Stem Cells/pathology
6.
Circ Arrhythm Electrophysiol ; 4(4): 532-42, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21576278

ABSTRACT

BACKGROUND: Recent studies in experimental animals have revealed some molecular mechanisms underlying the differentiation of the myocardium making up the conduction system. To date, lack of gene expression data for the developing human conduction system has precluded valid extrapolations from experimental studies to the human situation. METHODS AND RESULTS: We performed immunohistochemical analyses of the expression of key transcription factors, such as ISL1, TBX3, TBX18, and NKX2-5, ion channel HCN4, and connexins in the human embryonic heart. We supplemented our molecular analyses with 3-dimensional reconstructions of myocardial TBX3 expression. TBX3 is expressed in the developing conduction system and in the right venous valve, atrioventricular ring bundles, and retro-aortic nodal region. TBX3-positive myocardium, with exception of the top of the ventricular septum, is devoid of fast-conducting connexin40 and connexin43 and hence identifies slowly conducting pathways. In the early embryonic heart, we found wide expression of the pacemaker channel HCN4 at the venous pole, including the atrial chambers. HCN4 expression becomes confined during later developmental stages to the components of the conduction system. Patterns of expression of transcription factors, known from experimental studies to regulate the development of the sinus node and atrioventricular conduction system, are similar in the human and mouse developing hearts. CONCLUSIONS: Our findings point to the comparability of mechanisms governing the development of the cardiac conduction patterning in human and mouse, which provide a molecular basis for understanding the functioning of the human developing heart before formation of a discrete conduction system.


Subject(s)
Heart Conduction System/embryology , Heart Conduction System/metabolism , Heart/embryology , Myocardium/metabolism , Transcription Factors/metabolism , Atrioventricular Node/embryology , Atrioventricular Node/metabolism , Atrioventricular Node/pathology , Connexin 43/metabolism , Connexins/metabolism , Cyclic Nucleotide-Gated Cation Channels/metabolism , Heart Conduction System/pathology , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Muscle Proteins/metabolism , Myocardium/pathology , Potassium Channels , Sinoatrial Node/embryology , Sinoatrial Node/metabolism , Sinoatrial Node/pathology , T-Box Domain Proteins/metabolism , Gap Junction alpha-5 Protein
7.
Stem Cell Res ; 4(2): 107-16, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20034863

ABSTRACT

Recent withdrawals of prescription drugs from clinical use because of unexpected side effects on the heart have highlighted the need for more reliable cardiac safety pharmacology assays. Block of the human Ether-a-go go Related Gene (hERG) ion channel in particular is associated with life-threatening arrhythmias, such as Torsade de Pointes (TdP). Here we investigated human cardiomyocytes derived from pluripotent (embryonic) stem cells (hESC) as a renewable, scalable, and reproducible system on which to base cardiac safety pharmacology assays. Analyses of extracellular field potentials in hESC-derived cardiomyocytes (hESC-CM) and generation of derivative field potential duration (FPD) values showed dose-dependent responses for 12 cardiac and noncardiac drugs. Serum levels in patients of drugs with known effects on QT interval overlapped with prolonged FPD values derived from hESC-CM, as predicted. We thus propose hESC-CM FPD prolongation as a safety criterion for preclinical evaluation of new drugs in development. This is the first study in which dose responses of such a wide range of compounds on hESC-CM have been generated and shown to be predictive of clinical effects. We propose that assays based on hESC-CM could complement or potentially replace some of the preclinical cardiac toxicity screening tests currently used for lead optimization and further development of new drugs.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Embryonic Stem Cells/cytology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Animals , Cell Line , Drug Evaluation, Preclinical , Electrophysiology , Humans , Lidocaine/toxicity , Long QT Syndrome/chemically induced , Mice , Patch-Clamp Techniques , Quinidine/toxicity , Sotalol/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL